embedded wireless GmbH

MORIN Module. B2B-Module.

Manual

[OO A TR =1 0=1 0 1 1=1) TS RR RPN 4
FCC-WARNING ... ettt ettt st sttt ettt et b e et b e e bt e b e e b e e bt e s b e e e bt e s b e e s beesbeesbseeanesaneeanesaneeanenas 4
[C-WARNINGcouttittitieittee ettt ettt ettt sttt sttt e bt e bt e bt e b e e bt e b e e bt e bt e e b e e s bt e s bt e sbeesbeesbeesanesaneeanesaneennenas 4
YL o3 = [LY T I 6
N L0 RV R VA=] o B oY (< o = ol U PUUUURR N 6
Optional: Setup via Serial-USB-INterface:......cccoi oo e e e e e e e e e e e e e e ar e raeaaeeeeaeas 6
RESCUE IMIOTE: ...ttt st s e e s b e e s ae e e s ba e e s an e e sab e e s beesre e s ra e e nrn e e 6
OVEIVIEW SOTEWAIE ..ttt st s e s be e e be e e aa e e s b e e s n e e san e e sabeesneesree s 9

Documentation

T Yo (U LT PR 10
INSTall ProCeAUIE 0N GINU/LINUX....ccviiieeiieieeeireeeeeiee e eetee e eeteeeeeteeeeetteeeeetbaeeesabaeeeesbaeeeessaeesasseseeesseesensaeeeaseeenns 10
(U Tol R =TT PO PP P PR PRRTIN 14
(0] Yo NV o ol o T Lo B2 T g el U Y- T P 15
T =Te (U LT PR 15
PrOCEAUIE ... e e s bt sb e b b s ae e s e e e a e e e 15
Updating SOUICES With Git.....eeeciiiiiiiiiii et e e e e e e e e e e e e s e e s s abesraeeeeeeeeaaaaaeaeseesannnn 15
010 Te Y[aY = ST To [P EUUUURRN 16
Ta g ool @eT o) T U] =1 o] o F PP PUUUUPRN 16
Y] I 1 01T a1 Tolo] o i = PP UPUUURR 16
(o] T a =1 o - PP RUUUURN 17
Kernel configuration (OPTIONAI)euiiiiiieeee e e e e e e e e et e e e e e ba e e e e e e enaraeeeeeeeanraaeeas 17
R 10 o 1Y/ g o PP 18
Configure UsiNg CONFig iff file..........uuiiiiiieiieee e e e e e e e e e e e e e e e e e e s e nnansraeees 18
USING QT fil e e e e e e e e e et a e e e e e e e eaeaaeeeeesesseaanssessaaaaeeeeeasaaaaaeeeeaaannn 19
PATCNES ... e a e s r s 19
CUSTOM FIlBS ettt s e st e st e e e e re e e sra e 19
D LY oo] o 1 TP PUUUURN 19
2 U1 T [T g Y= [T = L UUURUURN 20
IMIAKE TS ceeeiieeieeiieeieece ettt e et e e e e e e e e e e e e e e e abaeraeaaaeeeeeaaaaaaseesaaa s sssstsasaaasaeesaaaaaseseesaaaaasnsssssaananseseasaaasnesennnnen 20
BUIldiNg iN the DACKEIOUNG......ccieiie e e e e e e e e e e e e e e s abrrraereeeeeeasaaaaeeseeaannnn 20
BUIIING SINGIE PACKAZES ...uuviiiiiiiiieeieee et e e e e e e e e e e e e e e s e s se e aabsssaaaaereeaasaaaeaeseasannnn 20

MORIN Module. B2B-Module. 2

Documentation

Y o ToT o [a¥ = o TV 11 o I =T o oY PPt 21
Getting DeeP NOLHICAtION ..o e e e e e e e e e e s e e e e e e e eaaaaaeeeesessaannssserannes 21
SKIPPING fAIlEd PACKAZES. ...ciiiii i ittt ere e e e e e e eeeaeeeesee s s et nssaaebesaeaeeeaaaaaeaeseesaaaanssnsnnnees 21
(o Tor=) oY= T Tq T3PS 22
(@Y 1o 1T o= U o TP 23
(01 1=T- o DTS P TP OO PR 23
DT e L= o OO PR OTRRPRRTIN 23
DTy (ol 1= T o PO PO P PRI 23
Y] o [P UURURRN 25
g8 o1 =T s o Lo u T s =P UUUUUURR N 26
Missing source code file, due to download ProblEmMS.........ccoeieee e e 26
(00 aaYoJ1 18 (o] T=T o o 23U PPt 26
WARNING: skipping <package> -- package Not SEIECLEd.........c..uuiiiiiiiiiiei e 26
*-factory.bin and *-sysupgrade.bin images for my device do not get generated.........cccoveeeeeeiciiieeeieecnnnennn. 26
N 0 = 27

