

FCC TEST REPORT
FOR
Dashine electronics co., Ltd
XB1 Chatpad
Test Model: LBX-168

Prepared for : Dashine electronics co., Ltd
Address : D3 Building, Baishixia Industrial District, Fuyong Town, Bao'an, ShenZhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330
Fax : (+86)755-82591332
Web : www.LCS-cert.com
Mail : webmaster@LCS-cert.com

Date of receipt of test sample : July 08, 2016
Number of tested samples : 1
Sample number : Prototype
Date of Test : July 08, 2016~October 10, 2016
Date of Report : October 09, 2016

FCC TEST REPORT
FCC CFR 47 PART 15 C(15.247): 2015

Report Reference No. : **LCS1607080636E**

Date of Issue : October 10, 2016

Testing Laboratory Name : **Shenzhen LCS Compliance Testing Laboratory Ltd.**

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method

Applicant's Name : **Dashine electronics co., Ltd**

Address : D3 Building, Baishixia Industrial District, Fuyong Town, Bao'an, ShenZhen, China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.247): 2015 / ANSI C63.10: 2013

Test Report Form No. : LCSEMC-1.0

TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description : **XB1 Chatpad**

Trade Mark : N/A

Test Model : LBX-168

Ratings : DC 3.7V by battery (200mAh)
Recharge Voltage: 5V⎓, 1A

Result : **Positive**

Compiled by:

Ada Liang/ File administrators

Supervised by:

Glin Lu/ Technique principal

Approved by:

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. : LCS1607080636E

October 10, 2016
Date of issue

Test Model..... : LBX-168

EUT..... : XB1 Chatpad

Applicant..... : Dashine electronics co., Ltd

Address..... : D3 Building, Baishixia Industrial District, Fuyong Town, Bao' an, ShenZhen, China

Telephone..... : /

Fax..... : /

Manufacturer..... : Dashine electronics co., Ltd

Address..... : D3 Building, Baishixia Industrial District, Fuyong Town, Bao' an, ShenZhen, China

Telephone..... : /

Fax..... : /

Factory..... : Dashine electronics co., Ltd

Address..... : D3 Building, Baishixia Industrial District, Fuyong Town, Bao' an, ShenZhen, China

Telephone..... : /

Fax..... : /

Test Result

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-10-10	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 Description of Device (EUT).....	6
1.2 Support equipment List.....	6
1.3 External I/O	6
1.4 Description of Test Facility	7
1.5 List Of Measuring Equipment	8
1.6 Statement of The Measurement Uncertainty	9
1.7 Measurement Uncertainty.....	9
1.8 Description Of Test Modes.....	9
2. TEST METHODOLOGY	10
2.1 EUT Configuration	10
2.2 EUT Exercise.....	10
2.3 General Test Procedures	10
3. SYSTEM TEST CONFIGURATION.....	11
3.1 Justification.....	11
3.2 EUT Exercise Software	11
3.3 Special Accessories	11
3.4 Block Diagram/Schematics.....	11
3.5 Equipment Modifications	11
3.6 Test Setup	11
4. SUMMARY OF TEST RESULTS	12
5. ANTENNA PORT MEASUREMENT	13
5.1 Maximum Conducted Output Power	13
5.2 Frequency Separation And 20 dB Bandwidth	14
5.3 Number Of Hopping Frequency	18
5.4 Time Of Occupancy (Dwell Time).....	20
5.5 Conducted Spurious Emissions and Band Edges Test.....	23
6. RADIATED MEASUREMENT	26
6.1 Standard Applicable.....	26
6.2 Instruments Setting	26
6.3 Test Procedures.....	27
6.4 Test Setup Layout	31
6.5 EUT Operation during Test	32
6.6 Results for Radiated Emissions	32
6.7 Results for Band edge Testing (Radiated)	35
7. LINE CONDUCTED EMISSIONS.....	37
7.1 Standard Applicable.....	37
7.2 Block Diagram of Test Setup.....	37
7.3 Test Results.....	37
8. ANTENNA REQUIREMENT	39
8.1 Standard Applicable.....	39
8.2 Antenna Connected Construction	39

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : XB1 Chatpad
Test Model No. : LBX-168
Power Supply : Transmit: DC 3.7V by battery (200mAh)
Recharge Voltage: 5V⎓, 1A
Receive: DC 5V by PC
Hardware Version : LBX-168-A-V1.5
Software Version : 5.70
2.4G :
Frequency Range : 2412-2476MHz
(2412, 2414, 2415, 2417, 2420, 2423, 2425, 2426, 2428, 2431, 2433, 2440, 2448, 2451, 2454, 2459, 2461, 2463, 2466, 2469, 2470, 2471, 2474, 2476 (Unit: MHz))
Channel Number : 24
Modulation Type : GFSK
Antenna Description : Internal Antenna, 0dBi(Max.)

Additional models No.				
--	--	--	--	--

Remark: no additional models were tested.

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	PC	B470	--	DOC
Lenovo	AC/DC ADAPTER	ADP-90DDB	--	DOC

1.3 External I/O

I/O Port Description	Quantity	Cable
Charge Interface	1	1.0m, unshielded
Earphone Port	1	N/A

1.4 Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 List Of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	2016/06/18	2017/06/17
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	2016/07/16	2017/07/15
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	2016/06/18	2017/06/17
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	2016/06/18	2017/06/17
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	2016/06/18	2017/06/17
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	2016/06/18	2017/06/17
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz	2016/06/18	2017/06/17
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHz	2016/04/18	2017/04/17
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	2016/04/18	2017/04/17
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	2016/04/18	2017/04/17
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	2016/04/18	2017/04/17
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	2016/04/18	2017/04/17
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	2016/04/18	2017/04/17
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	2016/04/18	2017/04/17
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	2016/06/18	2017/06/17
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	2016/06/18	2017/06/17
Power Meter	R&S	NRVS	100444	DC-40GHz	2016/06/18	2017/06/17
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	2016/06/18	2017/06/17
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	2016/06/18	2017/06/17
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	2016/06/18	2017/06/17
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	2016/06/18	2017/06/17
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	2016/06/18	2017/06/17
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	2016/06/18	2017/06/17
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	2016/06/18	2017/06/17
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	2016/07/16	2017/07/15
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	2015/10/27	2016/10/26
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	N/A	2015/11/19	2016/11/18
MXG Vector Signal Generator	Agilent	N5182A	MY47071151	250KHz~6GHz	2015/10/27	2016/10/26
MXG Vector Signal Generator	Agilent	E4438C	MY42081396	250KHz~6GHz	2015/10/27	2016/10/26
PSG Analog Signal Generator	Agilent	N8257D	MY46520521	250KHz~20GHz	2015/11/19	2016/11/18
MXA Signal Analyzer	Agilent	N9020A	MY50510140	10Hz~26.5GHz	2015/10/27	2016/10/26
DC Power Supply	Agilent	E3642A	/	0-8V,5A/0-20V,2.5A	2016/05/20	2017/05/19
RF Control Unit	Tonscend	JS0806-1	/	/	2015/11/19	2016/11/18
LTE Test Software	Tonscend	JS1120-1	/	Version: 2.5.7.0	N/A	N/A
X-series USB Peak and Aver	Agilent	U2021XA	MY54080022	/	2015/10/27	2016/10/26
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	MY54080016	/	2015/10/27	2016/10/26
Test Software	Ascentest	AT890-SW	20141230	Version: 20160630	N/A	N/A
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424	/	2015/10/27	2016/10/26
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	/	2015/10/27	2016/10/26
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	/	2015/10/27	2016/10/26

