

TESTING LABORATORY
CERTIFICATE # 4821.01

FCC PART 15.231

TEST REPORT

For

Velong Enterprises Co.,Ltd

No.3-7 west of 5th Najin Rd., North of 4th, Huoda Rd., Nahou Industrial Zone, Yangdong District,
Yangjiang City, China

FCC ID: 2AJUYGT003804

Report Type: Original Report	Product Type: Wireless thermometer
Report Number: <u>RSZ180919002-00A</u>	
Report Date: <u>2018-10-12</u>	
Reviewed By: <u>Rocky Kang</u> <i>Rocky Kang</i>	
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk **

TABLE OF CONTENTS

GENERAL INFORMATION.....	.3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY.....	3
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION	5
SPECIAL ACCESSORIES.....	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
NOTE: THE EUT IS POWER BY BATTERY.....	6
TEST EQUIPMENT LIST AND DETAILS	7
FCC §15.203 - ANTENNA REQUIREMENT.....	8
APPLICABLE STANDARD	8
ANTENNA CONNECTOR CONSTRUCTION	8
FCC §15.205, §15.209, §15.231 (E) - RADIATED EMISSIONS	9
APPLICABLE STANDARD	9
MEASUREMENT UNCERTAINTY.....	9
EUT SETUP	10
EMI TEST RECEIVER SETUP.....	11
TEST PROCEDURE	11
CORRECTED AMPLITUDE & MARGIN CALCULATION	11
TEST RESULTS SUMMARY	11
TEST DATA	11
FCC §15.231(C) – 20 DB EMISSION BANDWIDTH TESTING	17
APPLICABLE STANDARD	17
TEST PROCEDURE	17
TEST DATA	17
FCC §15.231(E) – TRANSMISSION AND SILENT PERIOD TESTING.....	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST DATA	19

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Velong Enterprises Co.,Ltd*'s product, model number: *VL-140 (FCC ID: 2AJUYGT003804)* (or the "EUT") in this report was a *Wireless thermometer*, which was measured approximately: 11.0 m (L) * 7.0 cm (W) * 4.2 cm (H), rated with input voltage: DC 3 V.

**All measurement and test data in this report was gathered from production sample serial number: 180919002 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2018-09-19.*

Objective

This test report is prepared on behalf of *Velong Enterprises Co.,Ltd*. All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

FCC PART 15B CYY submissions with FCC ID: 2AJUYGT003803.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item		Uncertainty
Radiated emission	30MHz~1 GHz	±5.91 dB
	Above 1 GHz	±4.92 dB
AC Power Lines Conducted Emissions		±1.95dB
Occupied Bandwidth		±0.5 kHz
Temperature		±1.0 °C
Humidity		±6 %

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Justification

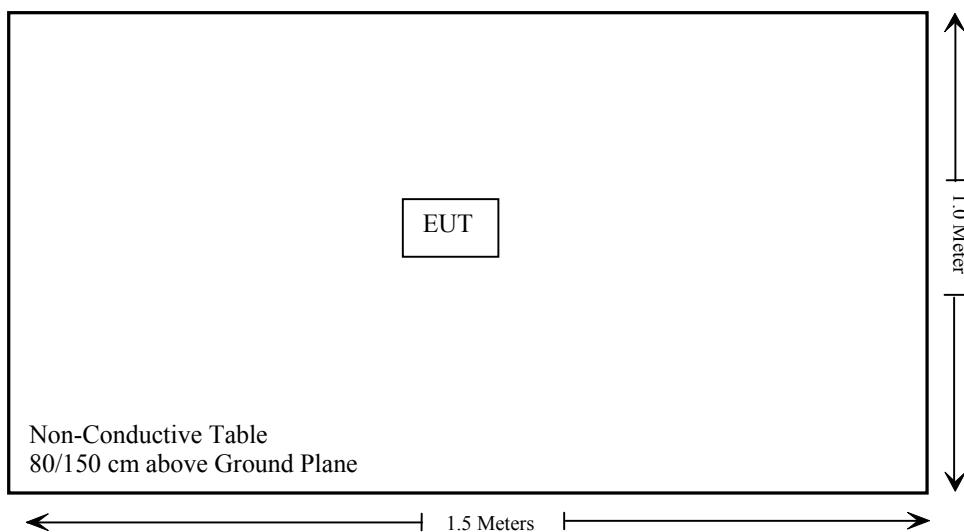
The system was configured for testing by manufacturer.

