

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 102684875BOX-001a
Project Number: G102684875

Report Issue Date: 11/22/2016

Model(s) Tested: Nightingale 3.2

Standards: CFR47 FCC Part 15 Subpart C (15.247): 08/2016
RSS-247 Issue 1: 05/2015
CFR47 FCC Part 15 Subpart B: 09/2016
ICES 003 Issue 6: 01/2016 updated 06/2016

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719
USA

Client:
Cambridge Sound Management Inc.
404 Wyman St, Ste 200
Waltham, MA 02451-1242
USA

Report prepared by Reviewer

Vathana Ven / Staff Engineer, EMC

Report reviewed by

Michael Murphy / Technical Team Leader, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	<i>Introduction and Conclusion</i>	3
2	<i>Test Summary</i>	3
3	<i>Client Information</i>	4
4	<i>Description of Equipment Under Test and Variant Models</i>	4
5	<i>System Setup and Method</i>	6
6	<i>Output Power and Human RF Exposure</i>	7
7	<i>Power Spectral Density</i>	15
8	<i>Occupied (99%) and 6 dB Bandwidth</i>	20
9	<i>Band Edge Compliance</i>	30
10	<i>Transmitter Spurious Emissions</i>	37
11	<i>Digital Device Radiated Spurious Emissions</i>	57
12	<i>AC Mains Conducted Emissions</i>	65
13	<i>Revision History</i>	72

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	--
4	Description of Equipment Under Test and Variant Models	--
5	System Setup and Method	--
6	Output Power and Human RF Exposure (CFR47 FCC Part 15 Subpart C (15.247): 09/2016 RSS-247 Issue 1: 05/2015 RSS-102 Issue 5: 03/2015)	Pass
7	Power Spectral Density (CFR47 FCC Part 15 Subpart C (15.247): 09/2016 RSS-247 Issue 1: 05/2015)	Pass
8	Occupied (99%) and 6 dB Bandwidth (CFR47 FCC Part 15 Subpart C (15.247): 09/2016 RSS-247 Issue 1: 05/2015)	Pass
9	Band Edge Compliance (CFR47 FCC Part 15 Subpart C (15.247): 09/2016 RSS-247 Issue 1: 05/2015)	Pass
10	Transmitter Spurious Emissions (CFR47 FCC Part 15 Subpart C (15.247): 09/2016 RSS-247 Issue 1: 05/2015)	Pass
11	Digital Device Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart B: 09/2016 ICES 003 Issue 6: 01/2016 updated 06/2016)	Pass
12	AC Mains Conducted Emissions (CFR47 FCC Part 15.207 Subpart C: 09/2016 ICES 003 Issue 6: 01/2016 updated 06/2016, RSS-Gen Issue 4 Section 8.8)	Pass
13	Revision History	--

3 Client Information

This EUT was tested at the request of:

Client: Cambridge Sound Management Inc.
404 Wyman St, Ste 200
Waltham, MA 02451-1242
USA

Contact: Greg Saunders
Telephone: (781) 547-7495
Fax: None
Email: gsaunders@csmqt.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: Cambridge Sound Management Inc.
404 Wyman St, Ste 200
Waltham, MA 02451-1242
USA

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
Sound Masking Sleep Aid	Cambridge Sound Management Inc.	Nightingale 3.2	NGP3.2-104

Receive Date:	09/26/2016
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)
Sound Masking Sleep Aid

Equipment Under Test Power Configuration			
Rated Voltage	Rated Current	Rated Frequency	Number of Phases
120 VAC	N/A	60 Hz	Single

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmit mode
2	Receive mode

Software used by the EUT:

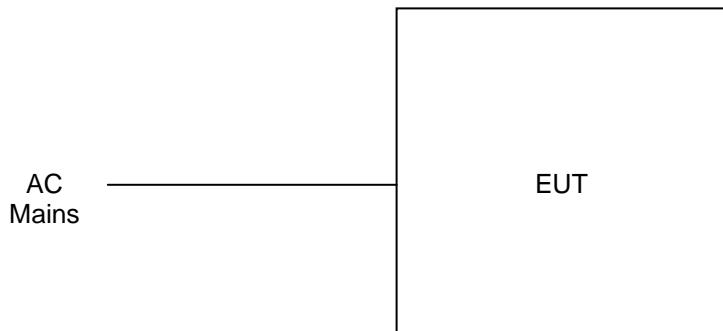
No.	Descriptions of EUT Exercising
1	None

Radio/Receiver Characteristics	
Frequency Band(s)	2402 – 2480 MHz
Modulation Type(s)	GFSK
Maximum Output Power	-9.6 dBm
Test Channels	CH 0 - 2402 MHz, CH 13 - 2440 MHz, CH 27 - 2480 MHz
Occupied Bandwidth	CH 0 - 1.034 MHz, CH 13 - 1.046 MHz, CH 27 - 1.064 MHz
Frequency Hopper: Number of Hopping Channels	N/A
Frequency Hopper: Channel Dwell Time	N/A
Frequency Hopper: Max interval between two instances of use of the same channel	N/A
MIMO Information (# of Transmit and Receive antenna ports)	Integral Antenna
Equipment Type	Standalone
ETSI LBT/Adaptivity	N/A
ETSI Adaptivity Type	N/A
ETSI Temperature Category (I, II, III)	N/A
ETSI Receiver Category (1, 2, 3)	N/A
Antenna Type and Gain	Integral

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None


5 System Setup and Method

Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
--	Power Cable	2	None	None	AC Mains

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
IPAD	Apple	MD531LL/A	F7NN7P7VF196

5.1 Method:

Configuration as required by CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015
CFR47 FCC Part 15 Subpart B: 09/2016, ICES 003 Issue 6: 01/2016 updated 06/2016, ANSI
C63.10:2013.

5.2 EUT Block Diagram:

6 Output Power and Human RF Exposure

6.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 and ANSI C 63.10,

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where UF = Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$

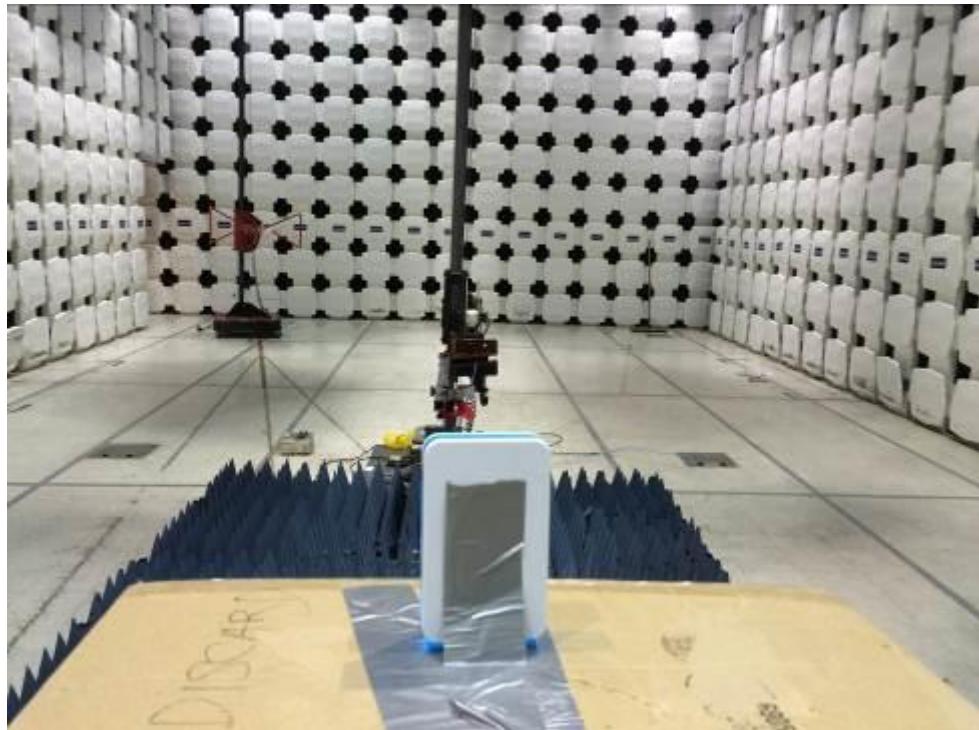
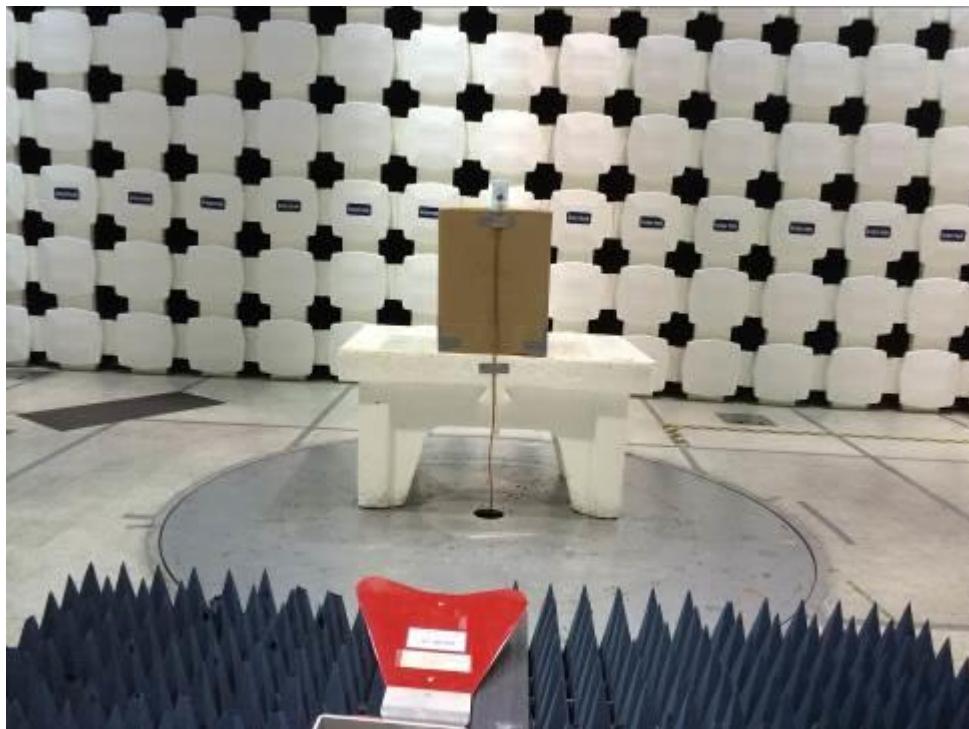
Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V/m}$$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/08/2015	10/08/2016



Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

Note: Your Laptop may use a different version of Excel. Record the version you actually used!

6.3 Results:

The sample tested was found to Comply. The EIRP must not exceed 30 dBm. The Human RF Exposure limit is 1 mW/cm².

6.4 Setup Photographs:

6.5 Test Data:**Intertek****Fundamental Power (Radiated Emissions)**

Company: Cambridge Sound Management
 Model #: Nightingale 3.2
 Serial #: NGP3.2-104
 Engineers: Kouma Sinn
 Project #: QU-00705932 Date(s): 07/07/16
 Standard: FCC Part 15 Subpart C 15.247
 Receiver: 145-128 Limit Distance (m): 3
 PreAmp: None Test Distance (m): 3
 PreAmp Used? (Y or N): N Voltage/Frequency: 120 VAC 60 Hz Frequency Range: Fundamental
 Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	EIRP Net dBm	EIRP Limit dBm	Margin dB	Bandwidth
Low Channel 2402 MHz. The EUT sits straight up in its only normal orientation											
Note: EIRP Obtained by applying the path loss correction for a 3m test distance, $E(\text{dBuV/m})@3m - 95.22 = \text{dBm EIRP}$											
PK	H	2402.000	44.45	32.29	7.51	0.00	0.00	-10.97	30.00	-40.97	5/10 MHz
PK	V	2402.000	43.66	32.29	7.51	0.00	0.00	-11.76	30.00	-41.76	5/10 MHz
Mid Channel 2440 MHz. The EUT sits straight up in its only normal orientation											
Note: EIRP Obtained by applying the path loss correction for a 3m test distance, $E(\text{dBuV/m})@3m - 95.22 = \text{dBm EIRP}$											
PK	H	2440.000	45.79	32.26	7.57	0.00	0.00	-9.60	30.00	-39.60	5/10 MHz
PK	V	2440.000	42.48	32.26	7.57	0.00	0.00	-12.91	30.00	-42.91	5/10 MHz
High Channel 2480 MHz. The EUT sits straight up in its only normal orientation											
Note: EIRP Obtained by applying the path loss correction for a 3m test distance, $E(\text{dBuV/m})@3m - 95.22 = \text{dBm EIRP}$											
PK	H	2480.000	44.59	32.23	7.63	0.00	0.00	-10.77	30.00	-40.77	5/10 MHz
PK	V	2480.000	41.95	32.23	7.63	0.00	0.00	-13.41	30.00	-43.41	5/10 MHz

Human RF Exposure

The EUT was measured in a radiated fashion. The RF output power was measured using a resolution bandwidth which encompassed the entire emission bandwidth. The data obtained was adjusted for equipment losses and converted from a field strength reading to a power reading using the provisions of FCC KDB 558074 and RSS-Gen 4.6. .

§1.1310 The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices shall be evaluated according to the provisions of §2.1093 of this chapter.

Part §1.1310 Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

(1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure. The phrase *fully aware* in the context of applying these exposure limits means that an exposed person has received written and/or verbal information fully explaining the potential for RF exposure resulting from his or her employment. With the exception of *transient* persons, this phrase also means that an exposed person has received appropriate training regarding work practices relating to controlling or mitigating his or her exposure. Such training is not required for *transient* persons, but they must receive written and/or verbal information and notification (for example, using signs) concerning their exposure potential and appropriate means available to mitigate their exposure. The phrase *exercise control* means that an exposed person is allowed to and knows how to reduce or avoid exposure by administrative or engineering controls and work practices, such as use of personal protective equipment or time averaging of exposure.

(2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

RSS-102 Issue 5 Exposure Limits:**Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)**

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m ²)	Reference Period (minutes)
0.003-10 ²¹	83	90	-	Instantaneous*
0.1-10	-	0.73/ $f^{0.5}$	-	6**
1.1-10	87/ $f^{0.5}$	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ $f^{0.25}$	0.1540/ $f^{0.25}$	8.944/ $f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 $f^{0.3417}$	0.008335 $f^{0.3417}$	0.02619 $f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ $f^{1.2}$
150000-300000	0.158 $f^{0.5}$	4.21 x 10 ⁻⁴ $f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ $f^{1.2}$

Note: f is frequency in MHz.
 *Based on nerve stimulation (NS).
 ** Based on specific absorption rate (SAR).

1.1 Test Procedure

An MPE evaluation was performed in order to show that the device was compliant with §2.1091. The maximum power density was calculated for each transmitter at a separation distance of 20 cm.

For each transmitter the maximum power RF exposure at a 20 cm distance using the formula:

$$\text{Conducted Power}_{\text{mW}} = 10^{\text{ConductedPower(dBm)/10}}$$

$$\text{Power Density} = [\text{Conducted Power}_{\text{mW}} \times \text{Ant.Gain}] / [4\pi \times (20_{\text{cm}})^2] \text{ or } [\text{EIRP}] / [4\pi \times (20_{\text{cm}})^2]$$

1.2 Results

Maximum Output Power of the Bluetooth module in Nightingale 3.2 = 10^(-9.6/10) or 0.1096 mW (EIRP from radiated testing)

Maximum Output Power of the Wi-Fi module in Nightingale 3.2 (per test report FCC ID COF-WMNB30) = 10^(20.37/10) or 108.89 mW

$$\text{Power Density} = [(108.89 \times 2.04) / 5025.6] + [0.1096 / 5025.6] \text{ mW/cm}^2$$

$$= 0.04420081184 + 0.0000021$$

$$= 0.044221 \text{ mW/cm}^2$$

$$\text{Limit at 2.4 GHz} = 1 \text{ mW/cm}^2$$

RSS-102 Issue 5 Exposure Limit at 2.4 GHz = 5.35 W/m²

Power Density = 0.44221 W/m²

The calculated maximum power density at 20 cm distance is less than the limit for general population / uncontrolled exposure.