1.6 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)
	26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	150kHz~30MHz	1.63dB	(1)
Power disturbance	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8 Description Of Test Modes

The following operating modes were applied for the related test items. For radiated measurement, the test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Transmitting Frequency (MHz)
GFSK	2412
	2440
	2476
	For Conducted Emission
Test Mode	TX Mode
For Radiated Emission	
Test Mode	TX Mode

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX(2412MHz Hopping Mode).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was determined to be TX-Low Channel (2412MHz).

***Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmit condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

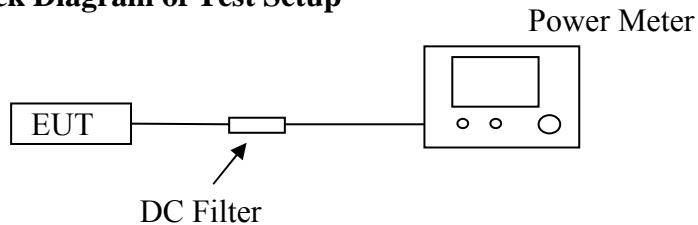
Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.


4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C		
FCC Rules	Description of Test	Result
§15.247(b)(1)	Maximum Conducted Output Power	Compliant
§15.247(a)(1)	Frequency Separation And 20 dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Number Of Hopping Frequency	Compliant
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	Compliant
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant
§15.205	Emissions at Restricted Band	Compliant
§15.207(a)	Line Conducted Emissions	Compliant
§15.203	Antenna Requirements	Compliant

5. ANTENNA PORT MEASUREMENT

5.1 Maximum Conducted Output Power

5.1.1 Block Diagram of Test Setup

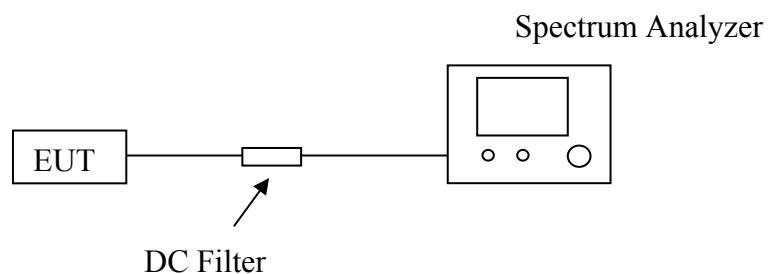
5.1.2 Limit

According to §15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.1.3 Test Procedure

The transmitter output is connected to the Power Meter.

5.1.4 Test Results


Channel	Frequency (MHz)	Output Power (dBm, Peak)	Output Power (mW)	Limit (mW)	Result
GFSK	2412	-11.765	0.07	125	Pass
	2440	-12.168	0.06	125	Pass
	2476	-12.440	0.06	125	Pass