Special Accessories

No special accessories was used

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From / Port	To
/	/	/	/

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Not Applicable
§15.205, §15.209, §15.231 (e)	Radiated Emissions	Compliance
§15.231 (c)	20dB Emission Bandwidth	Compliance
§15.231(e)	Transmission And Silent Period Testing	Compliance

Note: The EUT is power by battery.

TEST EQUIPMENT LIST AND DETAILS

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23
COM-POWER	Pre-amplifier	PA-122	181919	2018-05-22	2018-11-22
Sonoma instrument	Amplifier	310N	186238	2018-05-12	2018-11-12
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2018-01-11	2019-01-11
Ducommun technologies	RF Cable	UFA147A-2362-100100	MFR64639 231029-003	2018-08-01	2019-02-01
Ducommun technologies	RF Cable	104PEA	218124002	2018-05-21	2018-11-21
Ducommun technologies	RF Cable	RG-214	1	2018-05-21	2018-11-19
Ducommun technologies	RF Cable	RG-214	2	2018-05-22	2018-11-22
Rohde Schwarz	EMI Test Receiver	ESR	1316.3003K03-101746-zn	2018-07-11	2019-07-11

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna is 0 dBi, fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.

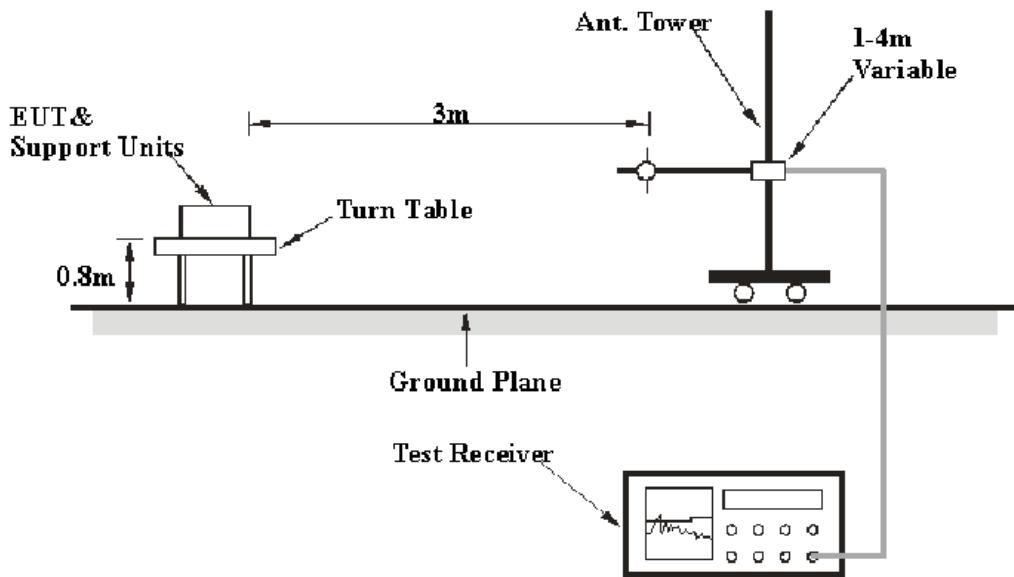
FCC §15.205, §15.209, §15.231 (e) - RADIATED EMISSIONS**Applicable Standard**

FCC §15.205, §15.209, §15.231 (e)

According to §15.231 (e), intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions (Microvolts /meter)
40.66-40.70	1000	100
70-130	500	50
130-174	500 to 1500**	50 to 150**
174-260	1500	150
260-470	1500 to 5000**	150 to 500**
Above 470	5000	500

**Linear interpolations.


The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

Measurement Uncertainty


All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz, Peak and average detection mode above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Loss} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 5.8 dB means the emission is 5.8 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (e)

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_m + U_{(Lm)} \leq L_{\text{lim}} + U_{\text{cisp}}$$

In BACL, $U_{(Lm)}$ is less than U_{cisp} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25~26 °C
Relative Humidity:	50~55 %
ATM Pressure:	100.9~101.1 kPa

The testing was performed by Shawn Xiao from 2018-09-26 to 2018-10-11.