Test Personnel: Kouma Sinn *KPS*
Supervising/Reviewing
Engineer:
(Where Applicable) N/A
Product Standard: FCC Part 15C, 15.247,
RSS-247
Input Voltage: 120VAC/60Hz
Pretest Verification w/
Ambient Signals or
BB Source: Yes

Test Date: 07/07/2016
Limit Applied: Below specified limit
Ambient Temperature: 20 °C
Relative Humidity: 48 %
Atmospheric Pressure: 1000 mbars

Deviations, Additions, or Exclusions: None

7 Power Spectral Density

7.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 and ANSI C 63.10,

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

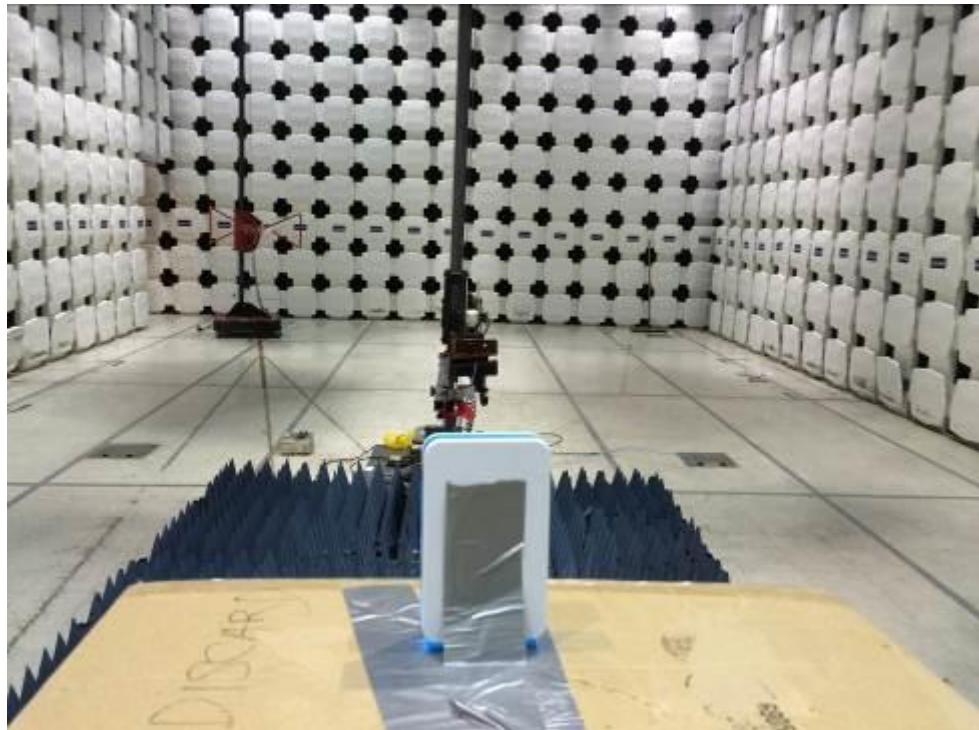
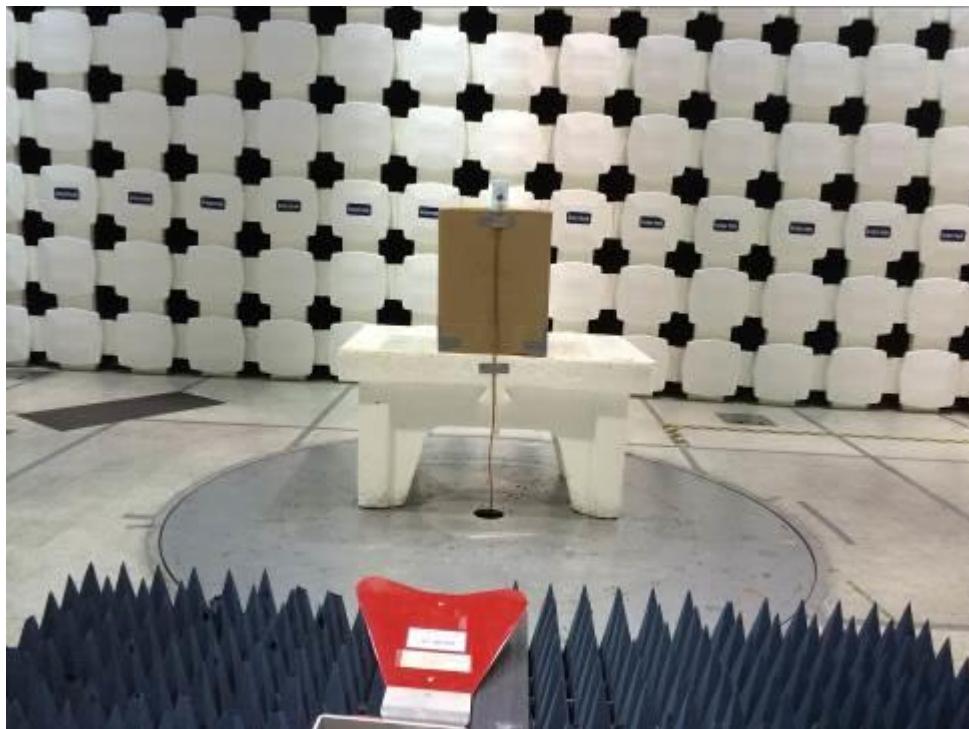
NF = Net Reading in dB μ V

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/m$$

7.2 Test Equipment Used:



Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/08/2015	10/08/2016

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

7.3 Results:

The sample tested was found to Comply.

7.4 Setup Photographs:

7.5 Test Data:

Intertek

Power Spectral Density (Radiated Emissions)

Company: Cambridge Sound Management
 Model #: Nightingale 3.2
 Serial #: NGP3.2-104
 Engineers: Kouma Sinn
 Project #: QU-00705932 Date(s): 07/07/16
 Standard: FCC Part 15 Subpart C 15.247
 Receiver: 145-128 Limit Distance (m): 3
 PreAmp: None Test Distance (m): 3
 PreAmp Used? (Y or N): N Voltage/Frequency: 120 VAC 60 Hz Frequency Range: Fundamental
 Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	EIRP Net dBm	EIRP Limit dBm	Margin dB	Bandwidth
Low Channel 2402 MHz. EUT sits straight up in its only normal orientation											
Note: EIRP Obtained by applying the path loss correction for a 3m test distance, $E(\text{dBuV/m})@3\text{m} - 95.22 = \text{dBm EIRP}$											
PK	H	2402.000	27.79	32.29	7.51	0.00	0.00	-27.63	8.00	-35.63	3/10kHz
PK	V	2402.000	26.35	32.29	7.51	0.00	0.00	-29.07	8.00	-37.07	3/10kHz
Mid Channel 2440 MHz. EUT sits straight up in its only normal orientation											
Note: EIRP Obtained by applying the path loss correction for a 3m test distance, $E(\text{dBuV/m})@3\text{m} - 95.22 = \text{dBm EIRP}$											
PK	H	2440.000	30.28	32.26	7.57	0.00	0.00	-25.11	8.00	-33.11	3/10kHz
PK	V	2440.000	25.34	32.26	7.57	0.00	0.00	-30.05	8.00	-38.05	3/10kHz
High Channel 2480 MHz. EUT sits straight up in its only normal orientation											
Note: EIRP Obtained by applying the path loss correction for a 3m test distance, $E(\text{dBuV/m})@3\text{m} - 95.22 = \text{dBm EIRP}$											
PK	H	2480.000	27.24	32.23	7.63	0.00	0.00	-28.12	8.00	-36.12	3/10kHz
PK	V	2480.000	23.49	32.23	7.63	0.00	0.00	-31.87	8.00	-39.87	3/10kHz

Test Personnel: Kouma Sinn KPS
 Supervising/Reviewing
 Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15C, 15.247,
 Input Voltage: RSS-247
 Pretest Verification w/
 Ambient Signals or
 BB Source: 120VAC/60Hz
Yes

Test Date: 07/07/2016
 Limit Applied: Below specified limit
 Ambient Temperature: 20 °C
 Relative Humidity: 48 %
 Atmospheric Pressure: 1000 mbars

Deviations, Additions, or Exclusions: None

8 Occupied (99%) and 6 dB Bandwidth

8.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 and ANSI C 63.10,

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

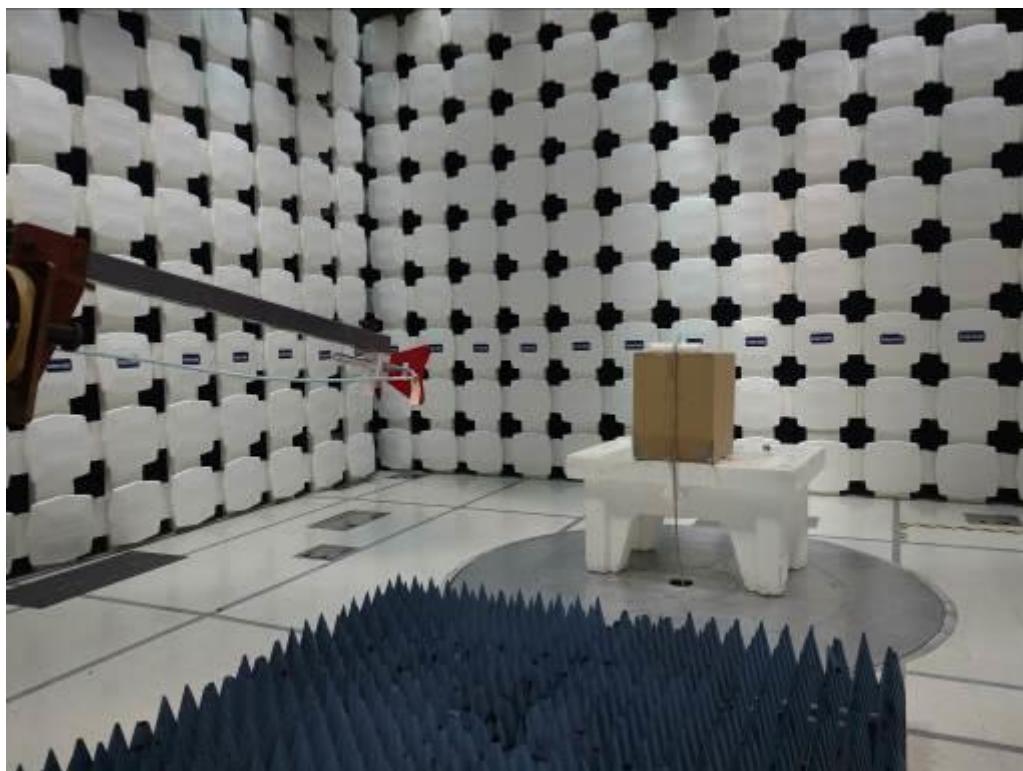
NF = Net Reading in dB μ V

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

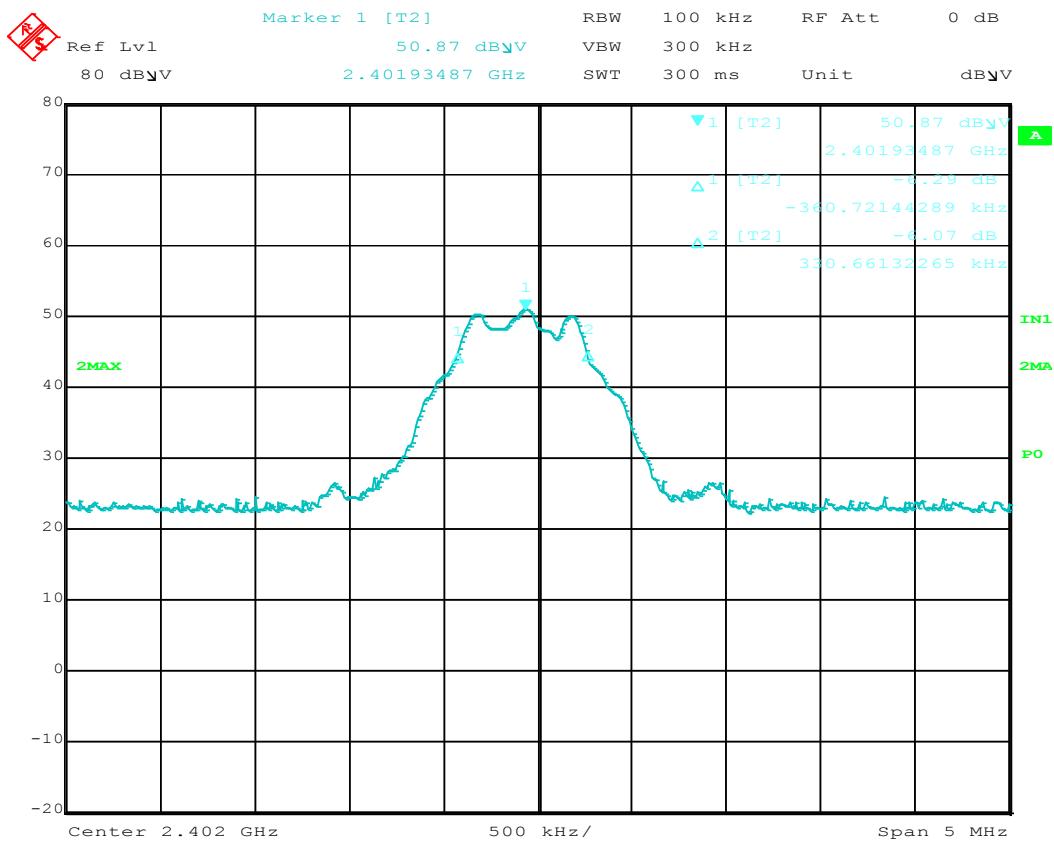
$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/m$$

8.2 Test Equipment Used:

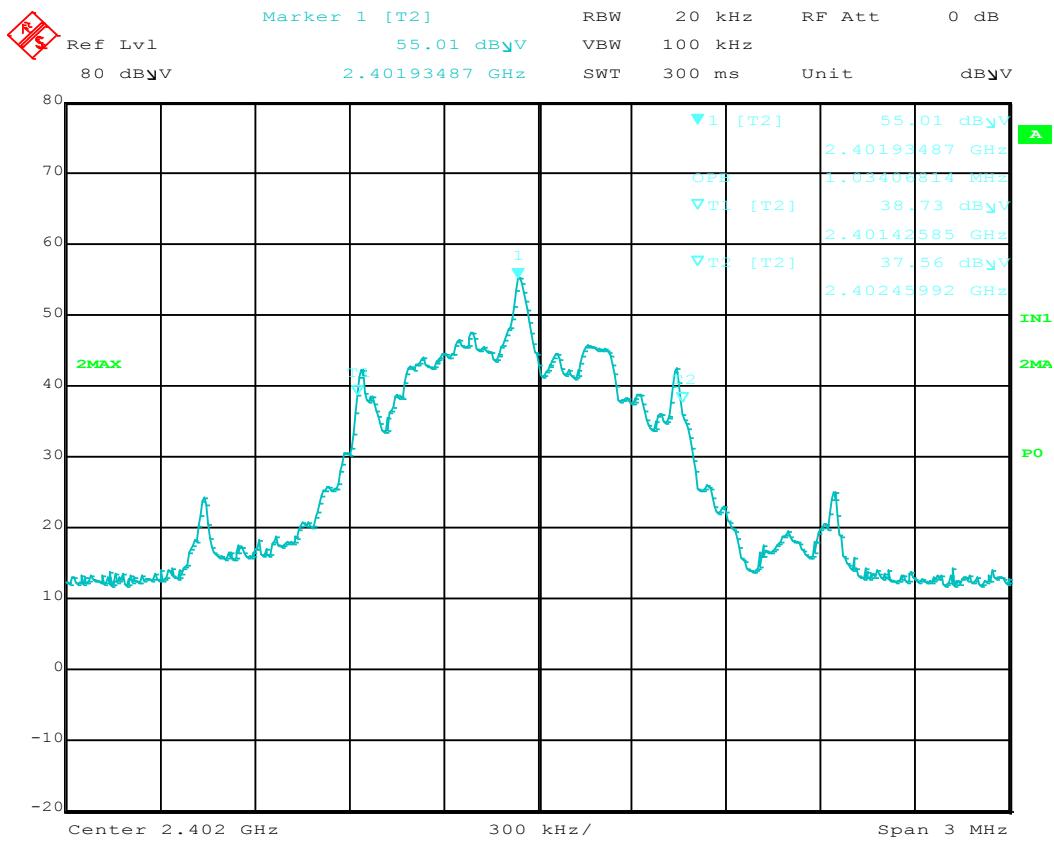

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/08/2015	10/08/2016

Software Utilized:

Name	Manufacturer	Version
None		

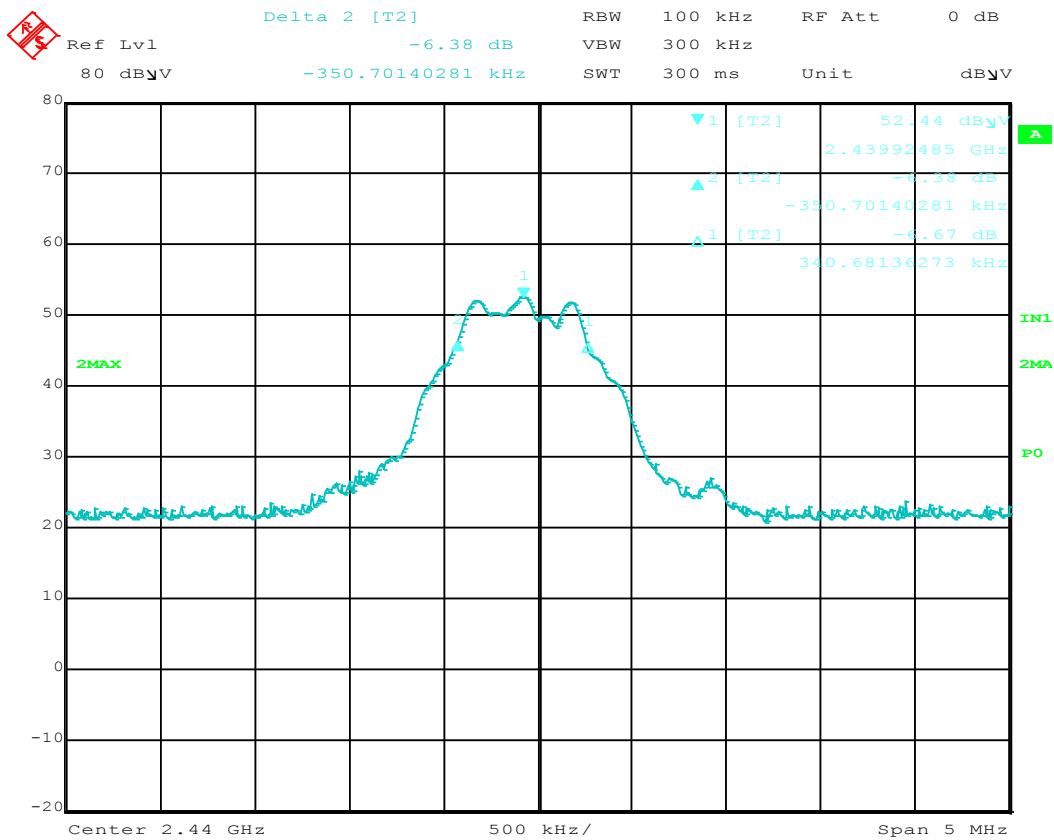

8.3 Results:

The sample tested was found to Comply. The 99% power bandwidth, or 6 dB bandwidth, must not be less than 500 kHz.