5.2 Frequency Separation And 20 dB Bandwidth

5.2.1 Limit

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

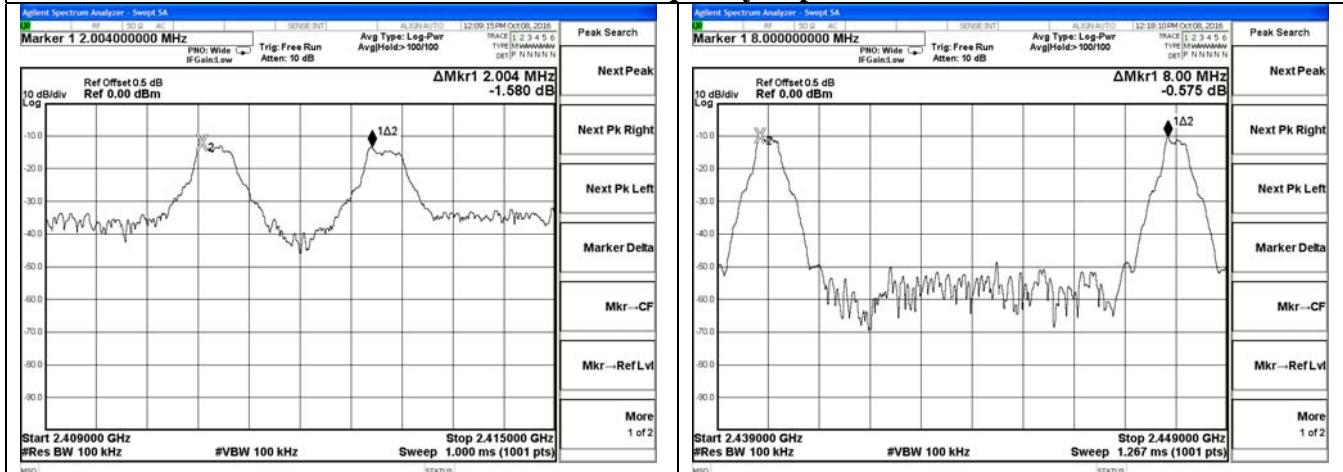
5.2.2 Block Diagram of Test Setup

5.2.3 Test Procedure

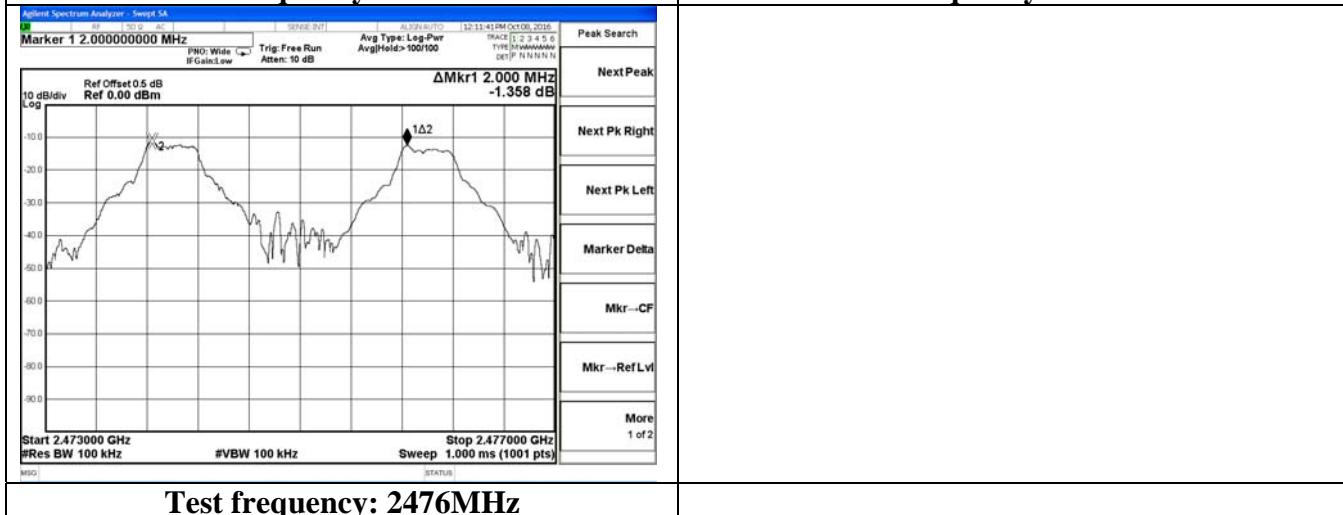
- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set to the maximum power setting and enable the EUT transmit continuously.
- D. For carrier frequency separation measurement, use the following spectrum analyzer settings:
Span = wide enough to capture the peaks of two adjacent channels;
RBW / VBW=100KHz / 300KHz; Sweep = auto; Detector function = peak;
Trace = max hold.
- E. For 20dB bandwidth measurement, use the following spectrum analyzer settings:
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW/VBW=30KHz / 100KHz; Sweep = auto; Detector function = peak;
Trace = max hold.

5.2.4 Test Results

The Measurement Result			
20dB Bandwidth Measurement			
Channel	20dB Bandwidth (MHz)	Limit	
Low	0.106	Non-specified	
Middle	0.746	Non-specified	
High	0.221	Non-specified	

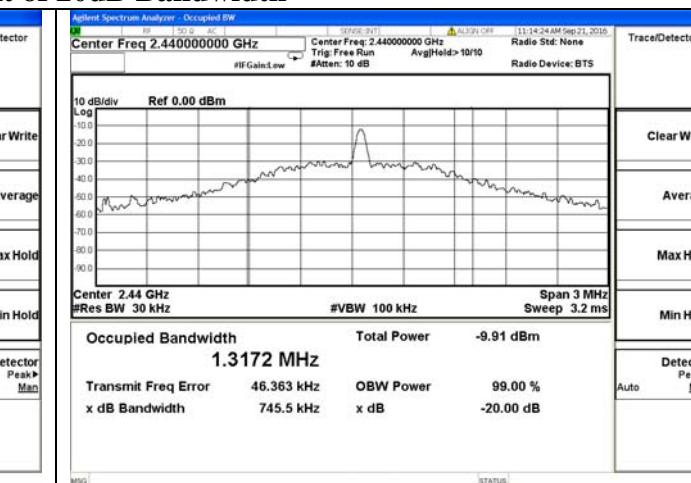
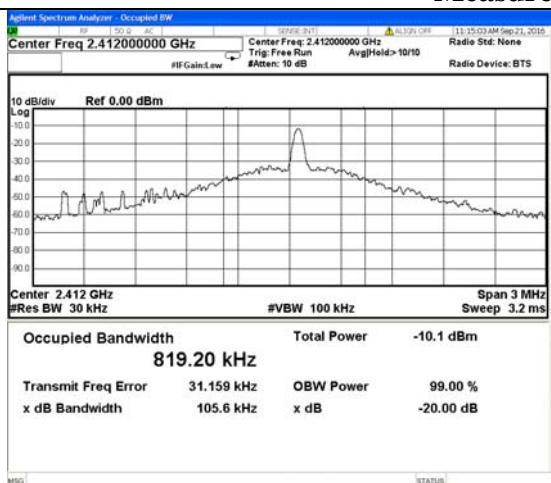


Channel Separation Measurement			
Channel	Channel Separation (MHz)	Limit (MHz)	Result
Low	2.000	0.106	Pass
Middle	8.000	0.746	Pass
High	2.000	0.221	Pass

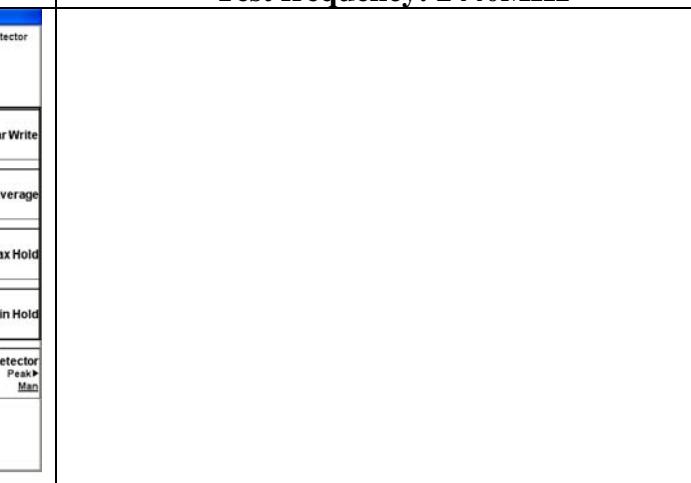
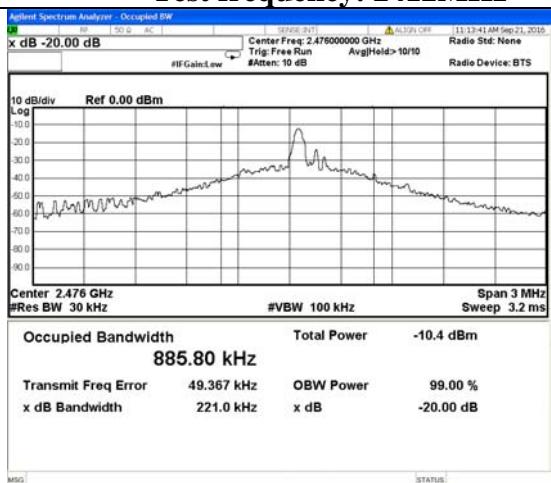

The test data refer to the following page.

For Frequency Separation Measurement, the Low, Mid and High channels were performed.