Test mode: Transmitting

Frequency (MHz)	Receiver		Turntable Degree	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part 15.231(e)/205/209		
	Reading (dB μ V)	Detector (PK/QP/Ave.)		Height (cm)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)	Comment
433.92	81.47	PK	211	1.2	H	-8.9	72.57	92.9	20.33	Fundamental
433.92	76.66	PK	283	1.5	V	-8.9	67.76	92.9	25.14	Fundamental
867.84	31.83	QP	155	1.6	H	6.81	38.64	46	7.36	Harmonic
867.84	28.95	QP	236	1.6	V	6.81	35.76	46	10.24	Harmonic
1301.76	47.89	PK	188	1.8	H	-2.98	44.91	74	29.09	Harmonic
1301.76	41.35	PK	177	1.8	V	-2.98	38.37	74	35.63	Harmonic
2169.60	55.12	PK	216	2.0	H	-0.76	54.36	74	19.64	Harmonic
2169.60	44.12	PK	217	1.2	V	-0.76	43.36	74	30.64	Harmonic
2603.52	58.12	PK	116	1.4	H	-0.40	57.72	74	16.28	Harmonic
2603.52	49.35	PK	98	1.6	V	-0.40	48.95	74	25.05	Harmonic
3037.44	56.01	PK	26	1.6	H	2.51	58.52	74	15.48	Harmonic
3037.44	46.89	PK	34	1.5	V	2.51	49.40	74	24.60	Harmonic

Field Strength of Average							
Frequency (MHz)	Peak Measurement @3m (dB μ V/m)	Polar (H/V)	Duty Cycle Correction Factor (dB)	Corrected Amplitude (dB μ V/m)	FCC Part 15.231(e)/205/209		
					Limit (dB μ V/m)	Margin (dB)	Comment
433.92	72.57	H	-6.20	66.37	72.9	6.53	Fundamental
433.92	67.76	V	-6.20	61.56	72.9	11.34	Fundamental
1301.76	44.91	H	-6.20	39.11	54	15.29	Harmonic
1301.76	38.37	V	-6.20	35.10	54	21.83	Harmonic
2169.60	54.36	H	-6.20	48.16	54	5.84	Harmonic
2169.60	43.36	V	-6.20	37.16	54	16.84	Harmonic
2603.52	57.72	H	-6.20	51.52	54	2.48	Harmonic
2603.52	48.95	V	-6.20	42.75	54	11.25	Harmonic
3037.44	58.52	H	-6.20	52.32	54	1.68	Harmonic
3037.44	49.40	V	-6.20	43.20	54	10.80	Harmonic

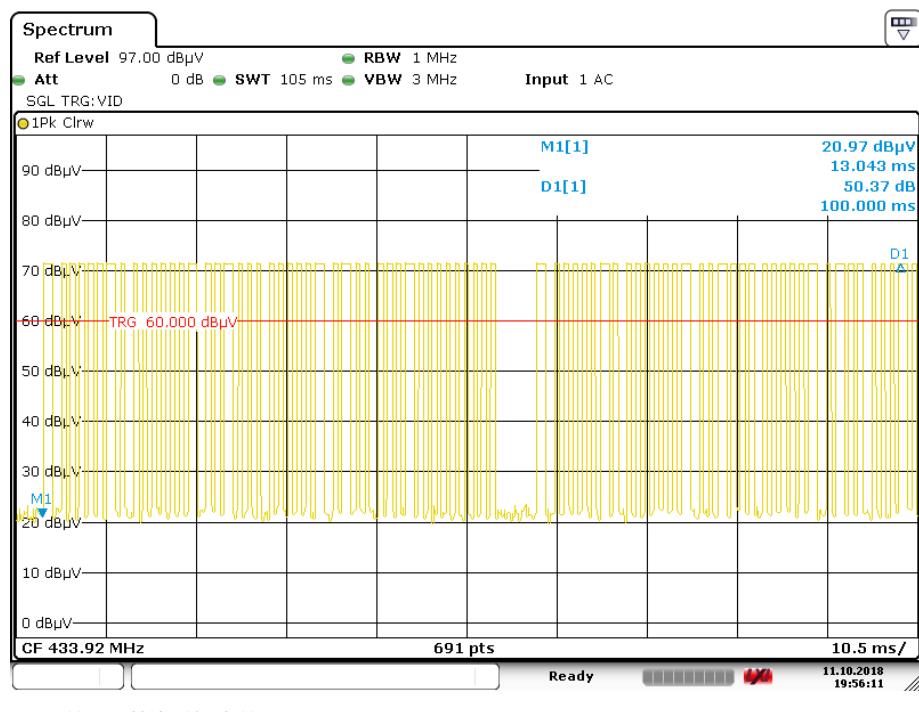
Corrected Amplitude = Corrected Factor + Reading