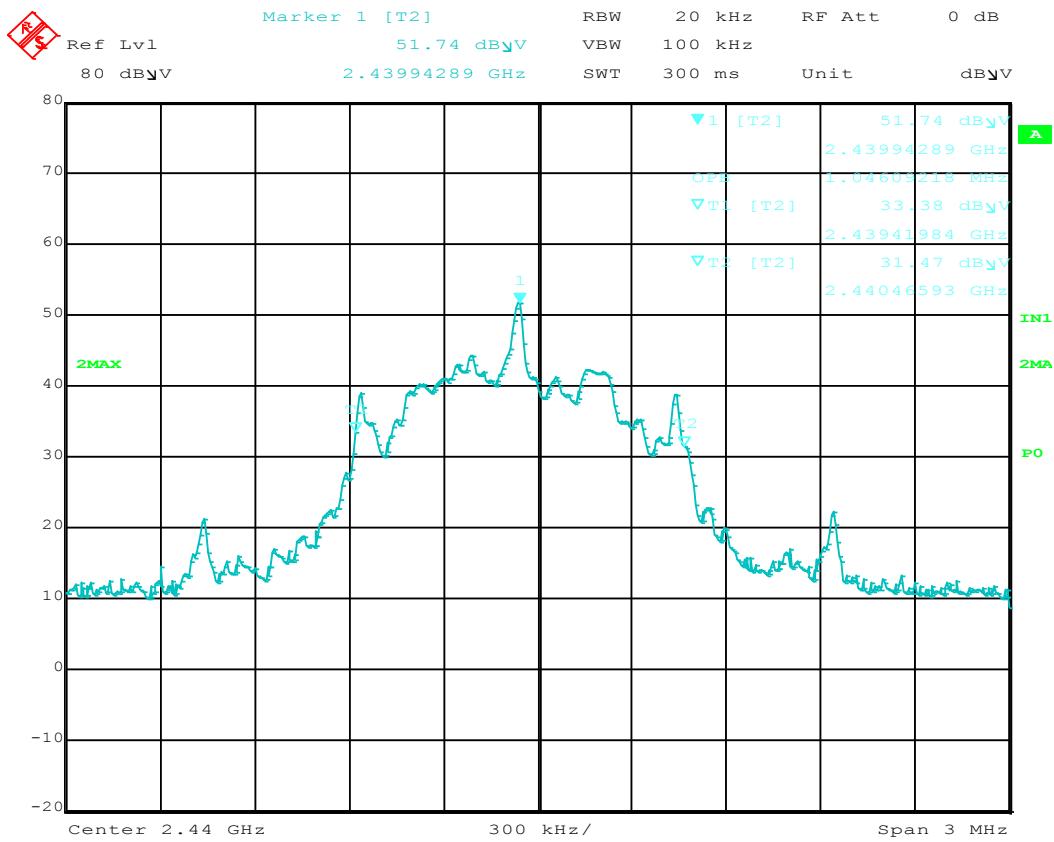

8.4 Setup Photograph:

8.5 Plots/Data:

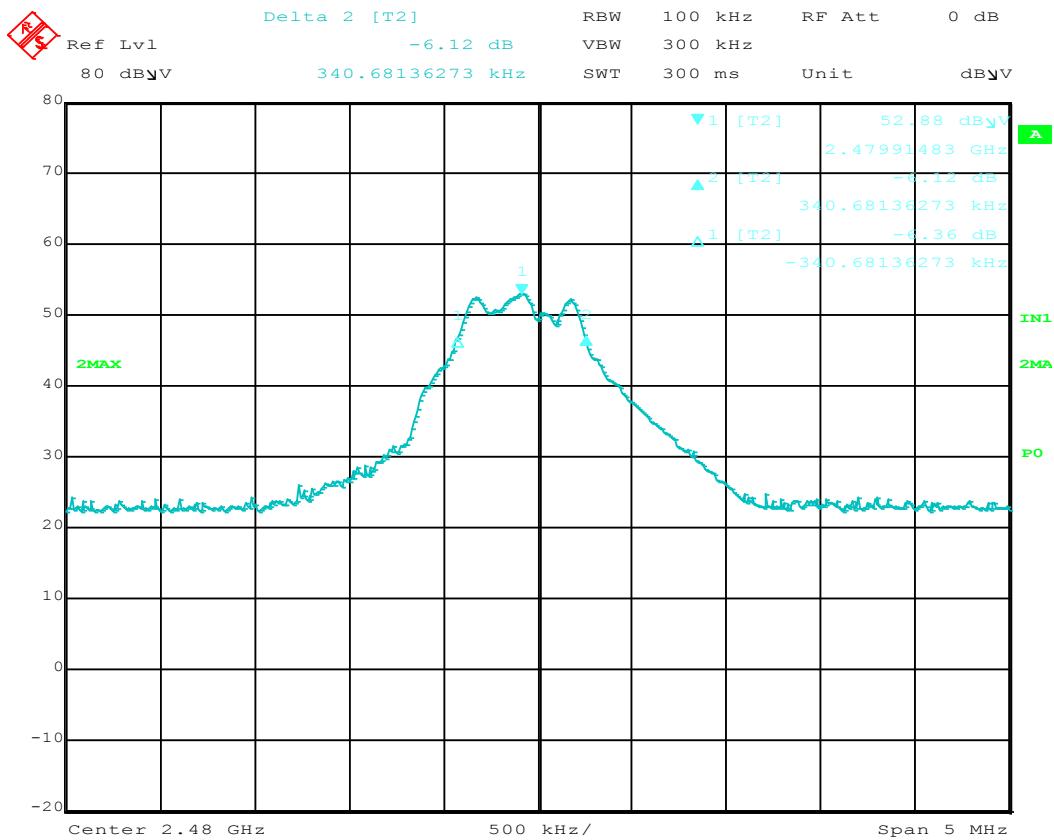
Operating @ 120 VAC 60 Hz, Device set to CH0 – 2402 MHz, 6dB BW = 691.38 kHz



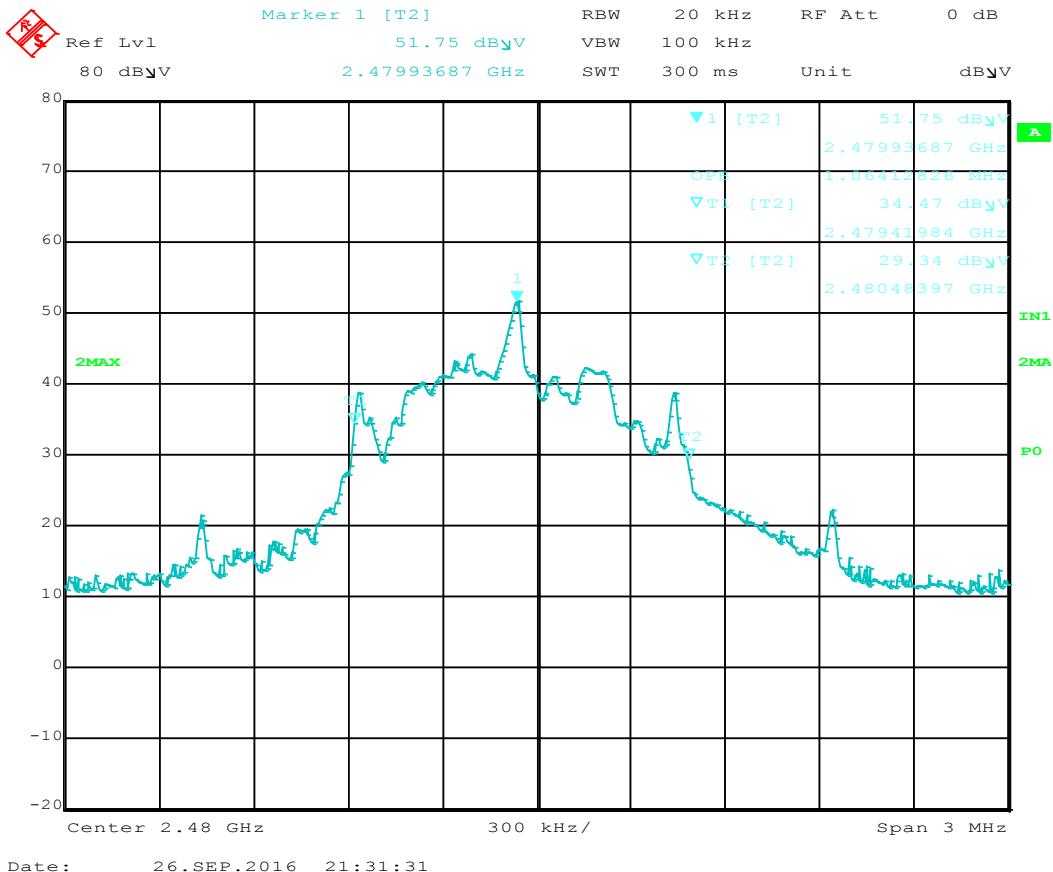
Operating @ 120 VAC 60 Hz, Device set to CH0 – 2402 MHz, Occupied BW (99%) = 1.034 MHz


Date: 26.SEP.2016 21:10:13

Operating @ 120 VAC 60 Hz, Device set to CH13 – 2440 MHz, 6dB BW = 691.38 kHz


Date: 26.SEP.2016 21:20:11

Operating @ 120 VAC 60 Hz, Device set to CH13 – 2440 MHz, Occupied BW (99%) = 1.0460 MHz


Date: 26.SEP.2016 21:21:37

Operating @ 120 VAC 60 Hz, Device set to CH27 – 2480 MHz, 6dB BW = 681.36 kHz

Date: 26.SEP.2016 21:30:24

Operating @ 120 VAC 60 Hz, Device set to CH27 – 2480 MHz, Occupied BW (99%) = 1.064 MHz

Test Personnel: Naga Suryadevara N5
 Supervising/Reviewing Engineer:
 (Where Applicable) N/A
 Product Standard: FCC 15.247 & RSS 247
 Input Voltage: 120 VAC 60 Hz
 Pretest Verification w/
 Ambient Signals or
 BB Source: Ambient Signals

Test Date: 09/26/2016
 Limit Applied: Below specified limit
 Ambient Temperature: 22 °C
 Relative Humidity: 34 %
 Atmospheric Pressure: 1007 mbars

Deviations, Additions, or Exclusions: None

9 Band Edge Compliance

9.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 and ANSI C 63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

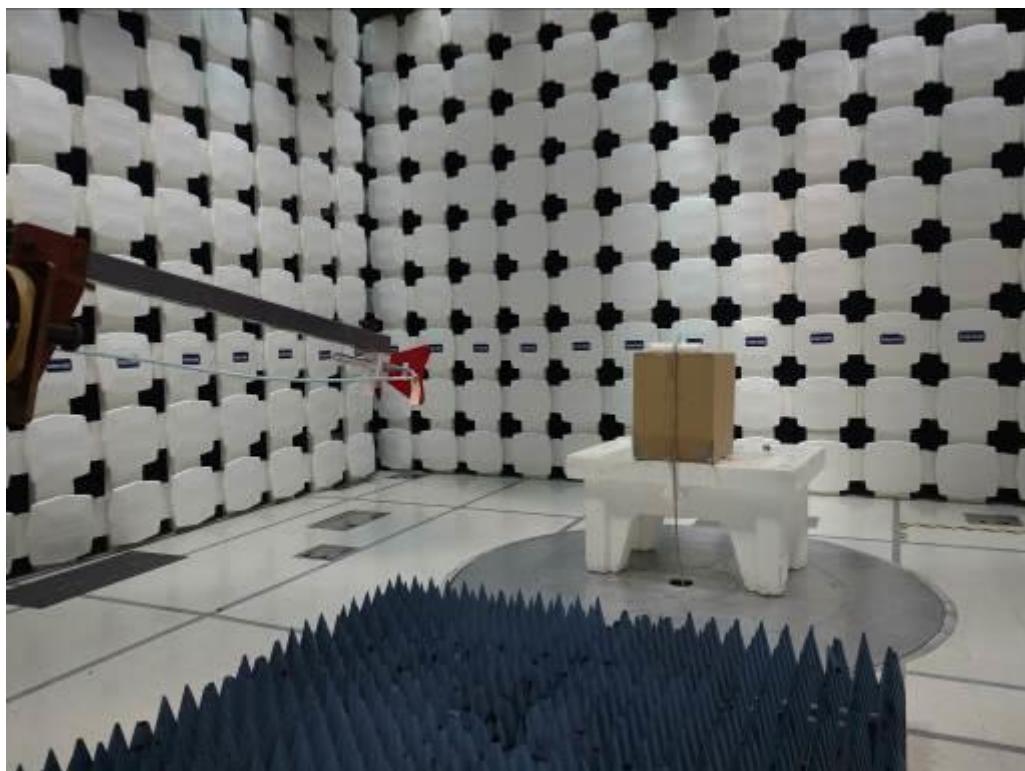
NF = Net Reading in dB μ V

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

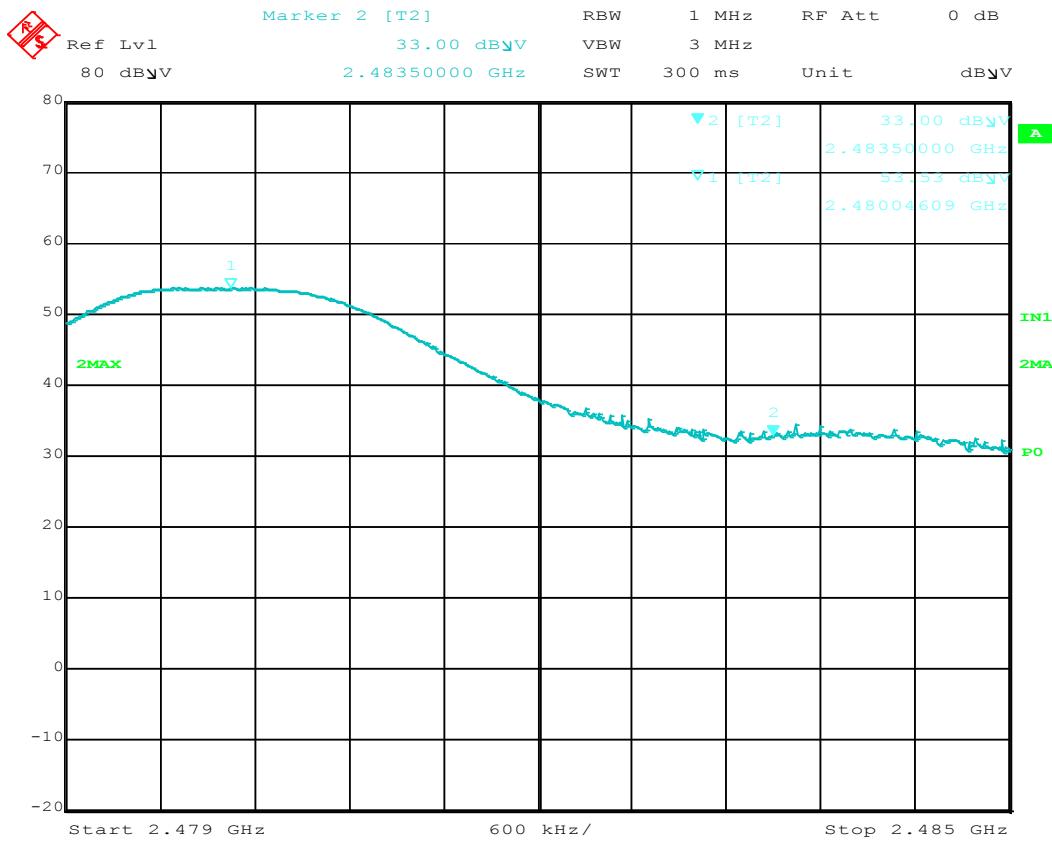
$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/m$$