Test Plot Of Frequency Separation

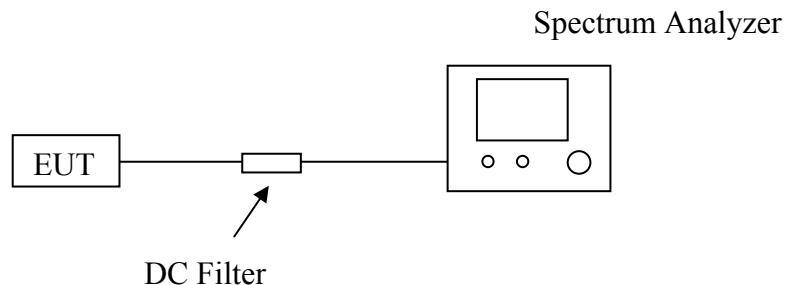
Test frequency: 2412MHz

Test frequency: 2476MHz

Measurement of 20dB Bandwidth

Test frequency: 2412MHz


Test frequency: 2476MHz

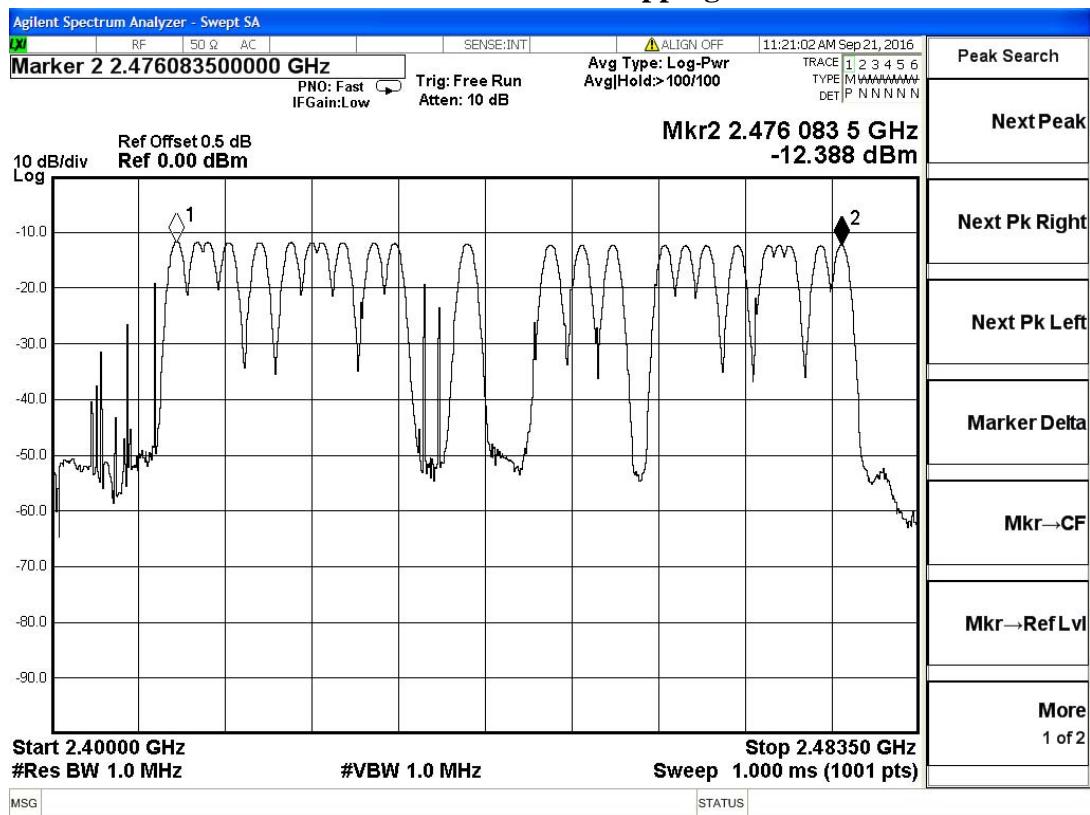
5.3 Number Of Hopping Frequency

5.3.1 Limit

According to §15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.3.2 Block Diagram of Test Setup

5.3.3 Test Procedure

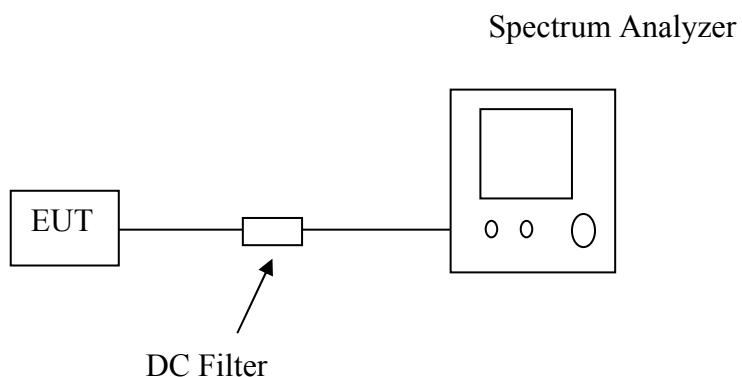

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz.
- E. Max hold, view and count how many channel in the band.

5.3.4 Test Results

Test Mode	Measurement Result (No. of Ch)	Limit (No. of Ch)	Result
Hopping(GFSK)	24	≥15	Pass

The worst test data refer to the following page.