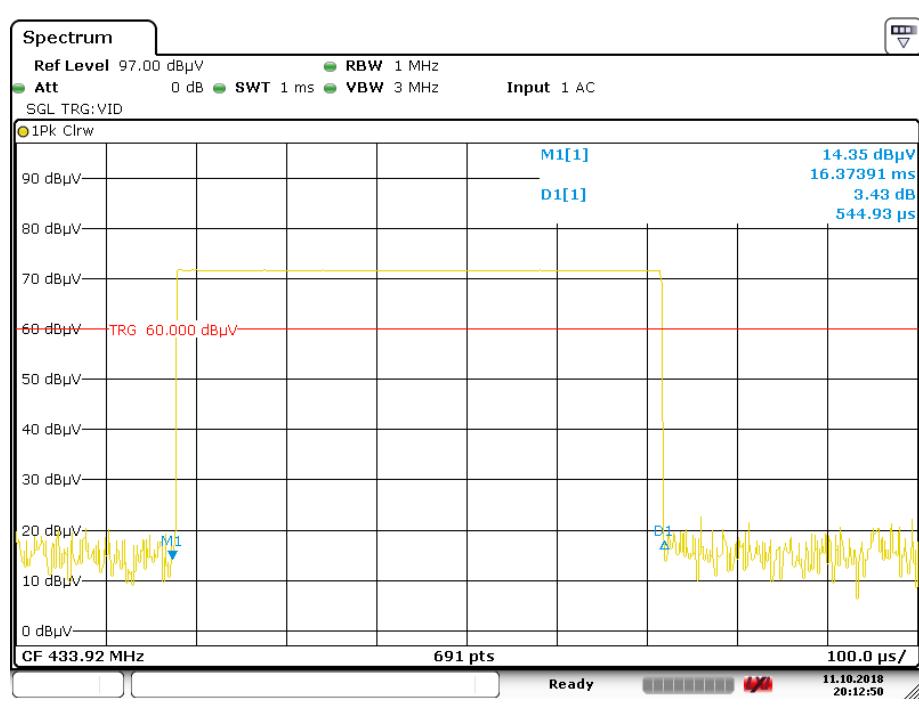
Corrected Factor = Antenna factor (Rx) + cable loss – amplifier factor

Margin = Limit - Corr. Amplitude

Dutycycle:

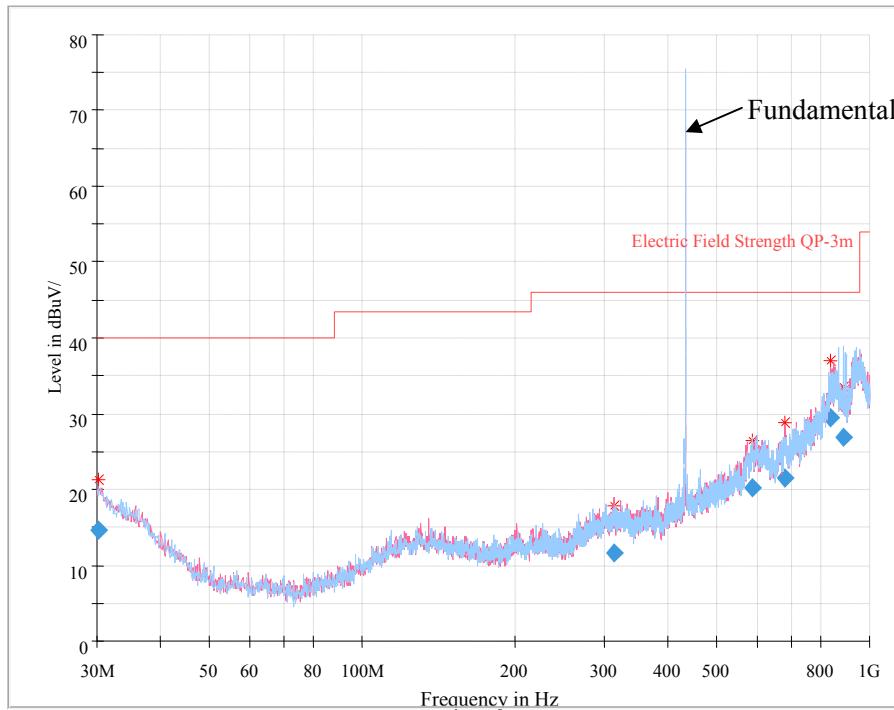
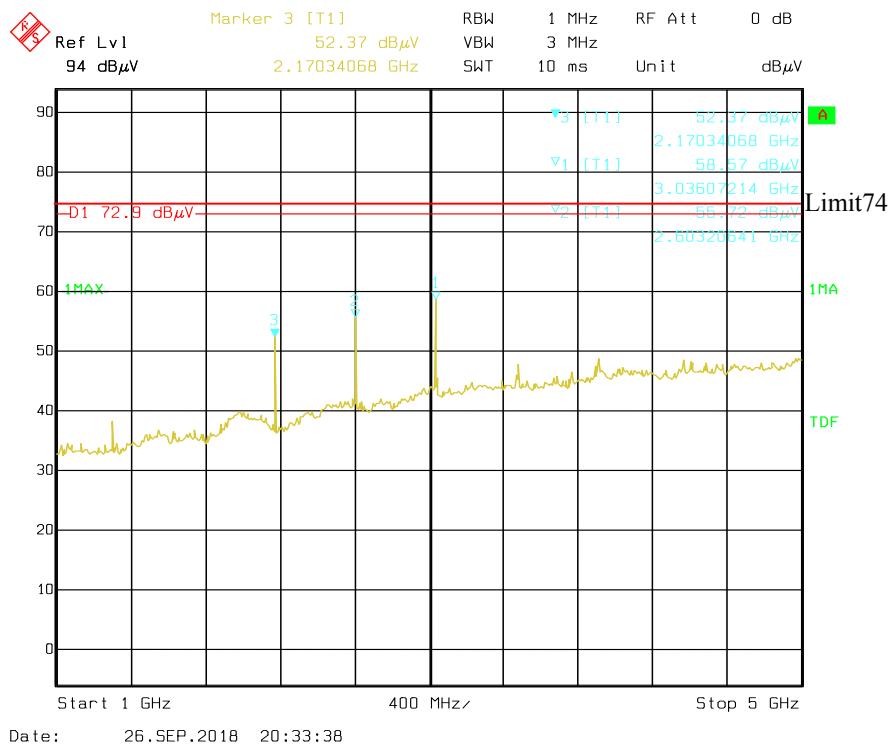
Ton1 = $13 \times 1.072\text{ms} = 13.94\text{ms}$