9.2 Test Equipment Used:


Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/08/2015	10/08/2016

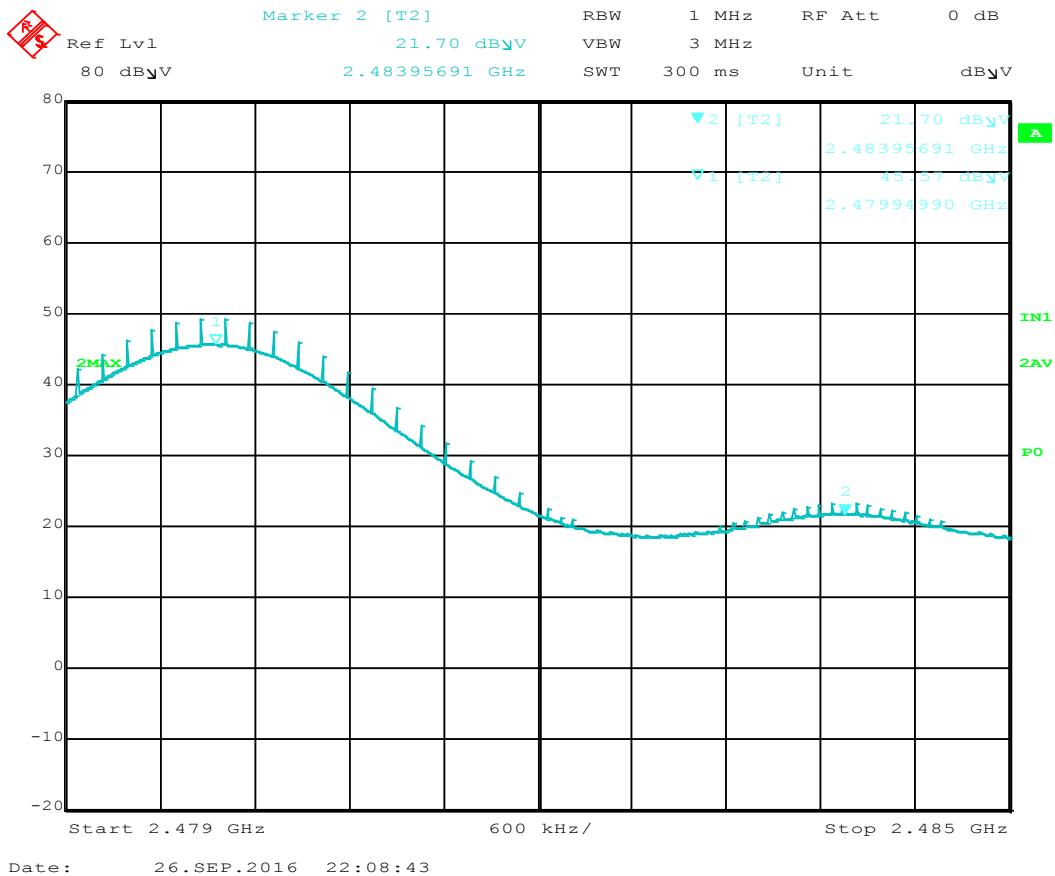
Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

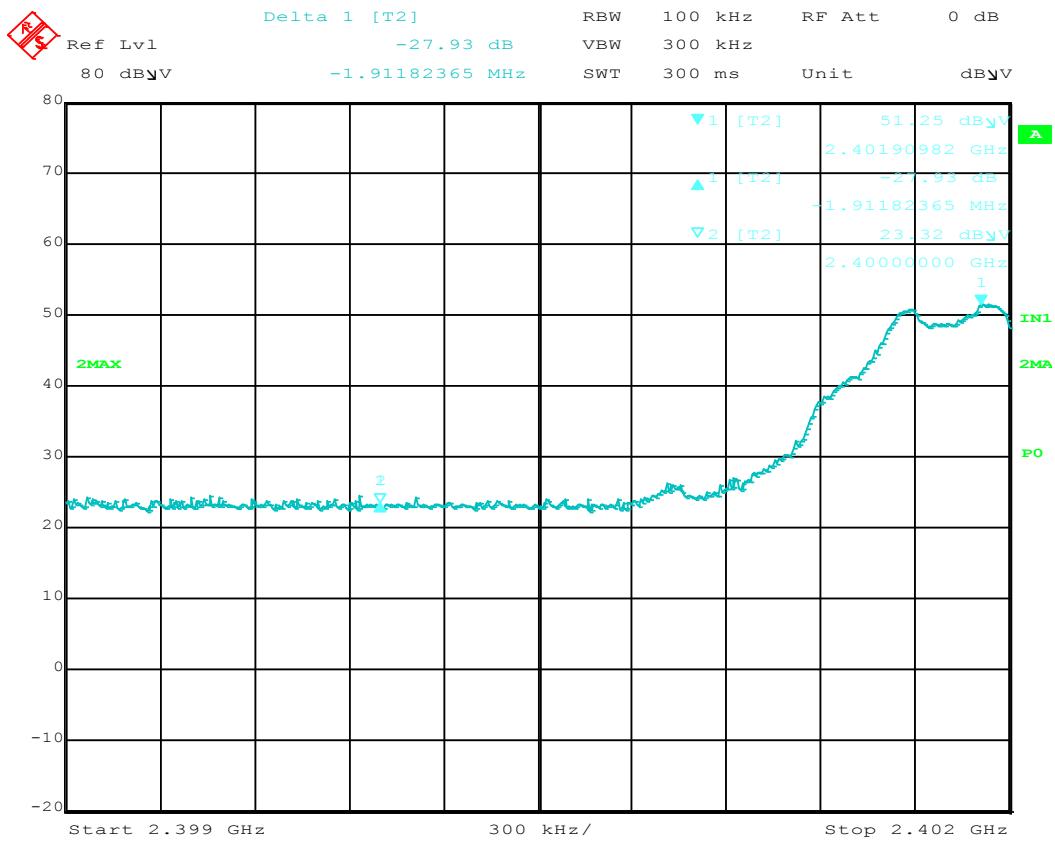

9.3 Results:

The sample tested was found to Comply. Spurious emissions at the band edges must be at least 20 dB lower than the fundamental field strength when measured with a 100 kHz bandwidth, without the need to be below the general limits of FCC Part 15 Section 15.209 and of RSS-Gen 7.2.5 Table 5. Emissions in restricted bands must meet the general limits of FCC Part 15 Section 15.209 and of RSS-Gen 7.2.5 Table 5.

9.4 Setup Photograph:


9.5 Plots/Data:

Operating @ 120 VAC 60 Hz, CH 27 – 2480 MHz, Restricted band edge compliance (Peak)


Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
Note: Upper Band Edge Compliance											
PK	V	2483.500	33.00	31.30	3.79	0.00	0.00	68.09	74.00	-5.91	1/3 MHz

Operating @ 120 VAC 60 Hz, CH 27 – 2480 MHz, Restricted band edge compliance (Average)

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
Note: Upper Band Edge Compliance											
AVG	V	2483.950	21.70	31.30	3.79	0.00	9.54	47.25	54.00	-6.75	1/3 MHz

Operating @ 120 VAC 60 Hz, CH 0 – 2402 MHz, Non Restricted band edge compliance @ 2400 MHz

Date: 26.SEP.2016 22:49:09

Spurious emission at 2400 MHz is found to be 20 dB below the fundamental.

Test Personnel:	<u>Naga Suryadevara N5</u>
Supervising/Reviewing Engineer: (Where Applicable)	<u>N/A</u>
Product Standard:	<u>FCC 15.247 & RSS 247</u>
Input Voltage:	<u>120 VAC 60 Hz</u>

Test Date: 09/26/2016

Limit Applied: Below Specified Limit

Pretest Verification w/
Ambient Signals or
BB Source: Ambient Signals

Ambient Temperature: 22 °C

Relative Humidity: 34 %

Atmospheric Pressure: 1007 mbars

Deviations, Additions, or Exclusions: None

10 Transmitter Spurious Emissions

10.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart C (15.247), RSS-247 Issue 1 and ANSI C 63.10,

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

NF = Net Reading in dB μ V

Example:

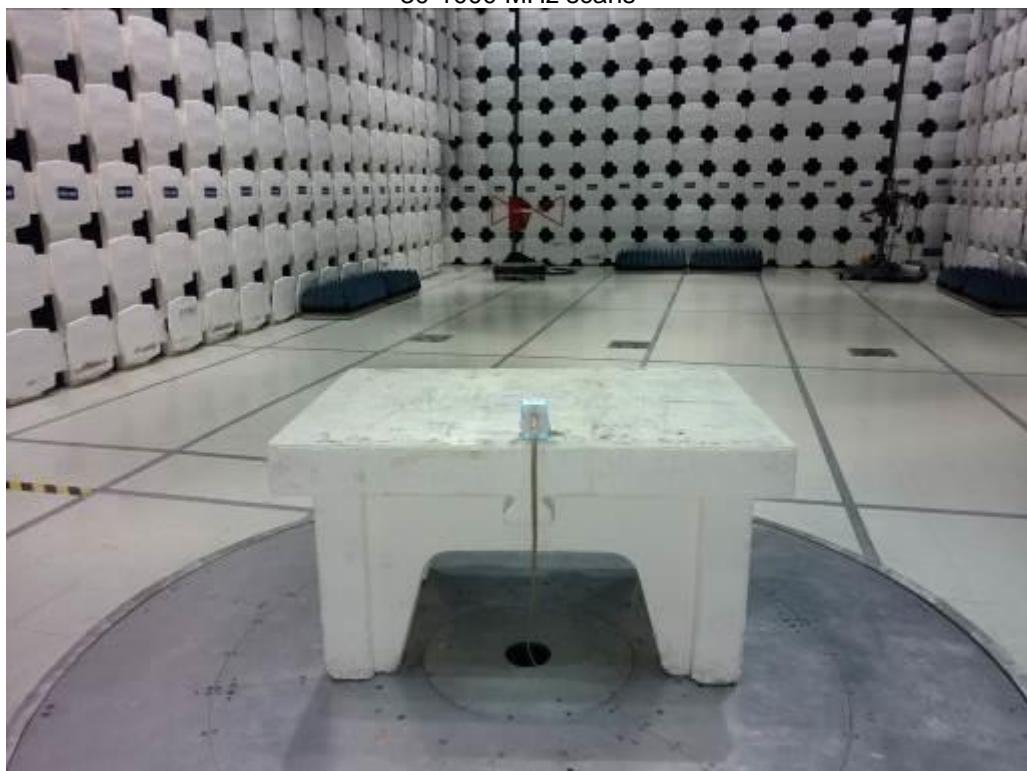
$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/m$$

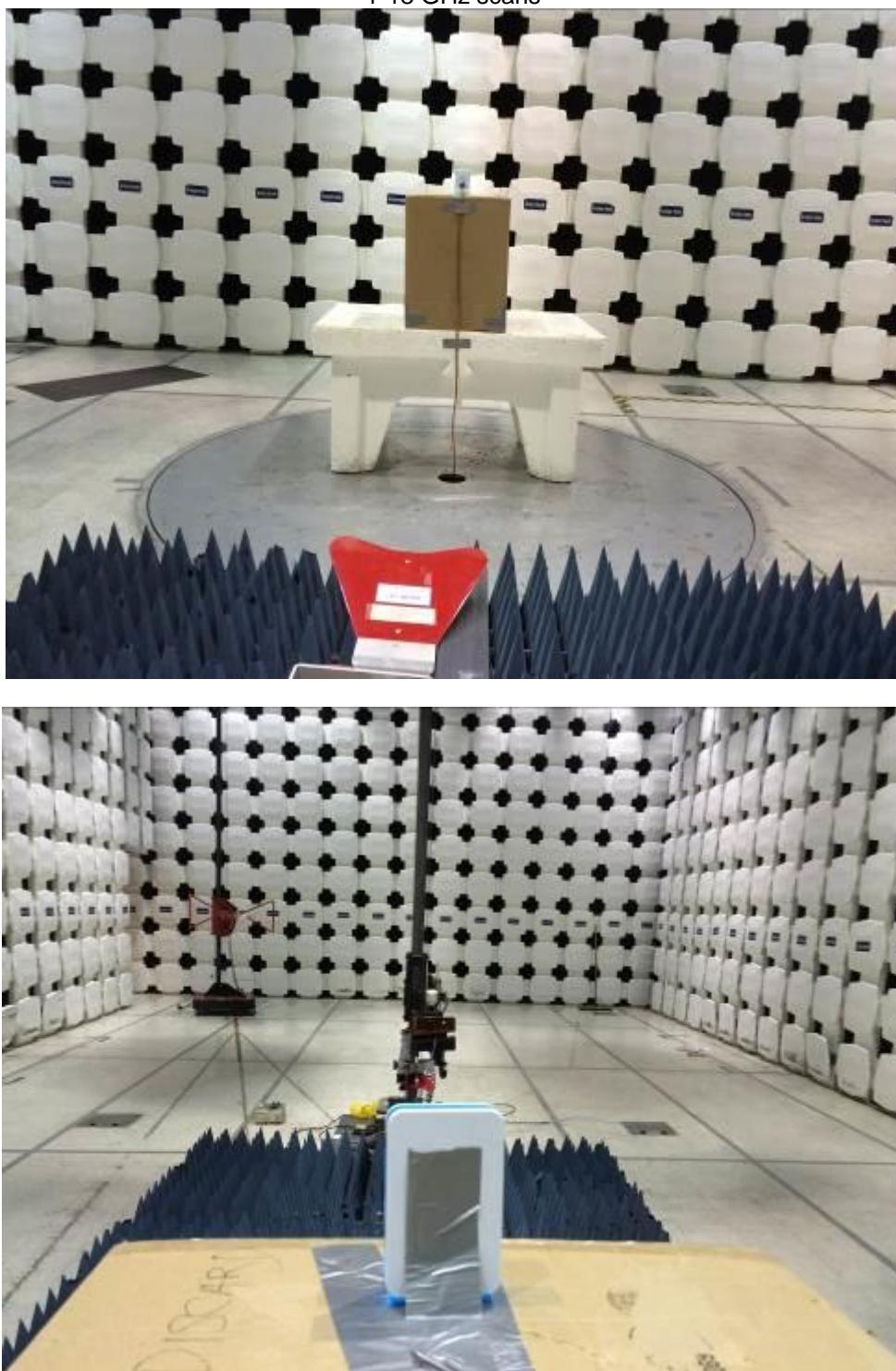
10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	02/10/2016	02/10/2017
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/27/2016	05/27/2017
145013'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2944A07027	05/02/2016	05/02/2017
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	03/09/2016	03/09/2017
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	07/30/2016	07/30/2017
145-416"	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	07/30/2016	07/30/2017
PRE9'	100MHz-40GHz Preamp	MITEQ	NSP4000-NFG	1260417	08/23/2016	08/23/2017
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	06/09/2016	06/09/2017
EMC04'	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	05/13/2016	05/13/2017
CBLHF2012 -5M-2'	5m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252676002	02/19/2016	02/19/2017
CBLHF2012 -2M-2'	2m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252675002	02/09/2016	02/09/2017

Software Utilized:


Name	Manufacturer	Version
Compliance5	Teseq	5.26.46.46

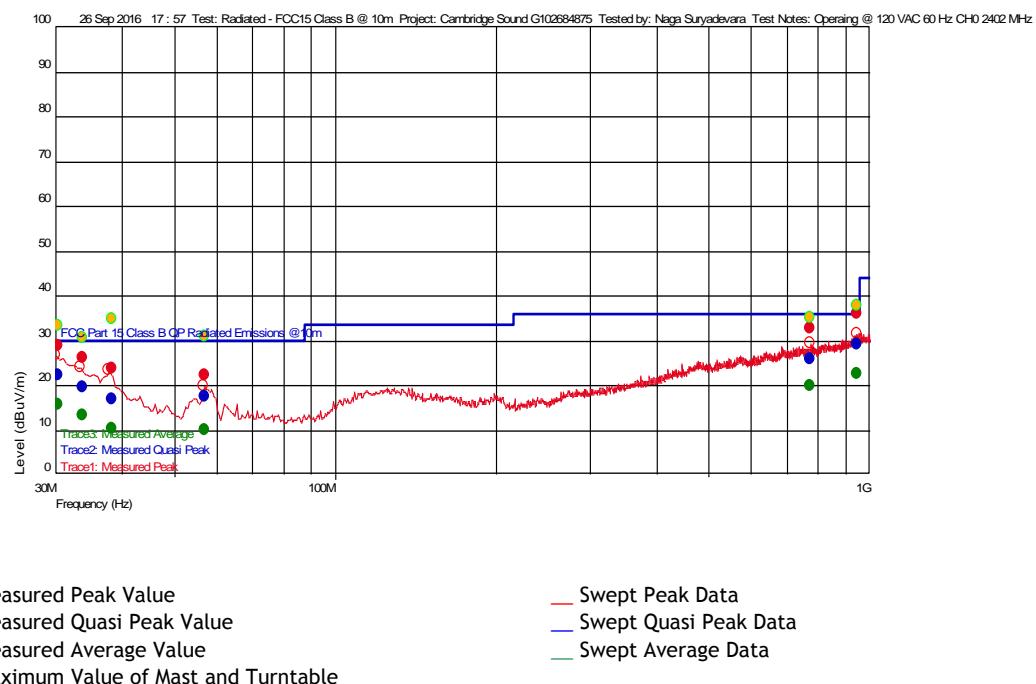
10.3 Results:


The sample tested was found to Comply. The spurious emissions in Restricted bands must be less than general limits specified in section 15.209. The spurious emissions in Non-Restricted bands must be less than Fundamental peak emission – 20 dB and attenuation below 15.209 general limits is not required.