MORIN Module. B2B-Module. 2

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s
authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference in a residential installation. This equipment generates uses and can radiate radio frequency
energy and, if not installed and used in accordance with the instructions, may cause harmful interference to
radio communications. However, there is no guarantee that interference will not occur in a particular
installation. If this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the interference by
one or more of the following measures: Reorient or relocate the receiving antenna. Increase the separation
between the equipment and receiver. Connect the equipment into an outlet on a circuit different from that to
which the receiver is connected. Consult the dealer or an experienced radio/TV technician for help.

The antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from
all persons and must not be co-located or operating in conjunction with any other transmitter.

Labeling requirement
The Host device of OEM integrator must be labeled with ,,Contains FCC ID: 2AJY6MORINO1*

This device complies with Part 15 of the FCC Rules and with Industry Canada license-exempt RSS standard(s).
Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired
operation.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de
licence. L'exploitation est autorisée aux deux conditions suivantes : (1) I'appareil ne doit pas produire de
brouillage, et (2) l'utilisateur de I'appareil doit accepter tout brouillage radioélectrique subi, méme si le
brouillage est susceptible d'en compromettre le fonctionnement.

Documentation

Under Industry Canada regulations, this radio transmitter may only operate using the following antenna(s):

Number Characteristic Certification Name Gain

1 Omni PCB-inverted F 2.1 dBi

To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that

the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful
communication.

Labeling requirement
The Host device of OEM integrator must be labeled with ,,Contains IC: 22172-MORINO1“

MORIN Module. B2B-Module. 2

cjaeger
Textfeld
1 Omni PCB-inverted F 2.1 dBi

cjaeger
Textfeld
Number Characteristic Certification Name Gain

Documentation

Setup Hardware

Setup via Web-Interface:

Connect your Morin-Board with a standard USB TypeA/B Cable to a standard USB power supply or your PC
USB-port.

Use Ethernet switch jacks to connect your PC/Switch to the Morin Board.
Morin static IP-Address: 192.168.1.1 Mask: 255.255.255.0
Use Web Browser or telnet to connect.

Note: Use ssh instead when Morin Evaluation-Board admin password is configured. Telnet is switched to ssh
by password configuration.

Optional: Setup via Serial-USB-Interface:

Connect the Morin Board with a standard USB TypeA/B Cable to the USB-port of your PC. Based on your
specific operating system you are able to open a serial connection with a terminal application of your choice.

Configure serial settings: 115200-8-N-1
Note: If needed install driver:

USB COM DRIVER: http://www.ftdichip.com/Drivers/VVCP.htm

Rescue Mode:

If you need to reset to the originally generated firmware, because Morin-Board doesn’t boot anymore, rescue
mode is the way to load Firmware via WEB Browser:

Power cycle the Morin-Board while Jumpstart button is pressed. Release Jumpstart button after 1s.

Put a firmware file via WEB Browser to the Morin Evaluation-Board. http://192.168.1.1/index.html| Mask:
255.255.255.

1.) http://192.168.1.1/index.html. Maybe you have to use , priivate surf“. Depends an your browser
vendor.

MORIN Module. B2B-Module.

‘

Documentation

embedded wireless

Firmware update

You are going to upload new firmware to the device.
Choose a proper file from your local hard drive and click "Update firmware" button.
Please, do not power off the device during update, if everything goes well, the device will restart.

Datei auswahlen WOUEECIRTEEIZUIE Update firmware

You can find more information about this project on GitHub

2.) Press Button , Datei auswahlen”.

3.) Point to your firmware (z.B.: openwrt-ar71xx-generic-...-16M-squashfs-sysupgrade.bin)

embedded wireless

Firmware update

You are going to upload new firmware to the device.
Choose a proper file from your local hard drive and click "Update firmware" button.
Please, do not power off the device during update, if everything goes well, the device will restart.

Datei auswahlen N MEESIEERNEREETIN Update firmware

You can find more information about this project on GitHub

4.) Press Button ,Update firmware”.