Test Plot For Number of Hopping Channel



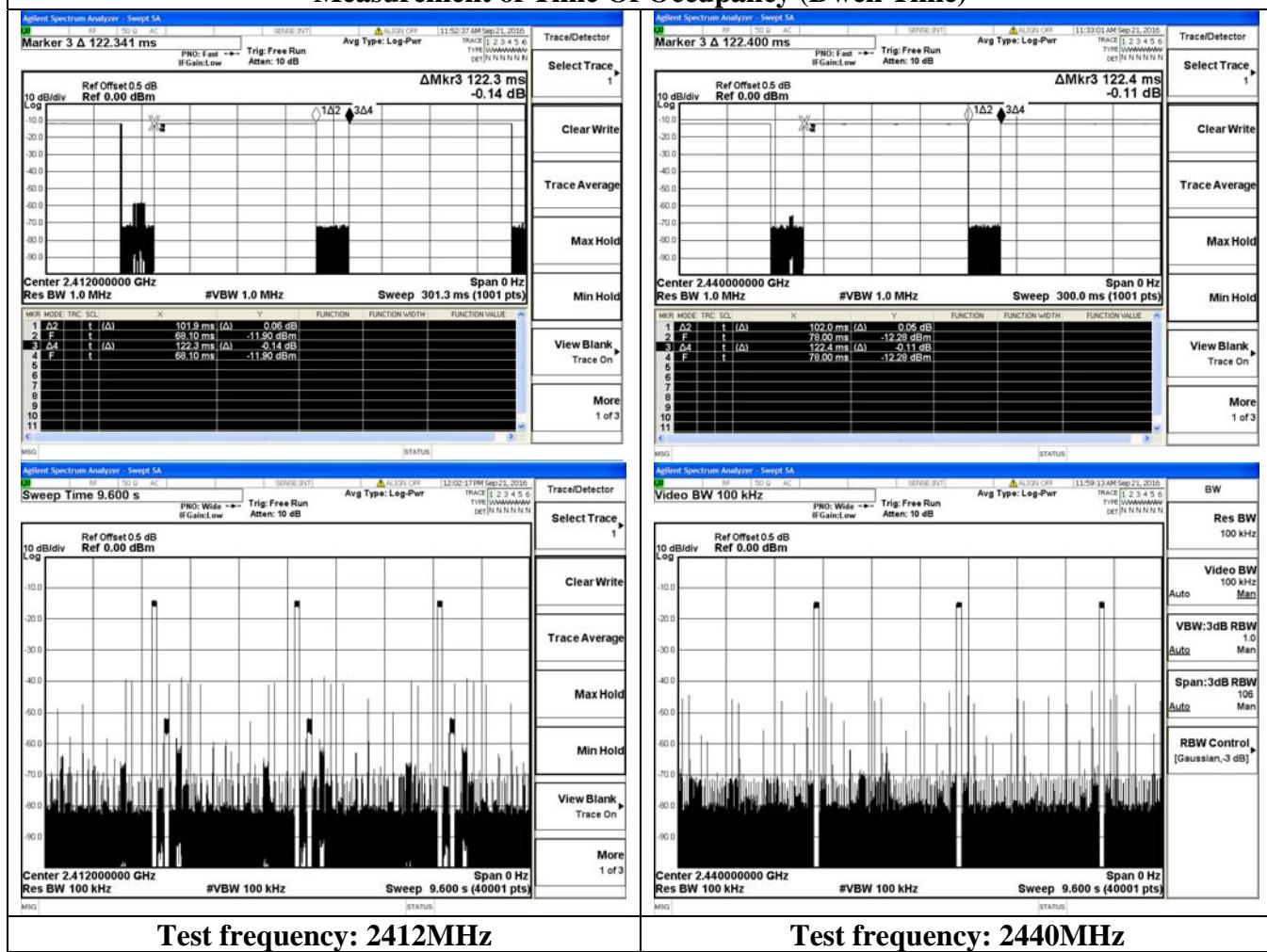
5.4 Time Of Occupancy (Dwell Time)

5.4.1 Limit

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

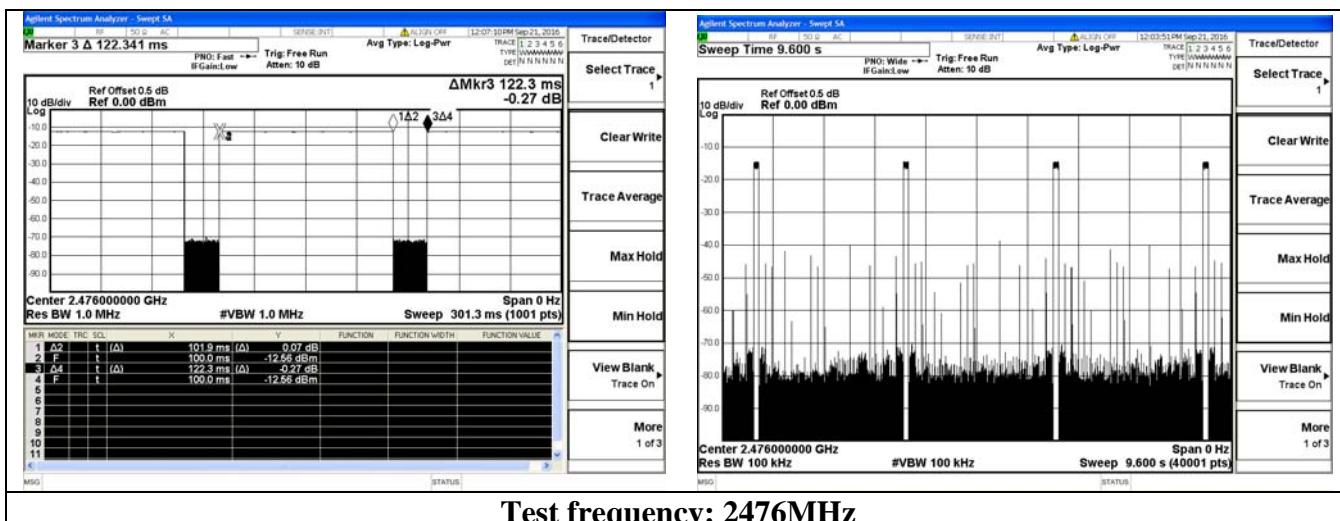
5.4.2 Block Diagram of Test Setup

5.4.3 Test Procedure


- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set center frequency of Spectrum Analyzer = operating frequency.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- E. Repeat above procedures until all frequency measured were complete.

5.4.4 Test Results

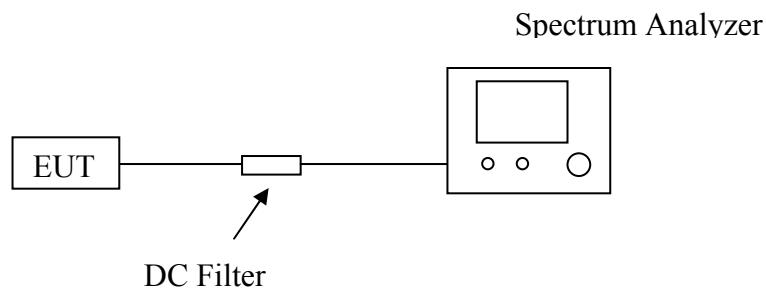
The Measurement Result				
Channel	Time of Pulse (ms)	Number of Pulses	Dwell Time (ms)	Limit (ms)
Low	0.102	3	0.306	400
Middle	0.102	3	0.306	400
High	0.102	4	0.408	400


Calculation formula: Dwell Time=Burst Length(ms)* Number of Pulses

Measurement of Time Of Occupancy (Dwell Time)