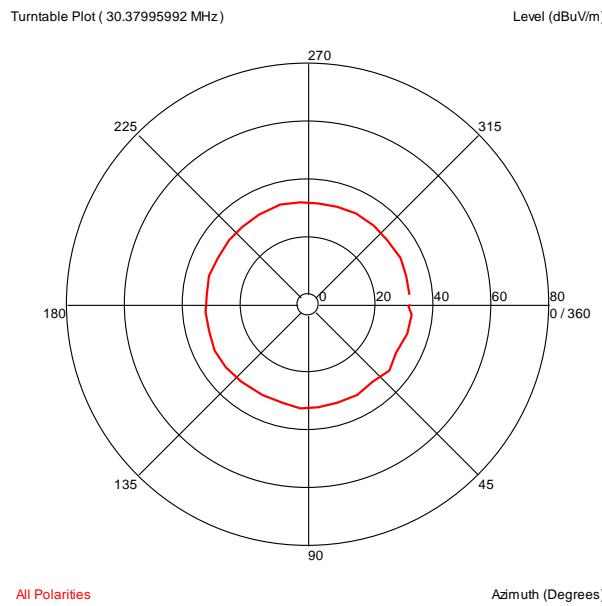
10.4 Setup Photographs:

30-1000 MHz scans

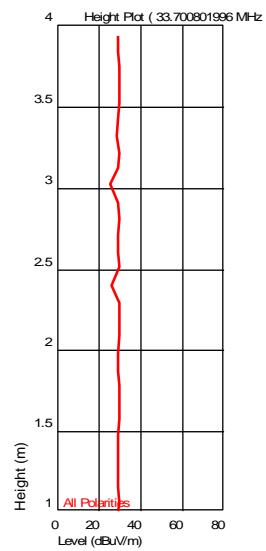
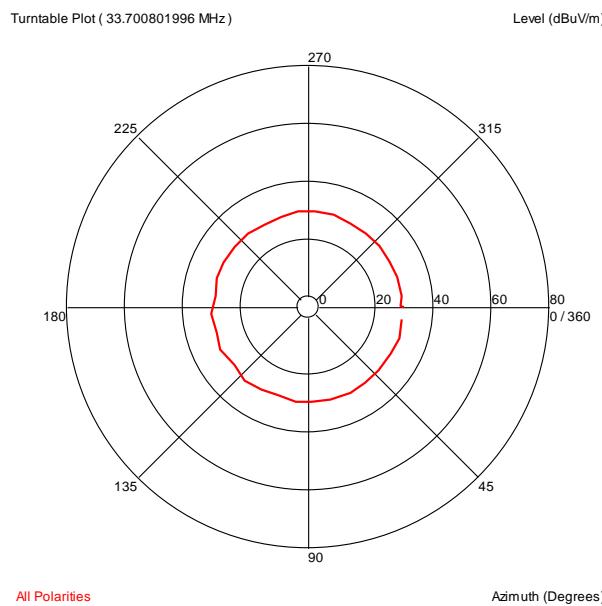
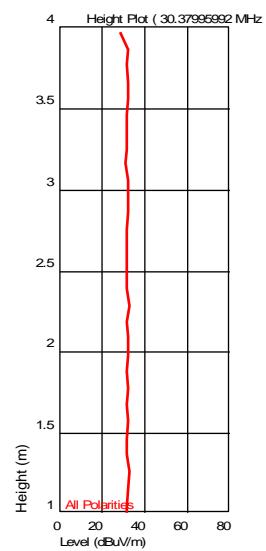
1-18 GHz scans



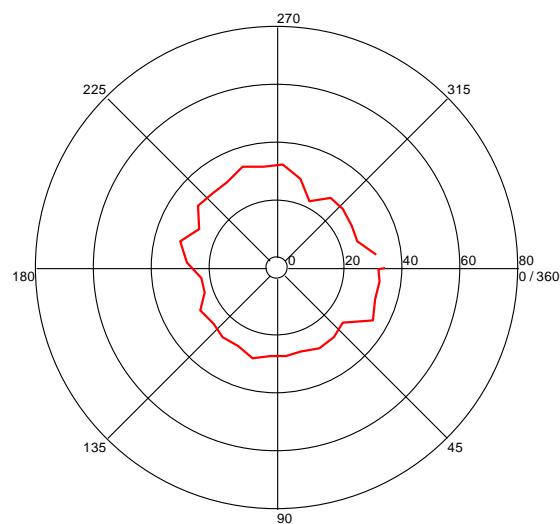
18-25 GHz scans


10.5 Plots/Data:**Operating @ 120 VAC 60 Hz, Tx CH 0 – 2402 MHz, 30 MHz – 1 GHz****Test Information**

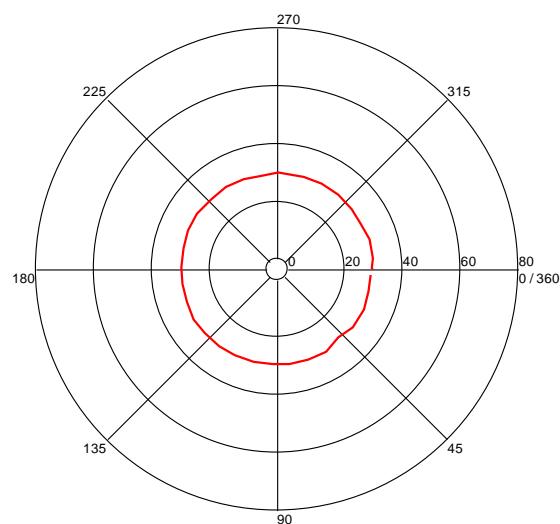
Test Details	User Entry	Additional Information
Test:	Radiated - FCC15 Class B @ 10m	
Project:	Cambridge Sound G102684875	
Test Notes:	Operating @ 120 VAC 60 Hz CH0 2402 MHz	
Temperature:	22 C	
Humidity:	34% 1007 mbars	
Tested by:	Naga Suryadevara	
Test Started:	26 Sep 2016 17:57	




Prescan Emission Graph**Emissions Test Data****Trace2: Measured Quasi Peak**

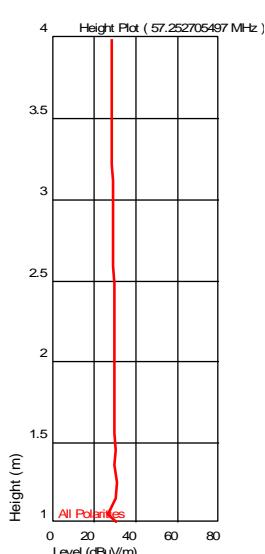
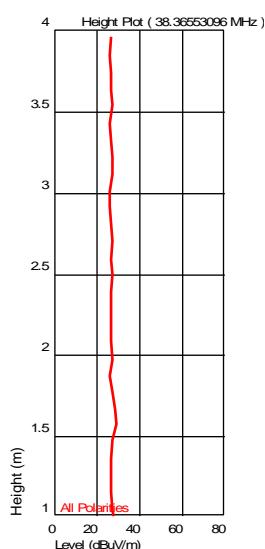
Frequency(Hz)	Level(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (--), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)
38.36553096 M	16.76	21.044	-27.612	30.000	-13.24		40	1.66	120 k
57.252705497 M	17.40	13.300	-27.302	30.000	-12.60		204	1.36	120 k
33.700801996 M	19.69	24.680	-27.702	30.000	-10.31	--	142	4.00	120 k
775.459318713 M	25.87	27.500	-23.681	36.020	-10.15	--	7	3.94	120 k
30.37995992 M	22.25	27.196	-27.766	30.000	-7.75		165	2.39	120 k
946.167134096 M	29.13	30.023	-22.943	36.020	-6.89		184	4.00	120 k


Azimuth Plots

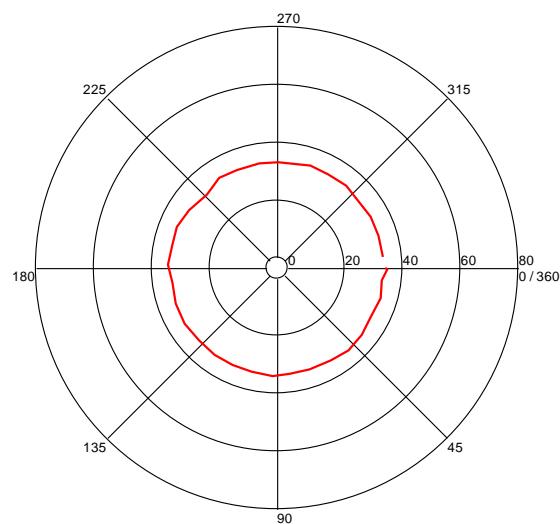
Turntable Plots


Turntable Plot (38.36553096 MHz)

Level (dBuV/m)

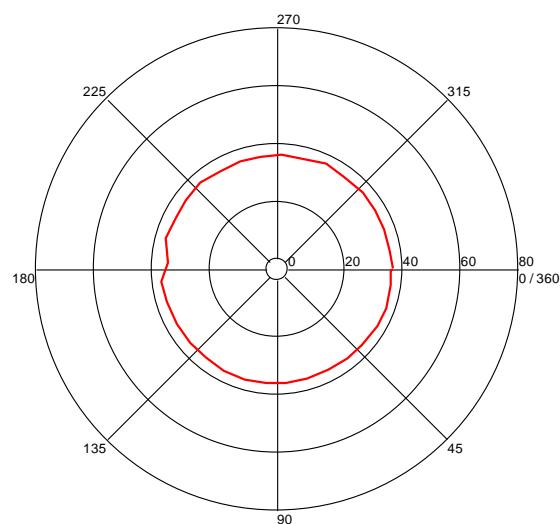


Azimuth (Degrees)

Turntable Plot (57.252705497 MHz)

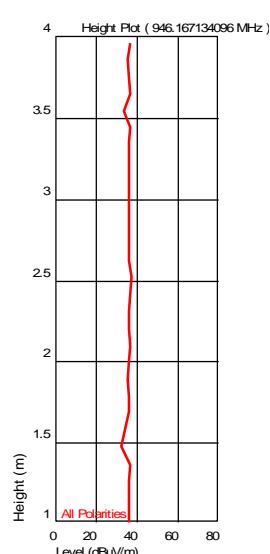
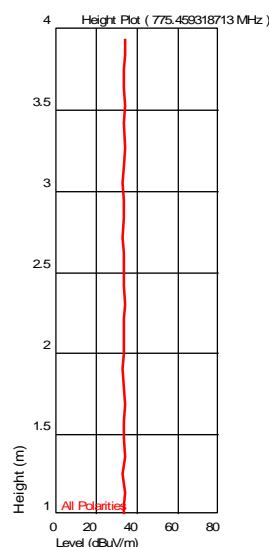


Level (dBuV/m)

Azimuth (Degrees)


Turntable Plot (775.459318713 MHz)

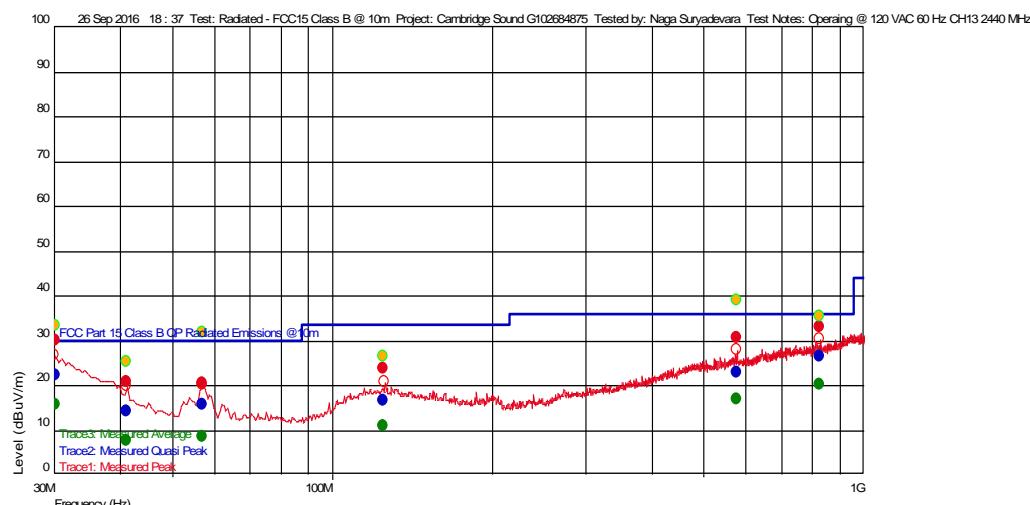
Level (dBuV/m)



Azimuth (Degrees)

Turntable Plot (946.167134096 MHz)

Level (dBuV/m)

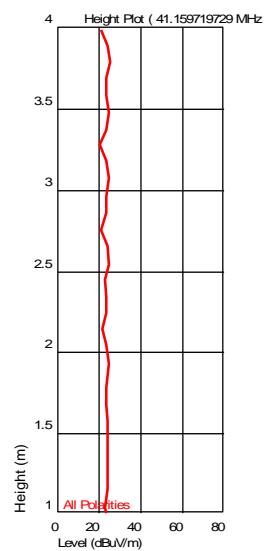
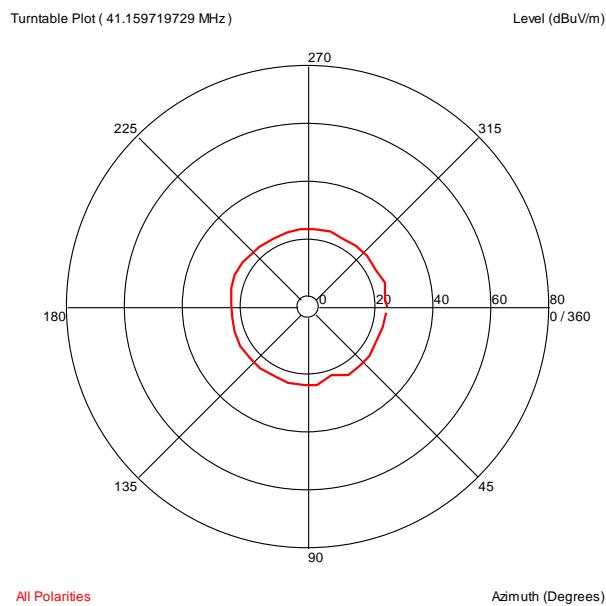
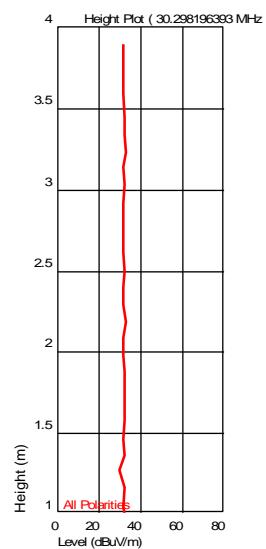
Azimuth (Degrees)



Operating @ 120 VAC 60 Hz, Tx CH13 – 2440 MHz, 30 MHz – 1 GHz

Test Information

Test Details		Additional Information
Test:	User Entry	
Test:	Radiated - FCC15 Class B @ 10m	
Project:	Cambridge Sound G102684875	
Test Notes:	Operaing @ 120 VAC 60 Hz CH13 2440 MHz	
Temperature:	22 C	
Humidity:	34% 1007 mbars	
Tested by:	Naga Suryadevara	
Test Started:	26 Sep 2016 18:37	

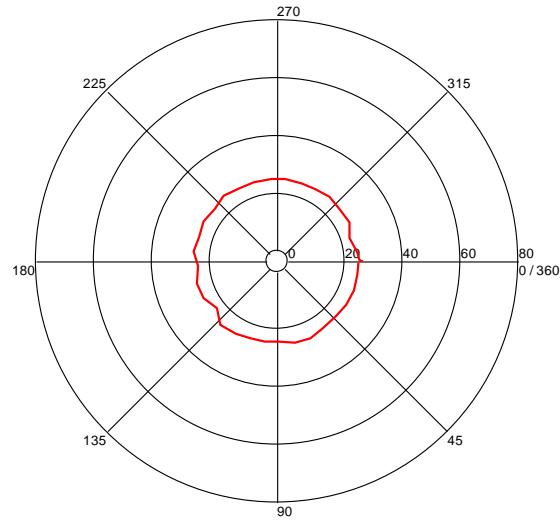



Prescan Emission Graph


Emissions Test Data

Trace2: Measured Quasi Peak

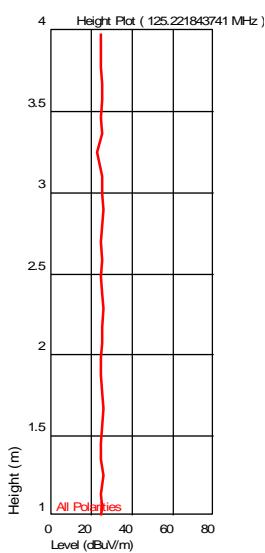
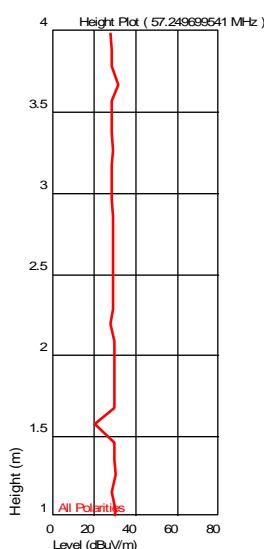
Frequency(Hz)	Level(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (--), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)
125.221843741 M	16.59	20.200	-26.528	33.520	-16.93		120	1.35	120 k
41.159719729 M	14.04	18.888	-27.558	30.000	-15.96	--	331	3.89	120 k
57.249699541 M	15.68	13.300	-27.302	30.000	-14.32		268	3.78	120 k
576.623847822 M	22.88	25.368	-24.184	36.020	-13.14		136	3.97	120 k
826.018236441 M	26.43	28.000	-23.504	36.020	-9.59	--	359	3.73	120 k
30.298196393 M	22.31	27.261	-27.768	30.000	-7.69	--	132	2.29	120 k