Documentation

Update in progress

Your file was successfully uploaded! Update is in progress and you should wait for automatic reset of the device.
Update time depends on image size and may take up to a few minutes. You can close this page.

N
\—

You can find more information about this project on GitHub

Documentation

Overview Software

Morin Module Software is OpenWrt Operating System. Most recent Version is V 15.01 Chaos Calmer.
Building Firmware is in the responsibility of the customer. Firmware is always customer specific and build by

the customer of the product. Changes or modifications of the software not expressly approved by the party
responsible for compliance could void the user’s authority to operate the equipment.

MORIN Module. B2B-Module. 2

OpenWrt build system is the buildsystem for the OpenWrt Linux distribution. OpenWrt build system
works on GNU/Linux, BSD or MacOSX operating system. A case-sensitive filesystem is required.

It is recommended that you use a GNU/Linux distribution (Debian), either a standalone installation or
one running in a virtual environment (VMware or Qemu).

Ubuntu under Windows Subsystem for Linux is not an officially supported environment, but it appears
to produce good builds. Cygwin(Windows) will not be supported because of the lack of case
sensitivity in the file system.

Outdated information for old Buildroot versions, old GNU/Linux variants is archived at:
buildroot.exigence.old

To generate an installable OpenWrt firmware image file with a size of e.g. 8MB, you need:

ca. 200 MB of hard disk space for OpenWrt build system

ca. 300 MB of hard disk space for OpenWrt build system + OpenWrt Feeds

ca. 2.1 GB of hard disk space for source packages downloaded during build from OpenWrt Feeds

ca. 3-4 GB of available hard disk space to build (i.e. cross-compile) OpenWrt and generate the
firmware file

ca. 1-4 GB of RAM to build Openwrt.(build x86's img need 4GB RAM)

1. Do everything as non-root user!
| 2. Issue all OpenWrt build system commands in the <buildsystem root> directory, e.g. ~/openwrt/trunl|

3. Do not build in a directory that has spaces in its full path

4. Change ownership of the directory where you downloaded the OpenWrt to other than root user
(sudo chown -R user:user /openwrt/)

1 Install git, to conveniently download the OpenWrt source code, and build tools to do the cross-

compilation process: sudo apt-get update

2 sudo apt-get install git-core build-essential libssl-dev libncurses5-dev unzip gawk zlib1g-devSome

feeds might not available over git but only via subversion (short: svn) or mercurial. If you want

to obtain their source-code, you need to install svn and mercurial as well:sudo apt-get install
subversion mercurial

. for information about the build tools see make and build-essential

. for information about git see git(7)

. for information about the subversion tool see svn and subversion documentation (multiple
languages)

3 Download the OpenWrt bleeding edge(trunk Version) with git (see Downloading Sources for more

options!):git clone https://github.com/openwrt/openwrt.gitthis creates a directory 'openwrt’,

which is the OpenWrt build system build-directorythe OpenWrt toolchain "OpenWrt build

system" is included
4 (optional) Download and install all available "feeds" (see OpenWrt Feeds for more options!):cd

openwrt

5 ./scripts/feeds update -a

6 ./scripts/feeds install -a

7 Make OpenWrt build system check for missing packages on your build-system using ONE of the
following commands:make menuconfig (most likely you would like to use this)

8 make defconfig

9 make preregThere you will need to select what you want to compile.
10 Proceed with build (i.e. cross-compile the downloaded sources to binaries)\\After the cross-
compilation process the trunk-directory contained over 240000 files with a total size of above

3GiB!

Table of known prerequisites and their corresponding packages

Prerequisite

asciidoc
GNU Bash
GNU bc
GNU Binutils
bzip2

fastjar

flex

git

GNU C++
Compiler
GNU C Compiler
getopt

GNU awk

Debian

asciidoc
bash
bc
binutils
bzip2
fastjar
flex
git-core
g

gcc
util-linux
gawk

SUSE

asciidoc
bash
bc
binutils
bzip2
fastjar
flex
git-core
gce-c

gcc
util-linux
gawk

OS X (via
MacPorts)