Test frequency: 2412MHz

Test frequency: 2440MHz



5.5 Conducted Spurious Emissions and Band Edges Test

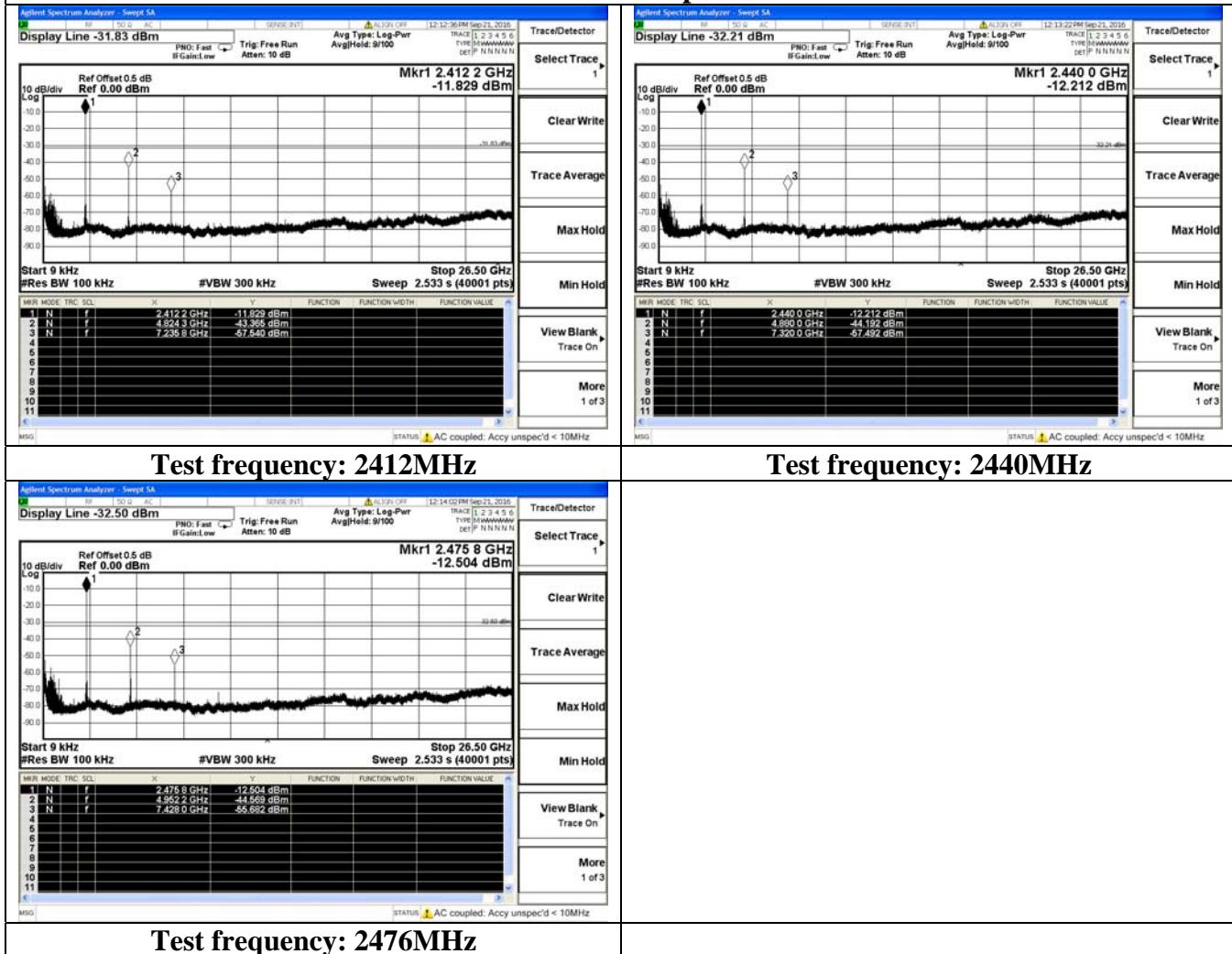
5.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.5.2 Block Diagram of Test Setup

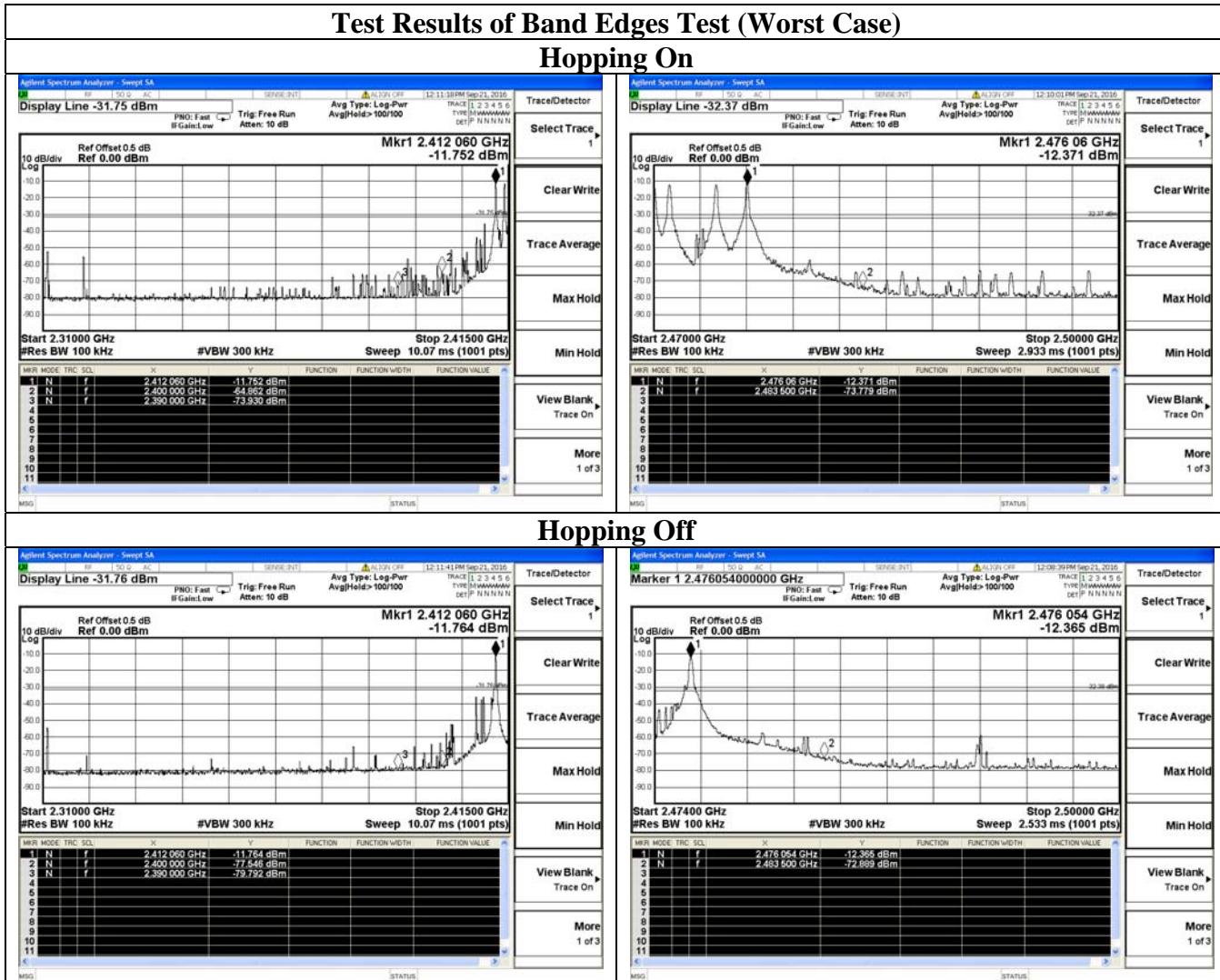
5.5.3 Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.

