MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

 ${\tt Calculated\ Result\ and\ Limit\,(WORSE\ CASE\ IS\ AS\ BELOW)}$

2.4G:

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
2	38.9	0.0155	1	Compiles
(3dBi)	(15.90 dBm @2437			
	MHz)			

5G:

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
2	6.152	0.00245	1	Compiles
(3dBi)	(7.89 dBm @5180			
	MHz)			

0.0155 + 0.00245 = 0.01795 < 1