asciidoc
bash

binutils
bzip2
fastjar
flex
git-core
gcc

?
util-linux
gawk

Fedora

asciidoc

bash

bc

binutils

bzip2

libgcj

flex

git
sys-devel/gcc

gcc
getopt
gawk

gtk2.0-dev
intltool-update
jikes

libz, libz-dev
Mercurial / hg
make

mkisofs
ncurses

openssl/ssl.h

patch
perl-ExtUtils-
MakeMaker
python2.6-dev

rsync
ruby

sdcc

unzip

GNU Wget
xgettext
xsltproc

zlib, zlib-static

libgtk2.0-dev
intltool
jikespg
zlib1g-dev

make
genisoimage
libncursesb5-
dev
libssl-dev

patch
perl-modules

python2.6-
dev

rsync

ruby

sdcc
unzip
wget
gettext
xsltproc
zlib1g-dev

Examples of Package Installations

= Debian 7 Wheezy:apt-get install libncurses5-dev zliblg-dev gawk

= Debian 8 Jessie:sudo apt-get install build-essential libncurses5-dev
gawk git subversion libssl-dev gettext unzip zliblg-dev file

python

gtk2-devel
intltool

jikes
zlib-devel
mercurial
make
genisoimage
ncurses-devel

libopenssl-
devel

patch
perl-ExtUtils-
MakeMaker
python-devel

rsync
ruby

sdcc

unzip

wget
gettext-tools
libxslt-tools
zlib-devel

gtk2-devel
intltool
?

zlib-devel

make
?

ncurses-devel
openssl-devel

patch
perl-ExtUtils-

MakeMaker
?

rsync
?

sdcc
unzip
wget
gettext

?
zlib-devel

gtk2
intltool
jikes
zlib

gmake
?

ncurses
openssl

patchutils
pS-extutils-
makemaker
python26

rsync
ruby
sdcc
unzip
wget
gettext
libxslt
zlib-devel

» Fedora 24 - 64Bit :dnf install -y subversion binutils bzip2 gcc gcc-c++
gawk gettext git-core flex ncurses-devel ncurses-compat-libs
zlib-devel zlib-static make patch unzip perl-ExtUtils-MakeMaker
perl-Thread-Queue \

glibc glibc-devel glibc-static quilt sed sdcc intltool sharutils

Documentation

bison wget openssl-devel

= openSUSE 13.2zypper install asciidoc bash bc binutils bzip2 fastjar
flex git-core gcc-c++ gcc util-linux gawk gtk2-devel intltool
jikes zlib-devel mercurial make genisoimage ncurses-devel
libopenssl-devel patch perl-ExtUtils-MakeMaker python-devel rsync
ruby sdcc unzip wget gettext-tools libxslt-tools zlib-devel
subversion

= Ubuntu 12.04LTS:sudo apt-get install build-essential subversion git-
core libncurses5-dev zliblg-dev gawk flex quilt libssl-dev
xsltproc libxml-parser-perl mercurial bzr ecj cvs unzip

= Ubuntu 64bit:sudo apt-get install build-essential subversion
libncurses5-dev zliblg-dev gawk gcc-multilib flex git-core
gettext libssl-dev

Downloading Sources

GIT
cloning the Git repository using one of the following commands. Note that the main
source repos have all been moved to Github in 2016.

trunk (main development tree)
The development branch (trunk) contains everything from documentation to
patches.

Main repository

git clone git://github.com/openwrt/openwrt.git

Additional packages can be found in several feeds (Luci, packages, routing,
management etc.). Let the Openwrt build system to clone the correct feeds into
feeds/packages, feeds/luci etc.

15.05 branch (Chaos Calmer)
Main repository

git clone -b chaos_calmer git://github.com/openwrt/openwrt.git

MORIN Module. B2B-Module.

‘

Documentation

Additional packages can be found in several feeds (Luci, packages, routing,

management etc.). Let the Openwrt build system to clone the correct feeds into
feeds/packages, feeds/luci etc.

Luci feed

Note: The location of the Luci feed has not been corrected in feeds.conf.default after

the move to Github, so you need to manually edit feeds.conf.default to pull Luci from
Github:

src-git luci https://github.com/openwrt/luci.git;luci-0.11

MORIN Module. B2B-Module. 2

Documentation

OpenWrt build system — Usage

Prerequisites

to generate an installable OpenWrt firmware image file with a size of e.g. 8MB:
= Install OpenWrt build system and its prerequisites on your OS.
= ca. 3-4 GB of available hard disk space
= environment variables:
SED should not be set. If itis, run “unset SED" before compiling.
GREP_OPTIONS should not have -initial-tab or other options affecting its
output
Add <buildroot dir>/staging dir/host/bin and <buildroot
dir>/staging_dir/toolchain-<platform>-<gcc_ver>-
<libc_ver>/bin in front of your PATH variable in ~/.bashrc. The staging
directory is created shortly after starting the build and the toolchain
directory is created when the toolchain build begins. The build spawns
multiple shells, some of which expect the toolchain binaries to be present in

the PATH.
Procedure
" 1. Do everything as non-root user
'2. Issue all commands in the <buildroot dir> directory, e.g.
~/openwrt/trunk/

= Update OpenWrt sources.