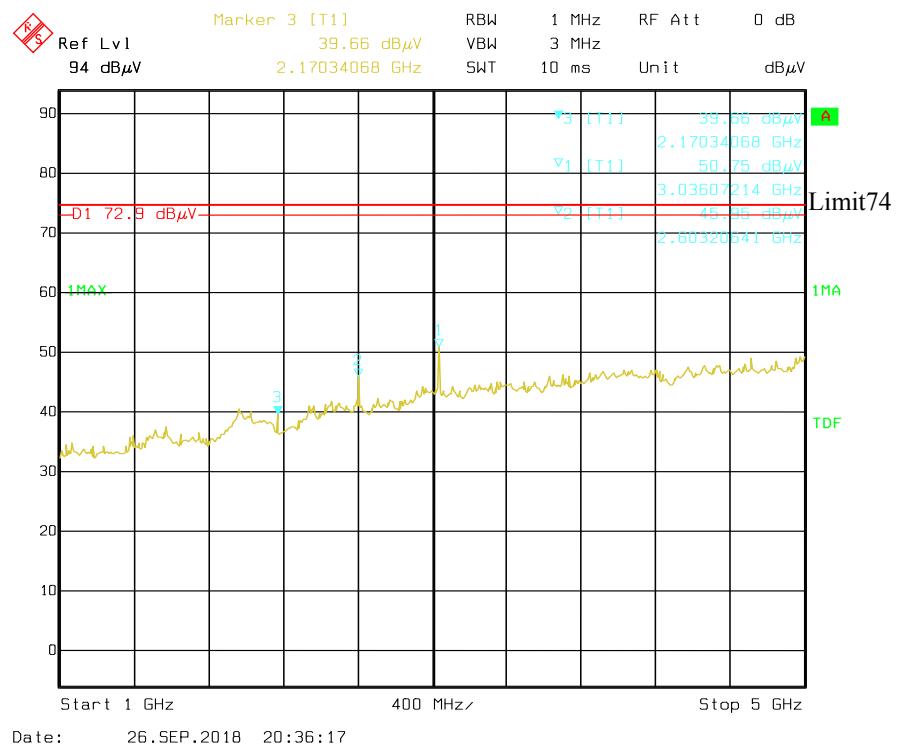

Ton2 = $64 \times 0.545\text{ms} = 34.88\text{ms}$


Tp = 100 ms

Duty cycle = Ton/Tp = $(13.94 + 34.88)/100 = 0.49$

Duty Cycle Corrected Factor = $20\lg(0.49) = -6.20$



Duty Cycle for 100ms


Ton1**Ton2**

Note: Test with normal use sample for Duty cycle.

Below 1GHz

Above 1GHz
Pre-scan - Horizontal

Pre-scan - Vertical

FCC §15.231(c) – 20 dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Procedure

With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

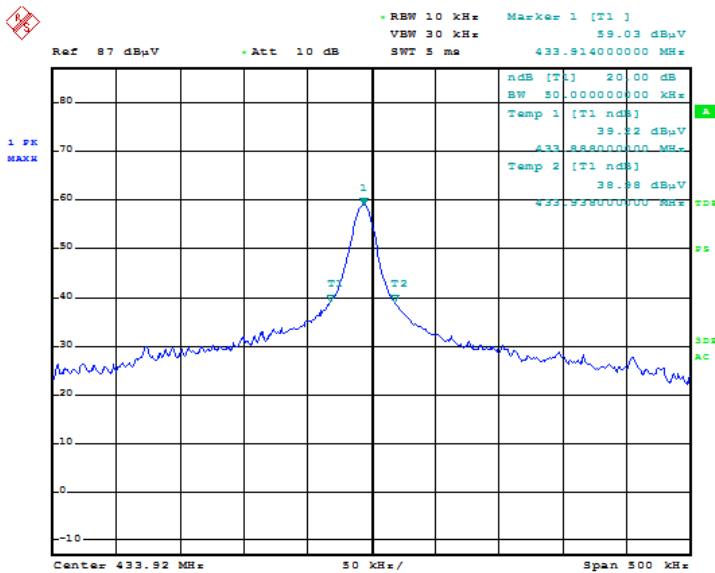
Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	55 %
ATM Pressure:	100.1 kPa

The testing was performed by Shawn Xiao on 2018-10-01.

Test Mode: Transmitting


Please refer to following table and plots.

Channel Frequency (MHz)	20 dB Emission Bandwidth (kHz)	<Limit (kHz)	Result
433.92	50	1084.8	Pass

Note:

Limit = 0.25% * center frequency = 0.25% * 433.92 MHz = 1.0848 MHz
20dB bandwidth = 50 kHz < 1.0848 MHz

20 dB Emission Bandwidth

EUT

Date: 1.OCT.2018 10:47:43

FCC §15.231(e) – TRANSMISSION AND SILENT PERIOD TESTING

Applicable Standard

Per FCC §15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Test Procedure

1. Set the EUT into the chamber.
2. Set center frequency of spectrum analyzer=operating frequency.
3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	53 %
ATM Pressure:	100.1 kPa