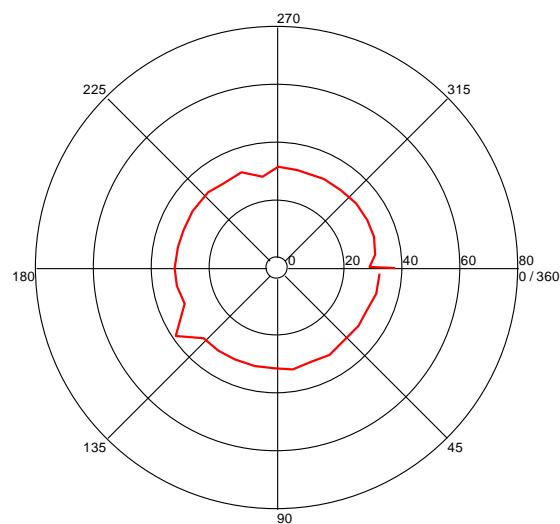
Azimuth Plots**Turntable Plots**


Turntable Plot (57.249699541 MHz)

Level (dBuV/m)

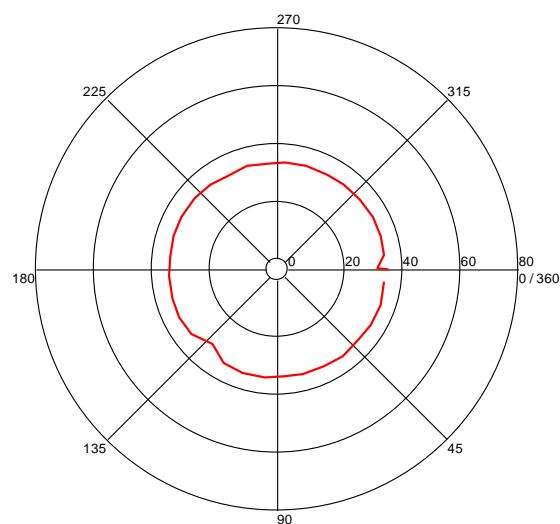
Azimuth (Degrees)



All Polarities

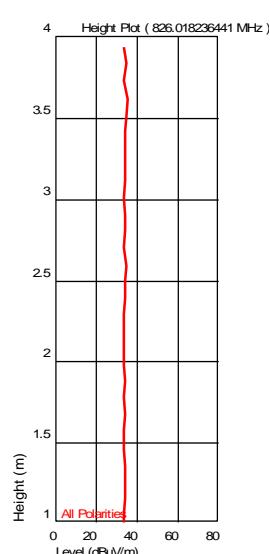
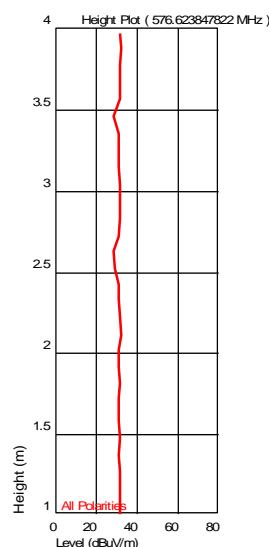

Level (dBuV/m)

Azimuth (Degrees)

All Polarities


Turntable Plot (576.623847822 MHz)

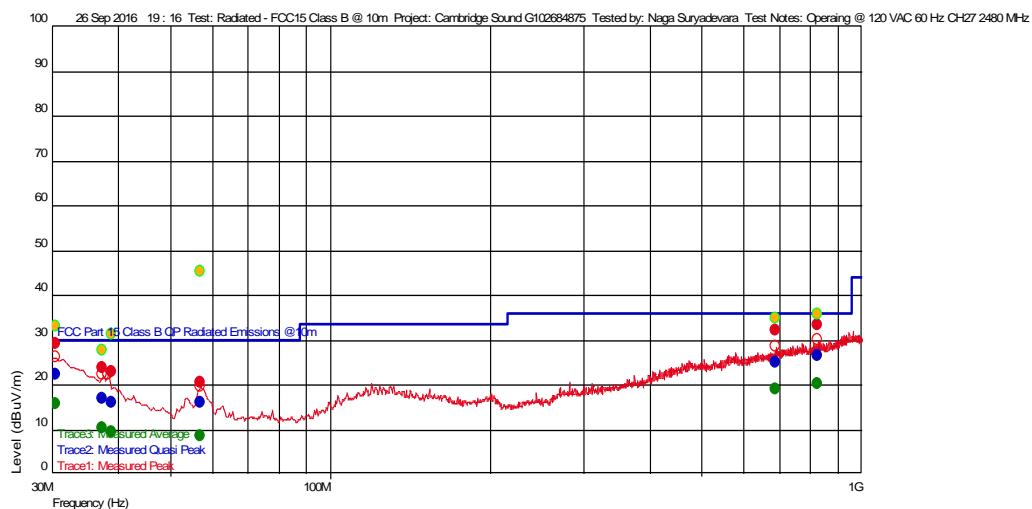
Level (dBuV/m)



Azimuth (Degrees)

Turntable Plot (826.018236441 MHz)

Level (dBuV/m)

Azimuth (Degrees)

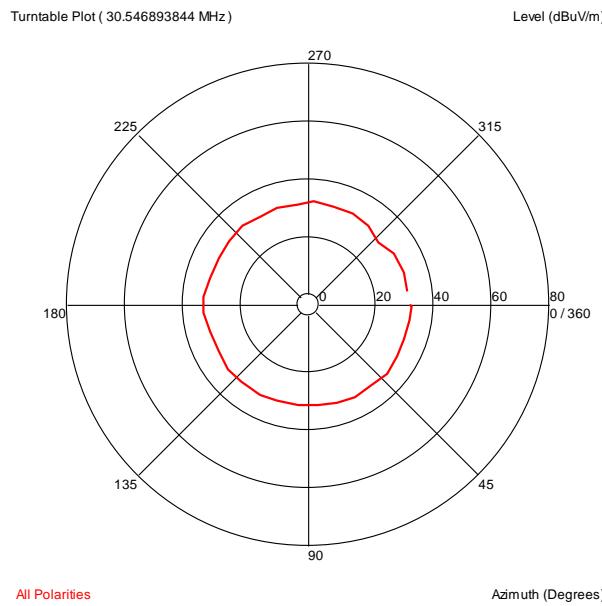

Operating @ 120 VAC 60 Hz, Tx CH27 – 2480 MHz, 30 MHz – 1 GHz

Test Information

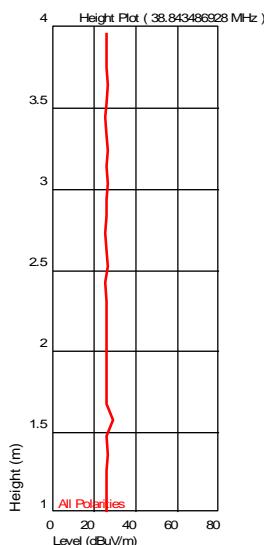
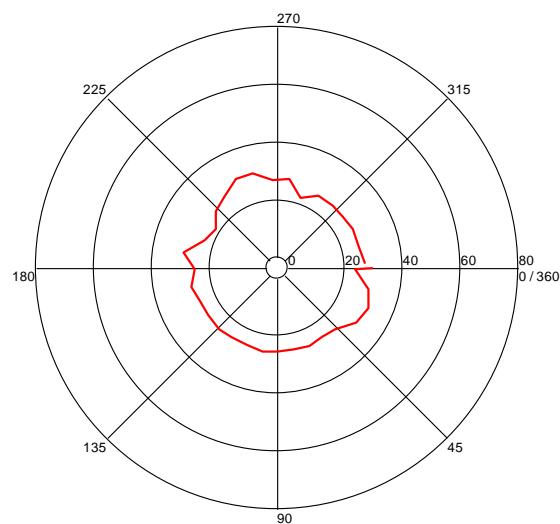
Test Details
 User Entry
 Test: Radiated - FCC15 Class B @ 10m
 Project: Cambridge Sound G102684875
 Test Notes: Operating @ 120 VAC 60 Hz CH27 2480 MHz
 Temperature: 22 C
 Humidity: 34% 1007 mbars
 Tested by: Naga Suryadevara
 Test Started: 26 Sep 2016 19 : 16

Additional Information

Prescan Emission Graph

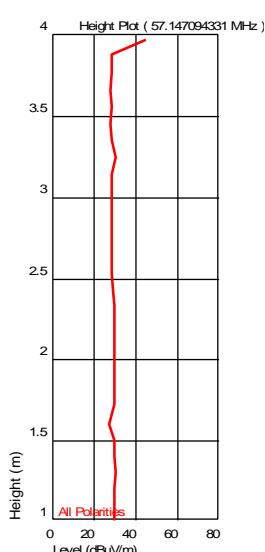
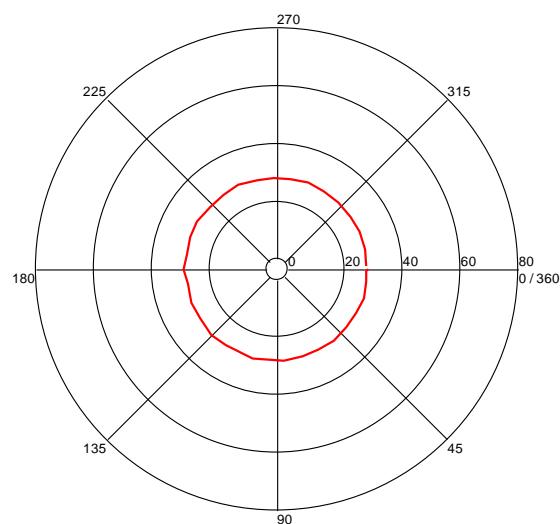

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable
- Swept Peak Data
- Swept Quasi Peak Data
- Swept Average Data

Emissions Test Data



Trace2: Measured Quasi Peak

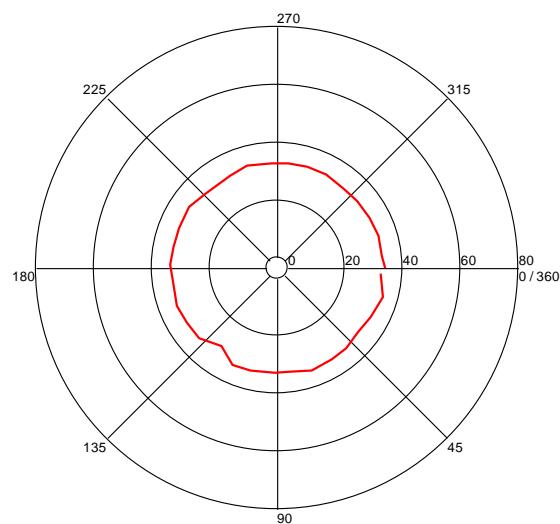
Frequency(Hz)	Level(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (--), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)
57.147094331 M	15.82	13.300	-27.303	30.000	-14.18		223	4.00	120 k
38.8434866928 M	15.92	20.710	-27.602	30.000	-14.08		35	1.67	120 k
37.392985814 M	16.87	21.786	-27.630	30.000	-13.13	--	360	1.57	120 k
689.90981984 M	24.85	26.696	-23.897	36.020	-11.17	--	4	1.69	120 k
827.241683391 M	26.44	28.000	-23.499	36.020	-9.58	--	94	2.19	120 k
30.546893844 M	22.12	27.062	-27.763	30.000	-7.88	--	185	2.17	120 k

Azimuth Plots



Turntable Plot (38.843486928 MHz)

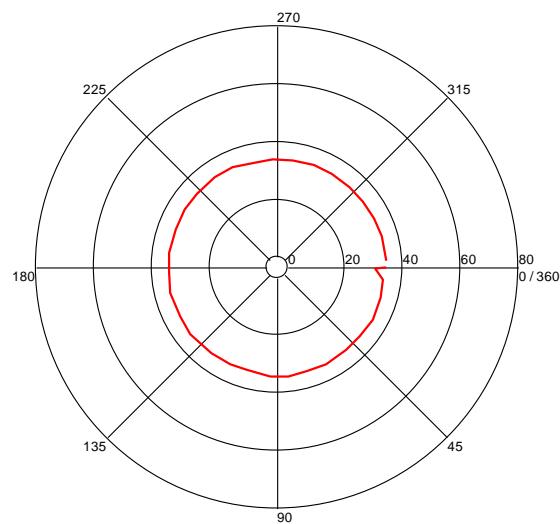
All Polarities

Azimuth (Degrees)


Turntable Plot (57.147094331 MHz)

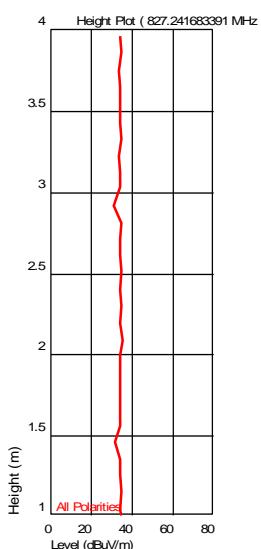
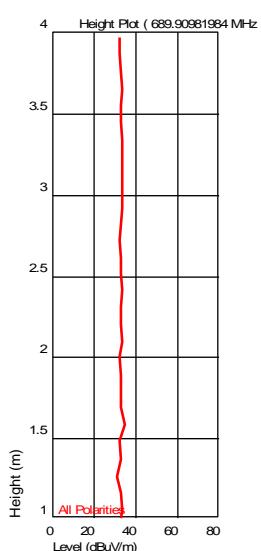
All Polarities

Azimuth (Degrees)


Turntable Plot (689.90981984 MHz)

Level (dBuV/m)

Azimuth (Degrees)



Turntable Plot (827.241683391 MHz)

Level (dBuV/m)

Azimuth (Degrees)

All Polarities

Intertek

Spurious Emissions From 1-17 GHz Radiated Emissions

Company: Cambridge Sound Management
 Model #: Nightingale 3.2
 Serial #: NGP3.2-104
 Engineers: Kouma Sinn
 Project #: QU-00705932 Date(s): 07/07/16
 Standard: FCC Part 15 Subpart C 15.247
 Receiver: 145-128 Limit Distance (m): 3
 PreAmp: None Test Distance (m): 3
 PreAmp Used? (Y or N): Y Voltage/Frequency: 120 VAC 60 Hz Frequency Range: 1-17 GHz
 Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	EIRP Net dBm	EIRP Limit dBm	Margin dB	Bandwidth
High Channel 2480 MHz. EUT sits straight up in its only normal orientation. Spurious Emissions. 1-3 GHz (no pre-amp used)											
3-17 GHz pre-amp used with filter. No emissions were detected. Took noise floor readings at second and third harmonics											
PK, NF	H	4960.000	25.02	34.21	11.96	33.90	0.00	37.29	74.00	-36.71	100/300kHz
AVG, NF	H	4960.000	16.71	34.21	11.96	33.90	0.00	28.98	54.00	-25.02	100/300kHz
PK, NF	H	4960.000	35.66	34.21	11.96	33.90	0.00	47.93	74.00	-26.07	1/3MHz
AVG, NF	H	4960.000	26.26	34.21	11.96	33.90	0.00	38.53	54.00	-15.47	1/3MHz
PK, NF	H	7440.000	25.77	35.63	15.86	34.82	0.00	42.43	74.00	-31.57	100/300kHz
AVG, NF	H	7440.000	15.02	35.63	15.86	34.82	0.00	31.68	54.00	-22.32	100/300kHz
PK, NF	H	7440.000	35.43	35.63	15.86	34.82	0.00	52.09	74.00	-21.91	1/3MHz
AVG, NF	H	7440.000	25.89	35.63	15.86	34.82	0.00	42.55	54.00	-11.45	1/3MHz
Mid Channel 2440MHz. EUT sits straight up in its only normal orientation. Spurious Emissions. 1-3 GHz (no pre-amp used)											
3-17 GHz pre-amp used. No emissions were detected. Took noise floor readings at second and third harmonics											
PK, NF	H	4880.000	25.07	34.24	11.88	33.89	0.00	37.30	74.00	-36.70	100/300kHz
AVG, NF	H	4880.000	16.30	34.24	11.88	33.89	0.00	28.53	54.00	-25.47	100/300kHz
PK, NF	H	4880.000	35.77	34.24	11.88	33.89	0.00	48.00	74.00	-26.00	1/3MHz
AVG, NF	H	4880.000	26.48	34.24	11.88	33.89	0.00	38.71	54.00	-15.29	1/3MHz
PK, NF	H	7320.000	24.81	35.63	15.51	34.73	0.00	41.22	74.00	-32.78	100/300kHz
AVG, NF	H	7320.000	14.52	35.63	15.51	34.73	0.00	30.93	54.00	-23.07	100/300kHz
PK, NF	H	7320.000	34.59	35.63	15.51	34.73	0.00	51.00	74.00	-23.00	1/3MHz
AVG, NF	H	7320.000	25.87	35.63	15.51	34.73	0.00	42.28	54.00	-11.72	1/3MHz
Low Channel 2402MHz. EUT sits straight up in its only normal orientation. Spurious Emissions. 1-3 GHz (no pre-amp used)											
3-17 GHz pre-amp used. No emissions were detected. Took noise floor readings at second and third harmonics											
PK	H	4804.000	25.77	34.19	11.81	33.88	0.00	37.89	74.00	-36.11	100/300kHz
AVG	H	4804.000	15.18	34.19	11.81	33.88	0.00	27.30	54.00	-26.70	100/300kHz
PK	H	4804.000	35.13	34.19	11.81	33.88	0.00	47.25	74.00	-26.75	1/3MHz
AVG	H	4804.000	25.29	34.19	11.81	33.88	0.00	37.41	54.00	-16.59	1/3MHz
PK	H	7206.000	25.11	35.65	15.21	34.63	0.00	41.34	74.00	-32.66	100/300kHz
AVG	H	7206.000	15.26	35.65	15.21	34.63	0.00	31.49	54.00	-22.51	100/300kHz
PK	H	7206.000	34.83	35.65	15.21	34.63	0.00	51.06	74.00	-22.94	1/3MHz
AVG	H	7206.000	25.75	35.65	15.21	34.63	0.00	41.98	54.00	-12.02	1/3MHz

Notes: Applied the general limits for all emissions.