= Update and install package feeds.

= Configure the firmware image you want to obtain.

= Start the build. This will automatically compile toolchain, cross-compile sources,
package packages, and finally generate an image ready to be flashed.

= Proceed to Installing OpenWrt

Stages 1 & 2 can be performed with a Dockerfile

Updating Sources with Git

© OpenWrt sources change frequently. It is recommended that you work with the
latest sources.

Documentati

git pull

Updating Feeds

see feeds

® Installing in context of . /scripts/feeds script means "making package available

in make menuconfig" rather than really installing or compiling package.

11 Update feeds: ./scripts/feeds update -a

12 Make downloaded package/packages available in make menuconfig:

. single package:./scripts/feeds install <PACKAGENAME>

. all packages:./scripts/feeds install -a This may take extra time and
requred if you to create own repository of the packages/

Image Configuration

Typical actions:

= run make menuconfig and set "Target System", "Subtarget", "Target Profile";

= run make defconfig;

= run make menuconfig and modify set of package;

= run scripts/diffconfig.sh >mydiffconfig (save your changes in the text file
mydiffconfig);

run make V=s (build OpenWRT with console logging, you will look where build
failed.).

Make menuconfig

The OpenWrt build system configuration interface handles the selection of the
target platform, packages to be compiled, packages to be included in the firmware file,
some kernel options, etc.

Start the OpenWrt build system configuration interface by issuing the following
command:

make menuconfig

This will update the dependencies of your existing configuration automatically, and you
can now proceed to build your updated images.

You have three options: y, m, n which are represented as follows:

= pressing y sets the <*> built-in label This package will be compiled and included in

the firmware image file.
= pressing m sets the <M> package label This package will be compiled, but not
included in the firmware image file. (E.g. to be installed with opkg after flashing
the firmware image file to the device.)
= pressing n sets the < > excluded label The source code will not be processed.
When you save your configuration, the file <buildroot dir>/.config will be created
according to your configuration.

Explanations

It has been the intention from the beginning, with the development of menuconfig, to
create a simple, yet powerful, environment for the configuration of individual OpenWrt
builds. menuconfig is more or less self-explanatory, and even the most specialized
configuration requirements can be met by using it. Depending on the the particular
target platform, package requirements and kernel module needs, the standard
configuration process will include modifying:

1 Target system

2 Package selection

3 Build system settings

4 Kernel modules

Target system is selected from the extensive list of supported platforms, with the
numerous target profiles — ranging from specific devices to generic profiles, all
depending on the particular device at hand. Package selection has the option of either
'selecting all package', which might be un-practical in certain situation, or relying on the
default set of packages will be adequate or make an individual selection. It is here
needed to mention that some package combinations might break the build process, so
it can take some experimentation before the expected result is reached. Added to this,
the OpenWrt developers are themselves only maintaining a smaller set of packages —
which includes all default packages — but, the feeds-script makes it very simple to
handle a locally maintained set of packages and integrate them in the build-process.
The final step before the process of compiling the intended image(s) is to exit
menuconfig — this also includes the option to save a specific configuration or load an
already existing, and pre-configured, version.

Exit the TUI, and choose to save your settings.

Kernel configuration (optional)

Note that make kernel_menuconfig modifies the Kernel configuration templates of

the build tree and clearing the build_dir will not revert them:

While you won't typically need to do this, you can do it:

make kernel_menuconfig CONFIG_TARGET=subtarget

CONFIG_TARGET allows you to select which config you want to edit. possible options:
target, subtarget, env.