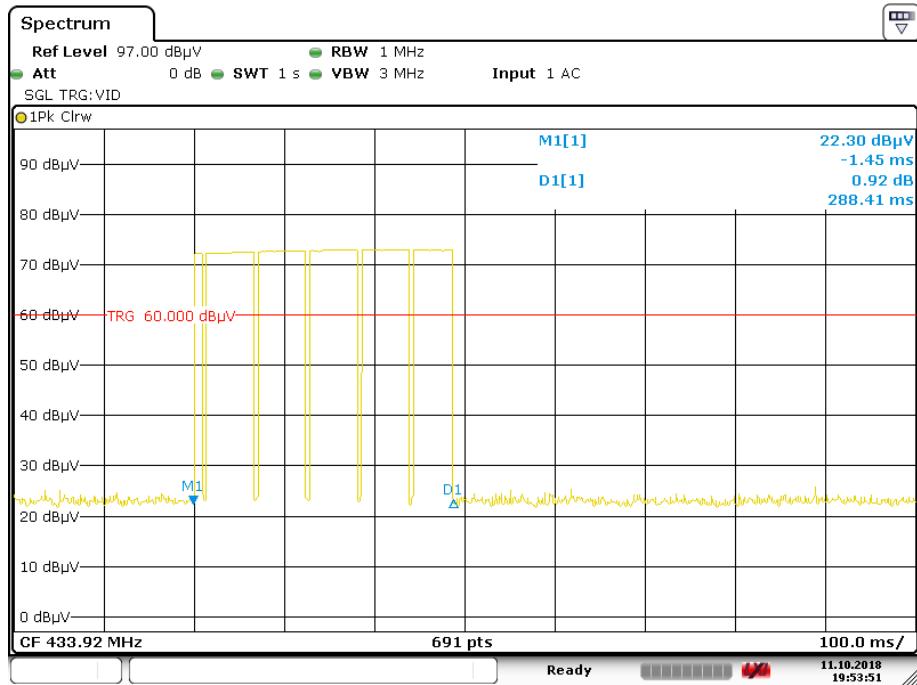
The testing was performed by Shawn Xiao on 2018-10-11.

Test Mode: Transmitting

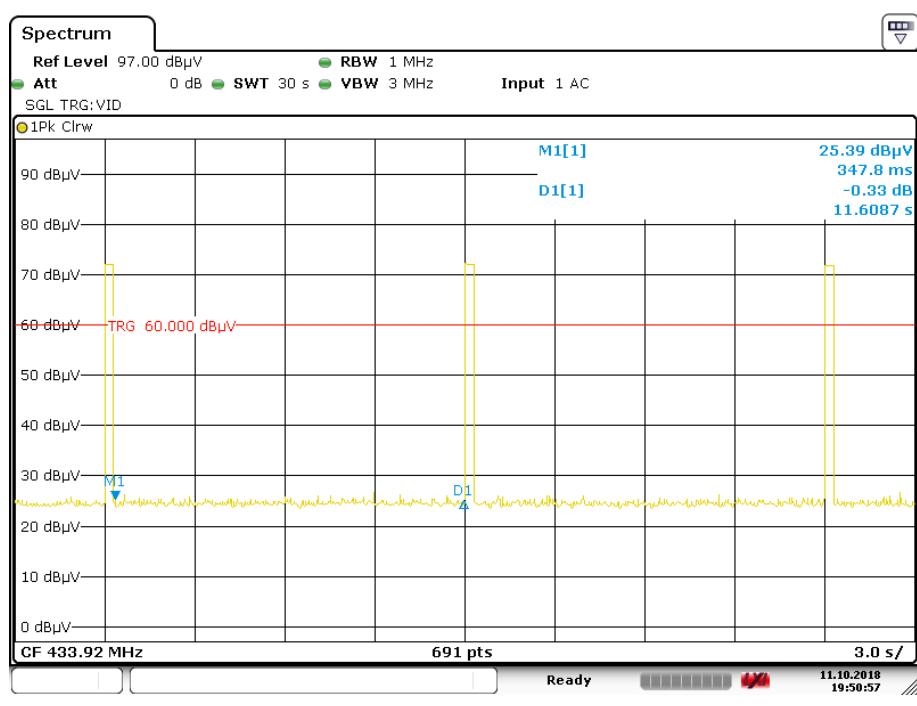
Deactivation

Transmission period (s)	Limit (s)	Result
0.288	< 1	Pass

Silent period


Silent period (s)	Limit (s)	Result
11.609	> 10	Pass

Note: The silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.


The duration time is 0.288s, $0.288 \times 30 = 8.64$ s.

Test Result: Compliant, please refer to following plot

Transmission period

Silent period

***** END OF REPORT *****