Hand scans were performed from 17-25 GHz at a distance of 10cm from the EUT, no emissions were detected above the measuring equipment noise floor.

Naga Suryadevara *N5*Vathana Ven *VVK*Test Personnel: Kouma Sinn *KPS*Test Date: 09/26/2016, 07/07/2016

Supervising/Reviewing

Engineer:

(Where Applicable)

N/AFCC 15.247 & RSS 247120 VAC 60 HzLimit Applied: Below Specified Limit

Pretest Verification w/

Ambient Signals or

BB Source: BB SourceAmbient Temperature: 22, 22 °CRelative Humidity: 34, 48 %Atmospheric Pressure: 1007, 1000 mbars

Deviations, Additions, or Exclusions: None

11 Digital Device Radiated Spurious Emissions

11.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart B, ICES 003 and ANSI C 63.4,

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

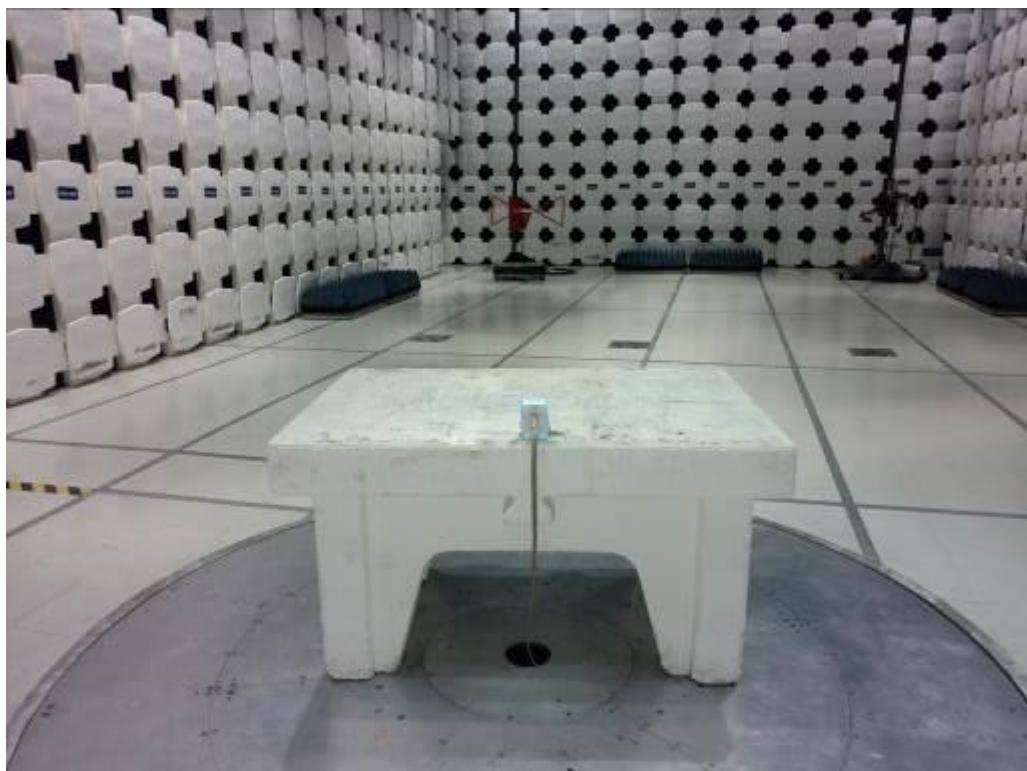
NF = Net Reading in dB μ V

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

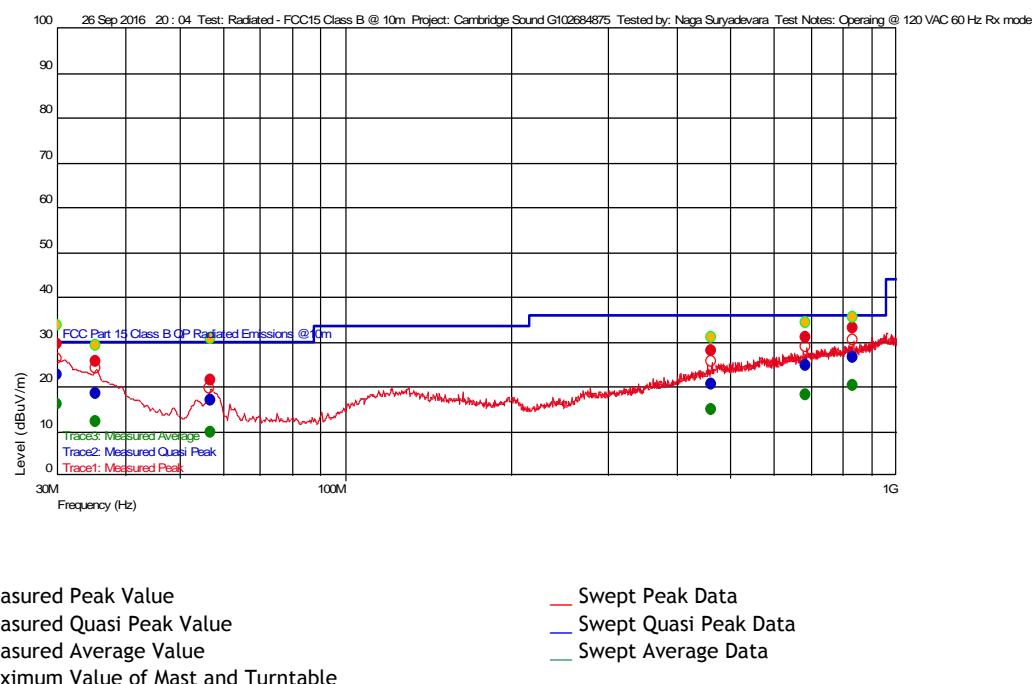
$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/m$$

11.2 Test Equipment Used:


Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
145145	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	03/09/2016	03/09/2017
145013'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2944A07027	05/02/2016	05/02/2017
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	06/27/2016	06/27/2017

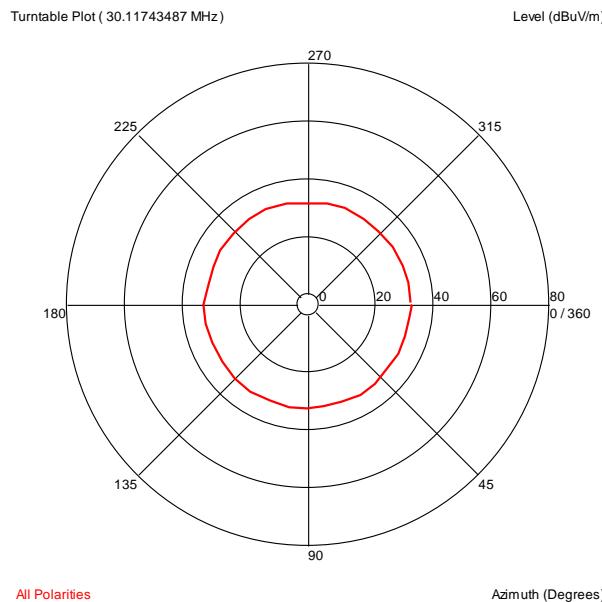
Software Utilized:

Name	Manufacturer	Version
Compliance5	Teseq	5.26.46.46

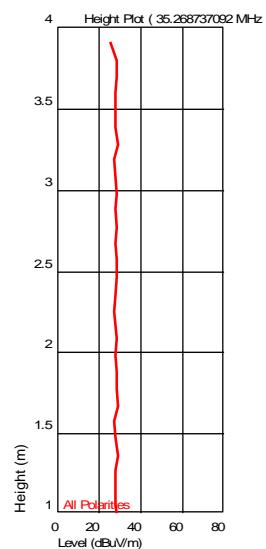
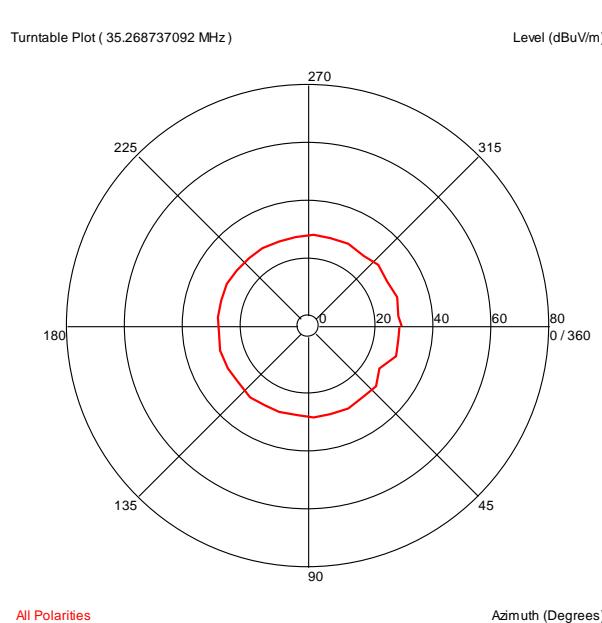
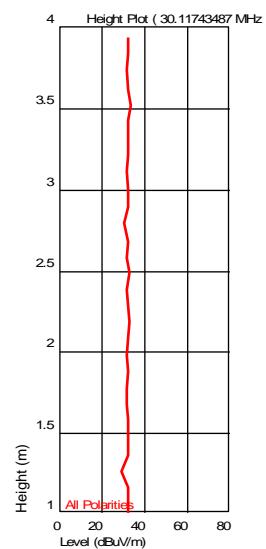

11.3 Results:

The sample tested was found to Comply.

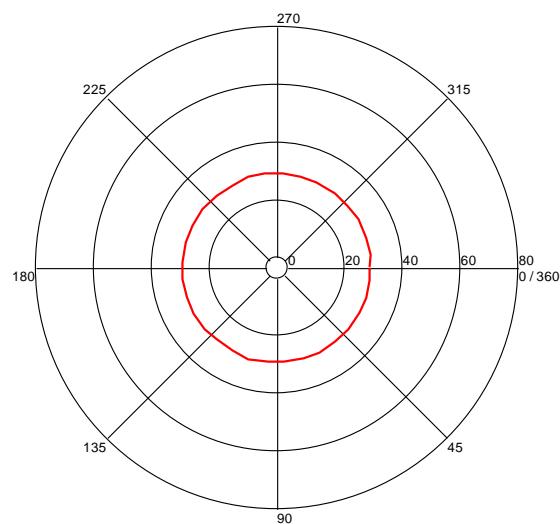
11.4 Setup Photograph:


11.5 Plots/Data:**Operating @ 120 VAC 60 Hz 30 MHz – 1 GHz, Rx mode****Test Information**

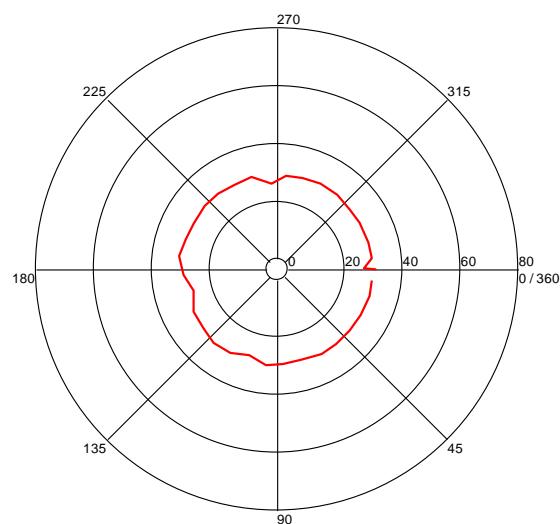
Test Details	User Entry	Additional Information
Test:	Radiated - FCC15 Class B @ 10m	
Project:	Cambridge Sound G102684875	
Test Notes:	Operating @ 120 VAC 60 Hz Rx mode	
Temperature:	22 C	
Humidity:	34% 1007 mbars	
Tested by:	Naga Suryadevara	
Test Started:	26 Sep 2016 20 : 04	




Prescan Emission Graph**Emissions Test Data****Trace2: Measured Quasi Peak**

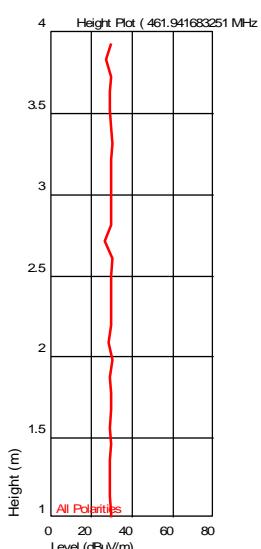
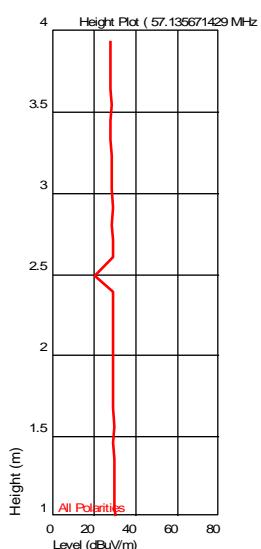
Frequency(Hz)	Level(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (--), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)
461.941683251 M	20.45	23.578	-24.459	36.020	-15.57		176	2.08	120 k
57.135671429 M	17.00	13.300	-27.303	30.000	-13.00		262	1.05	120 k
35.268737092 M	18.45	23.412	-27.671	30.000	-11.55	--	330	1.47	120 k
685.774348449 M	24.56	26.531	-23.908	36.020	-11.46		62	4.00	120 k
833.808015842 M	26.47	28.000	-23.470	36.020	-9.55		182	3.98	120 k
30.11743487 M	22.56	27.406	-27.771	30.000	-7.44		360	3.62	120 k


Azimuth Plots

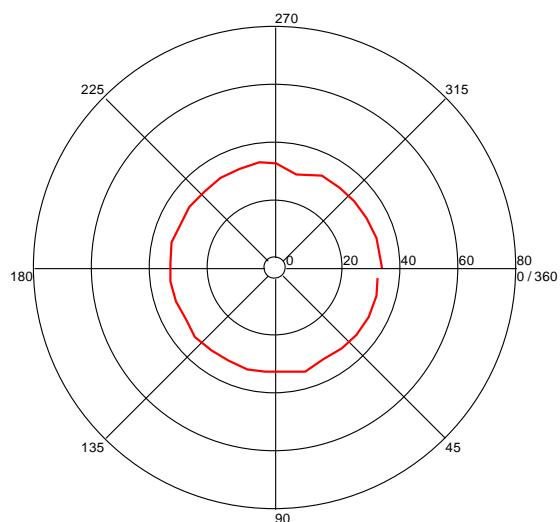
Turntable Plots


Turntable Plot (57.135671429 MHz)

Level (dBuV/m)

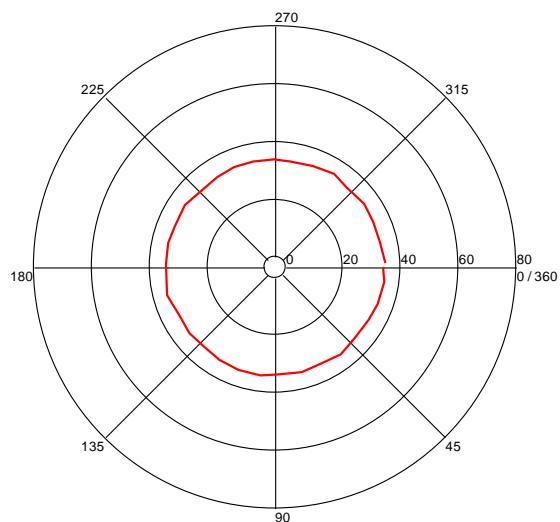


Azimuth (Degrees)

Turntable Plot (461.941683251 MHz)



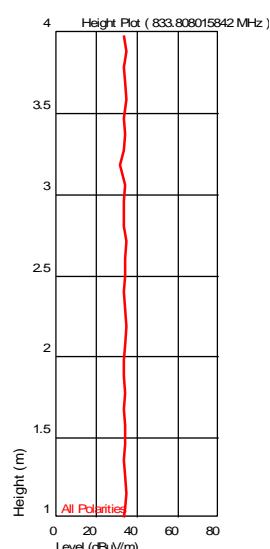
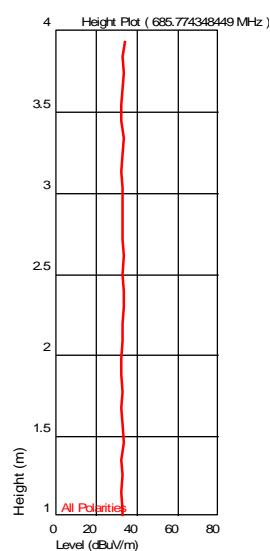
Level (dBuV/m)