:: (git) (GIT) The changes can be reviewed with
git diff target/linux/

and reverted with (SVN)

svn revert -R target/linux/

Source Mirrors

The 'Build system settings' include some efficient options for changing package
locations which makes it easy to handle a local package set:

1 Local mirror for source packages

2 Download folder

In the case of the first option, you simply enter a full URL to the HTTP or FTP server on
which the package sources are hosted. Download folder would in the same way be the
path to a local folder on the build system (or network). If you have a web/ftp-server
hosting the tarballs, the OpenWrt build system will try this one before trying to
download from the location(s) mentioned in the Makefiles . Similar if a local 'download
folder', residing on the build system, has been specified.

The 'Kernel modules' option is required if you need specific (non-standard) drivers and
so forth — this would typically be things like modules for USB or particular network
interface drivers etc.

Configure using config diff file

Beside make menuconfig another way to configure is using a configuration diff file.
This file includes only the changes compared to the default configuration. A benefit is
that this file can be version controlled with your OpenWRT based project. It's also less
affected by OpenWRT updates, because it only contains the changes.

Creating diff file

This file is created using the <buildroot dir>/scripts/diffconfig.sh script.
./scripts/diffconfig.sh > diffconfig # write the changes to diffconfig

Using diff file

These changes can form the basis of a config file (<buildroot dir>/.config). By
running make defconfig these changes will be expanded into a full config.

cp diffconfig .config # write changes to .config

make defconfig # expand to full config

These changes can also be added to the bottom of the config file (<buildroot
dir>/.config), by running make defconfig these changes will override the existing
configuration.

cat diffconfig >> .config # append changes to bottom of .config

make defconfig # apply changes

Patches

OpenWrt build system integrates quilt for easy patch management:
—patches

Custom files

In case you want to include some custom configuration files, the correct place to put
them is:

= <buildroot dir>/files/

For example, let's say that you want an image with a custom /etc/config/firewall
or a custom etc/sysctl.conf, then create this files as:

= <buildroot dir>/files/etc/config/firewall

= <buildroot dir>/files/etc/sysctl.conf

E.g. if your <buildroot dir> is /openwrt/trunk and you want some files to be copied
into firmware image's /etc/config directory, the correct place to put them is
/openwrt/trunk/files/etc/config.

Defconfig

select your target before issuing defconfig

make defconfig

will produce a general purpose configuration of the build system including a check of
dependencies and prerequisites for the build environment etc

will check for dependencies. Install missing and run again.

Documentation

Building Images

Everything is now ready for building the image(s), which is done with one single
command:

make
or
make world

This simple command will trigger a cascade of activity. As already stated, it will
1 compile the toolchain

2 then crosscompile the sources with this toolchain

3 create opkg-packages

4 generate a firmware image file ready to be flashed.

Make Tips

Building in the background

If you intend to use your system while building, you can have the build process use
only idle 1/0 and CPU capacity like this (dualcore CPU):

ionice -c 3 nice -nl19 make -j 2

Building single Packages

When developing or packaging software for OpenWrt, it is convenient to be able to
build only the package in question (e.g. with package cups):

make package/cups/compile V=s

For a rebuild:
make package/cups/{clean,compile,install} V=s

MORIN Module. B2B-Module.

‘

Documentati

It doesn't matter what feed the package is located in, this same syntax works for any
installed package.

Spotting build errors
If for some reason the build fails, the easiest way to spot the error is to do:

make V=s 2>&1 | tee build.log | grep -i error

The above saves a full verbose copy of the build output (with stdout piped to stderr) in
/openwrt/trunk/build.log and only shows errors on the screen.
Another example:

ionice -c¢ 3 nice -n 20 make -j 2 V=s CONFIG_DEBUG_SECTION_MISMATCH=y
2>&1 | tee build.log | egrep -i '(warn|error)’

The above saves a full verbose copy of the build output (with stdout piped to stderr) in
build.log and outputs only warnings and errors while building using only background
resources on a dual core CPU.

Yet another way to focus on the problem without having to wade through tons of output
from Make as described above is to check the corresponding log in ‘'logs' folder. IE: if
the build fails at "make[3] -C package/kernel/mac80211 compile", then you can go to
<buildroot>/logs/package/kernel/mac80211 and view the compile.txt found there.

Getting beep notification

Depending on your CPU, the process will take a while, or while longer. If you want an
acoustic notification, you could use echo -e '\a"

make V=s ; echo -e '\a'

Skipping failed packages

If you are building everything (not just packages enough to make a flashable image)
and build stops on a package you don't care about you can skip failed packages by
using IGNORE_ERRORS=1

IGNORE_ERRORS=1 make <make options>

Documentation

Locating Images

After a successful build, the freshly built image(s) can be found in the newly created
<buildroot_dir>/bin directory. The compiled files are additionally classified by the
target platform, so e.g. a firmware built for an ar71xx device will be located in
<buildroot_dir>/bin/ar71xx directory.