Azimuth (Degrees)


Turntable Plot (685.774348449 MHz)

Level (dBuV/m)

Azimuth (Degrees)



Turntable Plot (833.808015842 MHz)

Level (dBuV/m)

Azimuth (Degrees)

All Polarities

Test Personnel: Naga Suryadevara N5
 Supervising/Reviewing
 Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part15 Subpart B, ICES 003
 Input Voltage: 120 VAC 60 Hz
 Pretest Verification w/
 Ambient Signals or
 BB Source: BB Source

Test Date: 09/26/2016
 Limit Applied: Class B
 Ambient Temperature: 22 °C
 Relative Humidity: 34 %
 Atmospheric Pressure: 1007 mbars

Deviations, Additions, or Exclusions: None

12 AC Mains Conducted Emissions

12.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart B, ICES 003 and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	U _{cispr}
AC Line Conducted Emissions	150 kHz - 30 MHz	dB	3.4dB
Telco Port Emissions	150 kHz - 30 MHz	dB	5.0dB

As shown in the table above our conducted emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

$$NF = RF + LF + CF + AF$$

Where NF = Net Reading in dB μ V

RF = Reading from receiver in dB μ V

LF = LISN or ISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

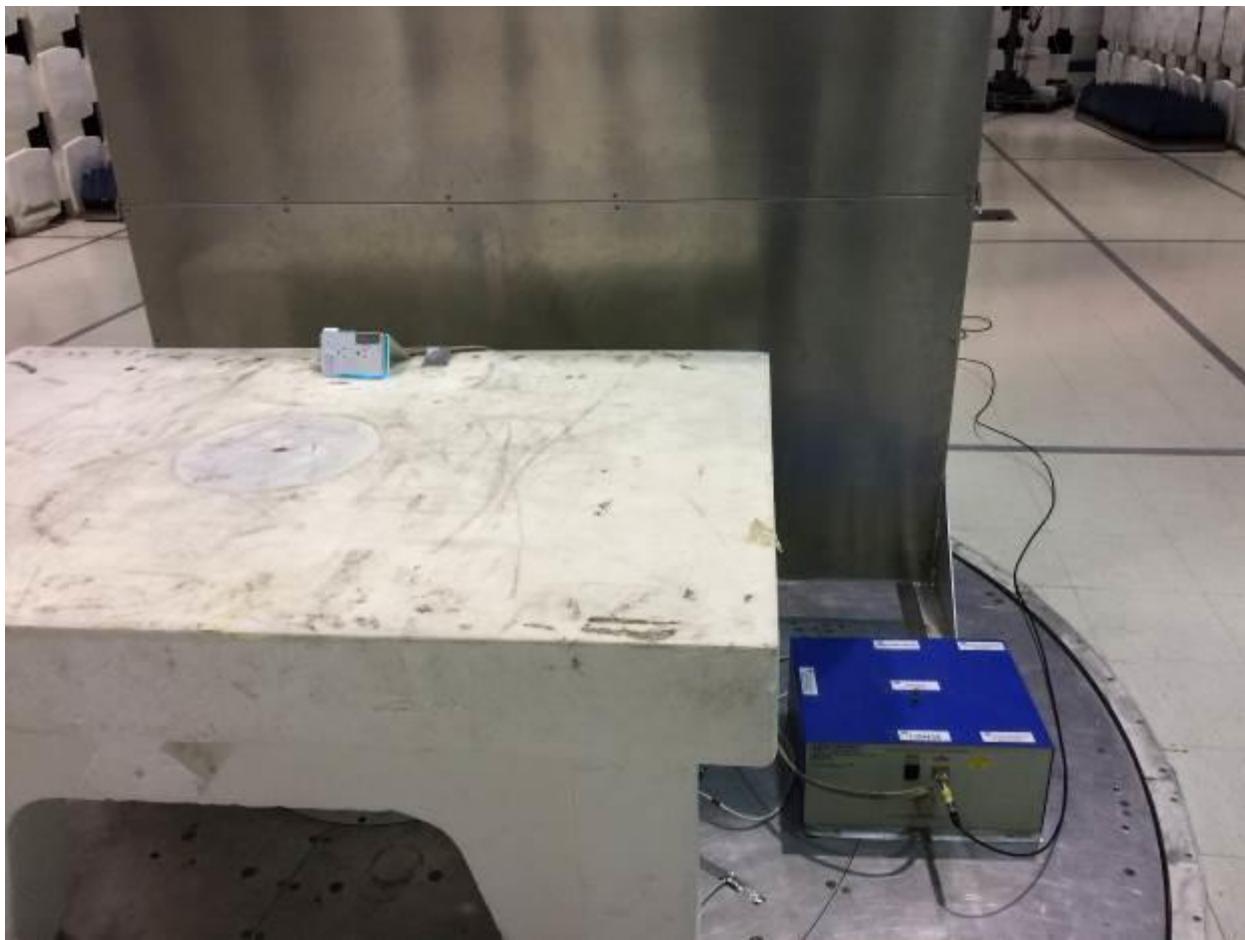
NF = Net Reading in dB μ V

Example:

$$NF = RF + LF + CF + AF = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$$

$$UF = 10^{(49.1 \text{ dB}\mu\text{V}/20)} = 285.1 \mu\text{V}/\text{m}$$

12.2 Test Equipment Used:


Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	05/02/2016	05/02/2017
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/10/2016	03/10/2017
DS25'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS25	10/12/2015	10/12/2016
CBL043'	3ft BNC to BNC	Hoswell	Coax RG-58	CBL043	05/02/2016	05/02/2017
LISN32'	LISN - CISPR16 Compliant 9kHz-30MHz	Com-Power	LI-215A	191955	03/25/2016	03/25/2017

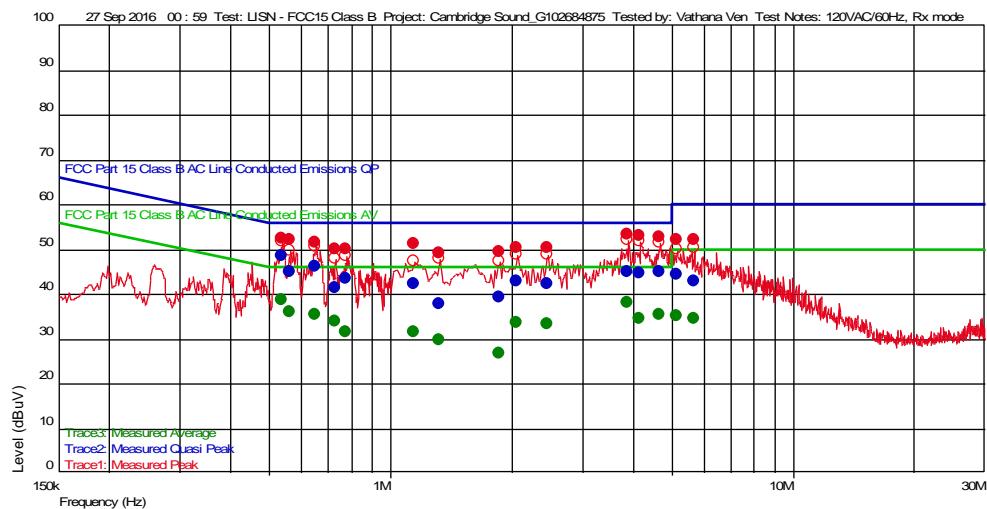
Software Utilized:

Name	Manufacturer	Version
Compliance5	Teseq	5.26.46.46

12.3 Results:

The sample tested was found to Comply.

12.4 Setup Photograph:


12.5 Plots/Data:

Test Information

Test Details: User Entry
 Test: LISN - FCC15 Class B
 Project: Cambridge Sound_G102684875
 Test Notes: 120VAC/60Hz, Rx mode
 Temperature: 22 deg C
 Humidity: 38%, 1004 mB
 Tested by: Vathana Ven
 Test Started: 27 Sep 2016 00 : 59

Additional Information

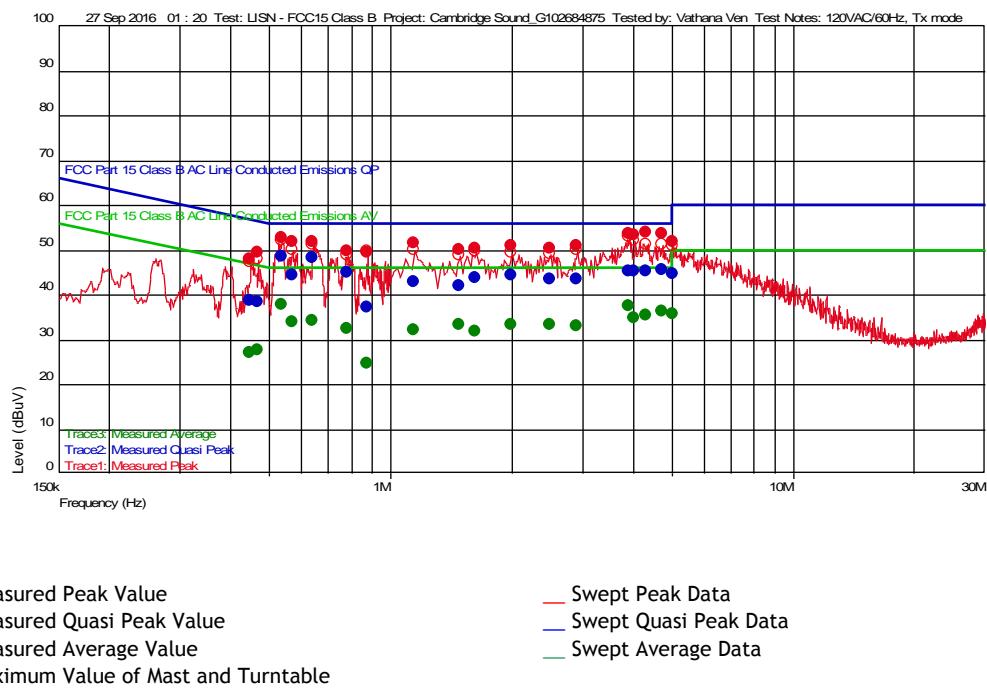
Prescan Emission Graph

- | | |
|---------------------------------------|-------------------------|
| ● Measured Peak Value | — Swept Peak Data |
| ● Measured Quasi Peak Value | — Swept Quasi Peak Data |
| ● Measured Average Value | — Swept Average Data |
| ● Maximum Value of Mast and Turntable | |

Emissions Test Data**Trace2: Measured Quasi Peak**

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
1.324649299 M	37.88	0.013	20.260	56.000	-18.12	9 k		N
5.689378758 M	42.80	0.020	20.076	60.000	-17.20	9 k		N
1.865731463 M	39.25	0.019	20.237	56.000	-16.75	9 k		N
5.148296593 M	44.30	0.020	20.099	60.000	-15.70	9 k		N
729.158316633 k	41.41	0.010	20.240	56.000	-14.59	9 k		N
1.144288577 M	42.21	0.011	20.268	56.000	-13.79	9 k		N
2.460921844 M	42.23	0.020	20.212	56.000	-13.77	9 k		N
2.064128257 M	42.78	0.020	20.229	56.000	-13.22	9 k		N
778.557114228 k	43.48	0.010	20.247	56.000	-12.52	9 k		N
4.174348697 M	44.64	0.020	20.140	56.000	-11.36	9 k		N
4.679358717 M	44.89	0.020	20.118	56.000	-11.11	9 k		N
3.903807615 M	44.90	0.020	20.151	56.000	-11.10	9 k		N
565.631262525 k	45.04	0.011	20.220	56.000	-10.96	9 k		N
652.50501002 k	46.16	0.010	20.231	56.000	-9.84	9 k		N
538.376753507 k	48.57	0.012	20.216	56.000	-7.43	9 k		N

Trace3: Measured Average


Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
1.865731463 M	26.73	0.019	20.237	46.000	-19.27	9 k		N
1.324649299 M	29.67	0.013	20.260	46.000	-16.33	9 k		N
5.689378758 M	34.53	0.020	20.076	50.000	-15.47	9 k		N
5.148296593 M	35.06	0.020	20.099	50.000	-14.94	9 k		N
1.144288577 M	31.36	0.011	20.268	46.000	-14.64	9 k		N
778.557114228 k	31.59	0.010	20.247	46.000	-14.41	9 k		N
2.460921844 M	33.36	0.020	20.212	46.000	-12.64	9 k		N
2.064128257 M	33.67	0.020	20.229	46.000	-12.33	9 k		N
729.158316633 k	33.96	0.010	20.240	46.000	-12.04	9 k		N
4.174348697 M	34.59	0.020	20.140	46.000	-11.41	9 k		N
652.50501002 k	35.26	0.010	20.231	46.000	-10.74	9 k		N
4.679358717 M	35.32	0.020	20.118	46.000	-10.68	9 k		N
565.631262525 k	36.10	0.011	20.220	46.000	-9.90	9 k		N
3.903807615 M	38.19	0.020	20.151	46.000	-7.81	9 k		N
538.376753507 k	38.69	0.012	20.216	46.000	-7.31	9 k		N

Test Information

Test Details User Entry
 Test: LISN - FCC15 Class B
 Project: Cambridge Sound_G102684875
 Test Notes: 120VAC/60Hz, Tx mode
 Temperature: 22 deg C
 Humidity: 38%, 1004 mB
 Tested by: Vathana Ven
 Test Started: 27 Sep 2016 01 : 20

Additional Information

Prescan Emission Graph

Emissions Test Data**Trace2: Measured Quasi Peak**

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
877.354709419 k	37.05	0.010	20.259	56.000	-18.95	9 k		N
449.799599198 k	38.57	0.015	20.205	56.879	-18.31	9 k		N
468.537074148 k	38.35	0.014	20.207	56.540	-18.19	9 k		N
5.058116232 M	44.71	0.020	20.102	60.000	-15.29	9 k		N
1.486973948 M	42.05	0.015	20.253	56.000	-13.95	9 k		N
1.144288577 M	42.98	0.011	20.268	56.000	-13.02	9 k		N
2.911823647 M	43.47	0.020	20.193	56.000	-12.53	9 k		N
2.496993988 M	43.51	0.020	20.210	56.000	-12.49	9 k		N
1.631262525 M	43.61	0.016	20.247	56.000	-12.39	9 k		N
570.741482966 k	44.24	0.011	20.220	56.000	-11.76	9 k		N
2.01002004 M	44.31	0.020	20.231	56.000	-11.69	9 k		N
783.667334669 k	44.93	0.010	20.247	56.000	-11.07	9 k		N
4.048096192 M	45.15	0.020	20.145	56.000	-10.85	9 k		N
3.921843687 M	45.34	0.020	20.150	56.000	-10.66	9 k		N
4.336673347 M	45.37	0.020	20.133	56.000	-10.63	9 k		N
4.733466934 M	45.58	0.020	20.116	56.000	-10.42	9 k		N
642.284569138 k	48.19	0.010	20.229	56.000	-7.81	9 k		N
538.376753507 k	48.61	0.012	20.216	56.000	-7.39	9 k		N

Trace3: Measured Average

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
877.354709419 k	24.53	0.010	20.259	46.000	-21.47	9 k		N
449.799599198 k	26.91	0.015	20.205	46.879	-19.97	9 k		N
468.537074148 k	27.53	0.014	20.207	46.540	-19.01	9 k		N
5.058116232 M	35.70	0.020	20.102	50.000	-14.30	9 k		N
1.631262525 M	31.72	0.016	20.247	46.000	-14.28	9 k		N
1.144288577 M	32.10	0.011	20.268	46.000	-13.90	9 k		N
783.667334669 k	32.53	0.010	20.247	46.000	-13.47	9 k		N
2.911823647 M	33.13	0.020	20.193	46.000	-12.87	9 k		N
1.486973948 M	33.19	0.015	20.253	46.000	-12.81	9 k		N
2.01002004 M	33.27	0.020	20.231	46.000	-12.73	9 k		N
2.496993988 M	33.36	0.020	20.210	46.000	-12.64	9 k		N
570.741482966 k	33.94	0.011	20.220	46.000	-12.06	9 k		N
642.284569138 k	34.23	0.010	20.229	46.000	-11.77	9 k		N
4.048096192 M	34.77	0.020	20.145	46.000	-11.23	9 k		N
4.336673347 M	35.49	0.020	20.133	46.000	-10.51	9 k		N
4.733466934 M	36.23	0.020	20.116	46.000	-9.77	9 k		N
3.921843687 M	37.34	0.020	20.150	46.000	-8.66	9 k		N
538.376753507 k	37.71	0.012	20.216	46.000	-8.29	9 k		N

Test Personnel: Vathana Ven

Supervising/Reviewing

Engineer:

(Where Applicable)

N/A

Product Standard: FCC Part15 Subpart B,ICES 003Input Voltage: 120 VAC 60 Hz

Pretest Verification w/

Ambient Signals or

BB Source: BB SourceTest Date: 09/26/2016Limit Applied: All Class BAmbient Temperature: 22 °CRelative Humidity: 38 %Atmospheric Pressure: 1004 mbars

Deviations, Additions, or Exclusions: None

13 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	09/29/2016	102684875BOX-001	VFV <i>V5V</i>	MFM <i>M5M</i>	Original Issue
1	11/22/2016	102684875BOX-001a	VFV <i>V5V</i>	MFM <i>M5M</i>	Corrected typo and recalculated RF exposure