E.qg. if your <buildroot_dir> is ~/openwrt/trunk, the binaries are in
~/openwrt/trunk/bin/ar71xx.

MORIN Module. B2B-Module. 2

Documentation

Cleaning Up

You might need to clean your build environment every now and then. The following
make-targets are useful for that job:

Clean

make clean

deletes contents of the directories /bin and /build dir. make clean does not remove
the toolchain, it also avoids cleaning architectures/targets other than the one you have
selected in your .config

Dirclean

make dirclean

deletes contents of the directories /bin and /build_dir and additionally
/staging dir and /toolchain (=the cross-compile tools) and /logs. 'Dirclean’ is
your basic "Full clean" operation.

Distclean

make distclean

nukes everything you have compiled or configured and also deletes all downloaded
feeds contents and package sources.

CAUTION: In addition to all else, this will erase your build configuration
(<buildroot_dir>/.config), your toolchain and all other sources. Use with care!
There are numerous other functionalities in the OpenWrt build system, but the above
should have covered some of the fundamentals.

Clean small part

In more time, you may not want to clean so many objects, then you can use some of
the commands below to do it.

MORIN Module. B2B-Module.

‘

Documentation

Clean linux objects.
make target/linux/clean

Clean package base-files objects.
make package/base-files/clean

Clean luci.
make package/luci/clean

MORIN Module. B2B-Module. P

Documentation

Examples

= https://forum.openwrt.org/viewtopic.php?pid=129319#p129319
= https://forum.openwrt.org/viewtopic.php?id=28267

MORIN Module. B2B-Module. P

Document

Troubleshooting

Beware of unusual environment variables such as
GREP_OPTIONS which should not have -initial-tab or other options affecting
its output
. SED should not be set. If it is, run ‘'unset SED" before compiling. (See
Ticket 10612.)
First get more information on the problem using the make option "make V=sc" or
enable logging.

© Read more about make options: Buildroot Techref
® Development FAQ

Missing source code file, due to download problems

First check if the URL path in the make file contains a trailing slash, then try with it
removed (helped several times). Otherwise try to download the source code manually
and put it into "dI" directory.

Compilation errors

Try to update the main source and all the feeds (Warning! May result in other
problems). Check for a related bug in (TRAC), use the filters to find it. Otherwise report
the problem there, by mentioning the package, the target data (CPU, image, etc.) and
the code revisions (main & package). Compiling with make -j ... sometimes gives
random errors. Try compiling without -j first before reporting the problem.

WARNING: skipping <package> -- package not selected

Run make menuconfig and enable compilation for your package. It should be labeled
with <*> or <M> to work correctly. Read image.configuration further up in this article.

*-factory.bin and *-sysupgrade.bin images for my device do not get generated

When you execute make to build an OpenWRT image for your device, both a
sysupgrade and a factory image should be generated for every board that is linked to
the device profile that you have selected via make config or make menuconfig. For
example, when you select the TP-Link WR710N profile, the should be a seperate
sysupgrade and a factory image generated for both the WR710N-v1 and the WR710N-

v2 (the main difference between the two devices is the size of the flash chip: the v1
comes with 8MiB of flash while the v2 only has 4MiB).

If running make does not yield images for one (or even all) of the boards linked to the
device profile that you have selected, than you probably have selected/enabled too
much stuff, resulting in an image that would be too big to be flashed onto your device.
Please note that the OpenWRT buildroot will currently (september 2015) not display
any warning or error message if an image cannot be created because it would be too
big for its designated target board. Please keep in mind that in most cases, you will not
be able to use all the flash memory in your device exclusively for your OpenWRT
image, because there might be several separate flash partitions dedicated to things
like the boot loader, the calibration data of the devices wifi card or the partition where
your configuration data is stored.

Notes

OpenWrt Buildroot — Technical Reference
http://downloads.openwrt.org/docs/buildroot-documentation.html
https://dev.openwrt.org/browser/trunk/docs/working.tex
Compiler Optimization Tweaks

This Manual is created using documentation with several small changes from
openwrt.org under CC license. Thanks tot he openwrt team for their excellent work!

Full license is available here:
https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