Measurements are made over the 9kHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels

5.5.4 Test Results of Conducted Spurious Emissions


No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

Test Results of Conducted Spurious Emissions

5.5.5 Test Results of Band Edges Test

No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

6. RADIATED MEASUREMENT

6.1 Standard Applicable

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	24000/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

6.2 Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 20log(Dwell Time/100ms) kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 20log(Dwell Time/100ms) kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

6.3 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8mm height is used.
- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premereasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 0.8 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8m height is used, which is placed on the ground plane.
- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premereasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height scan range is 1 meter to 2.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

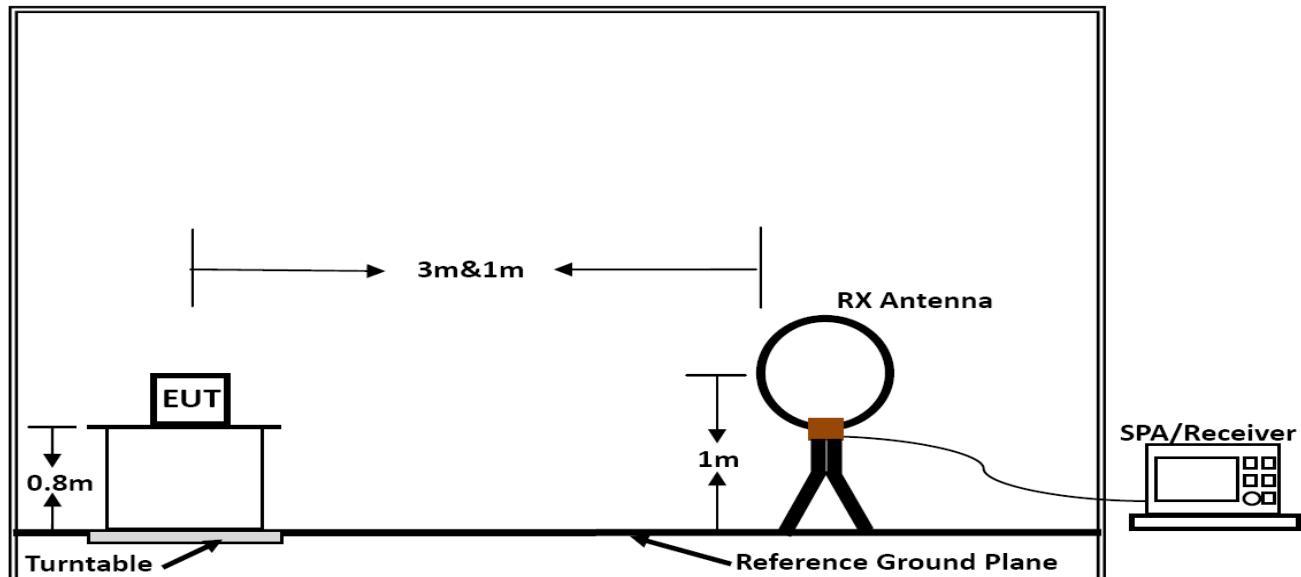
Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

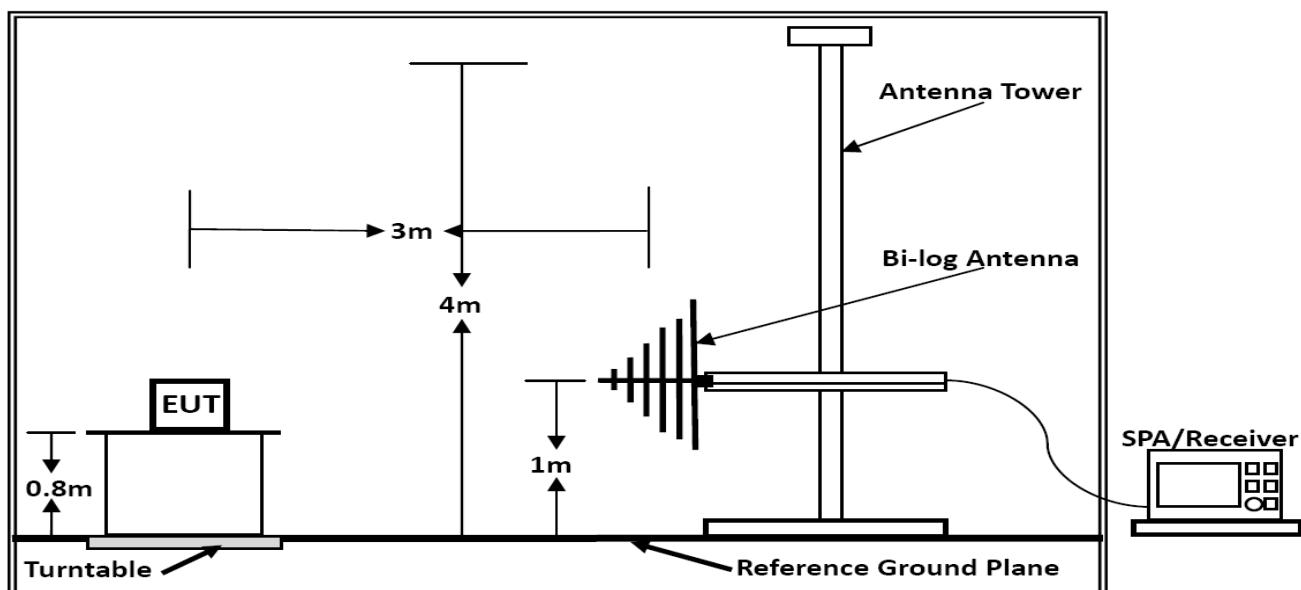
4) Sequence of testing above 18 GHz

Setup:

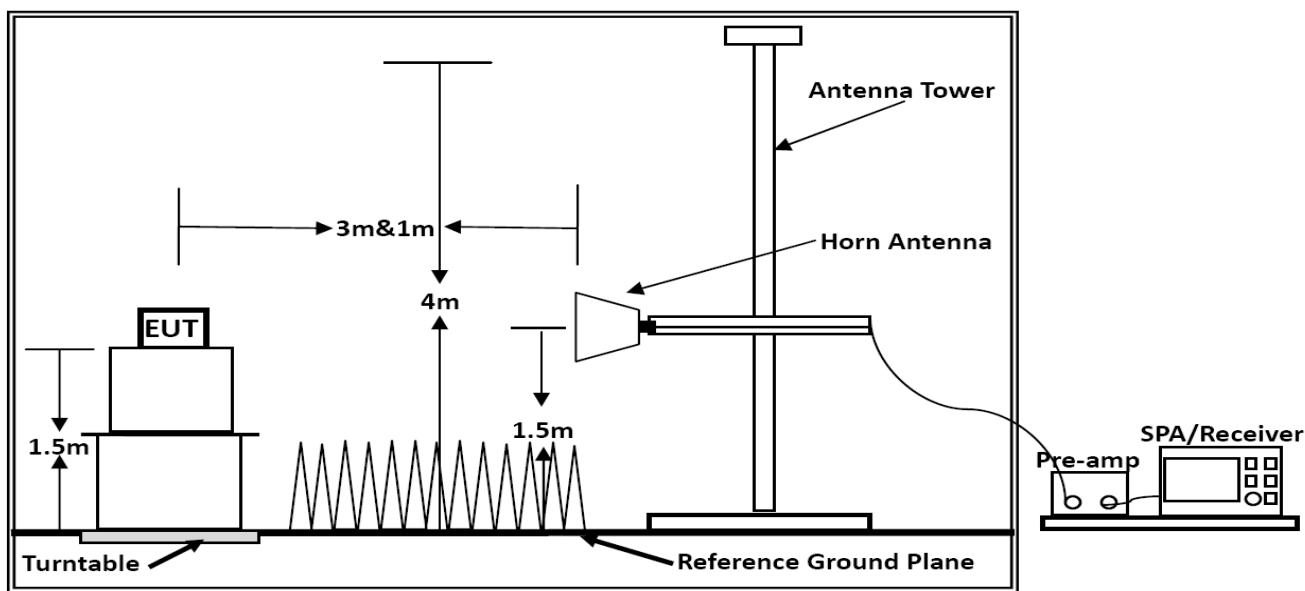
- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 1 meter.
- The EUT was set into operation.


Premereasurement:

- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


6.4 Test Setup Layout

Below 30MHz

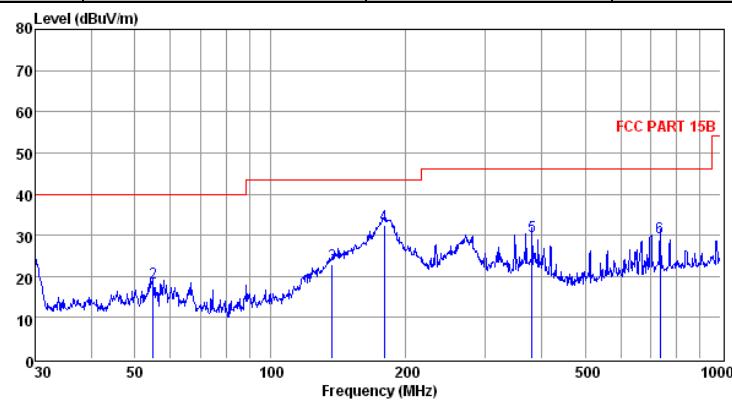
Below 1GHz

6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.6 Results for Radiated Emissions

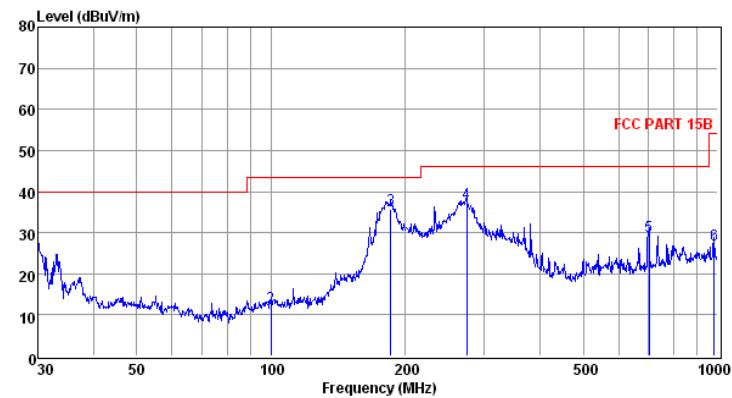
PASS.


Only record the worst test result in this report.

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

The test data please refer to following page:

Below 1GHz


Test Engineer	Kyle Yin	Configurations	TX-Low Channel
Test Date	September 21, 2016		

Env./Ins: 24°C/56%
pol: VERTICAL

Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	30.00	10.09	0.39	12.33	22.81	40.00	-17.19 QP
2	54.83	5.09	0.46	13.03	18.58	40.00	-21.42 QP
3	136.94	13.65	0.70	8.42	22.77	43.50	-20.73 QP
4	178.76	21.93	0.89	9.59	32.41	43.50	-11.09 QP
5	381.25	14.06	1.18	14.62	29.86	46.00	-16.14 QP
6	734.49	8.60	1.74	19.24	29.58	46.00	-16.42 QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the official limit are not reported

Env./Ins: 24°C/56%
pol: HORIZONTAL

Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	30.00	13.16	0.39	12.33	25.88	40.00	-14.12 QP
2	99.88	-1.99	0.60	13.15	11.76	43.50	-31.74 QP
3	185.14	24.96	0.70	10.13	35.79	43.50	-7.71 QP
4	274.19	23.59	1.04	12.49	37.12	46.00	-8.88 QP
5	701.76	8.74	1.70	18.83	29.27	46.00	-16.73 QP
6	982.62	3.43	1.86	21.63	26.92	54.00	-27.08 QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the official limit are not reported

***Note:

Pre-scan all mode and recorded the worst case results in this report (TX-Low Channel).
Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Above 1GHz

The worst test result for GFSK, Tx-Low Channel:

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.19	45.24	33.06	35.04	3.94	47.20	74	-26.80	Peak	Horizontal
4824.19	34.32	33.06	35.04	3.94	36.28	54	-17.72	Average	Horizontal
4824.14	46.35	33.06	35.04	3.94	48.31	74	-25.69	Peak	Vertical
4824.20	36.12	33.06	35.04	3.94	38.08	54	-15.92	Average	Vertical

The worst test result for GFSK, Tx-Middle Channel:

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4880.21	43.97	33.16	35.15	3.96	45.94	74	-28.06	Peak	Horizontal
4880.20	36.56	33.16	35.15	3.96	38.53	54	-15.47	Average	Horizontal
4880.14	45.29	33.16	35.15	3.96	47.26	74	-26.74	Peak	Vertical
4880.24	34.94	33.16	35.15	3.96	36.91	54	-17.09	Average	Vertical

The worst test result for GFSK, Tx-High Channel:

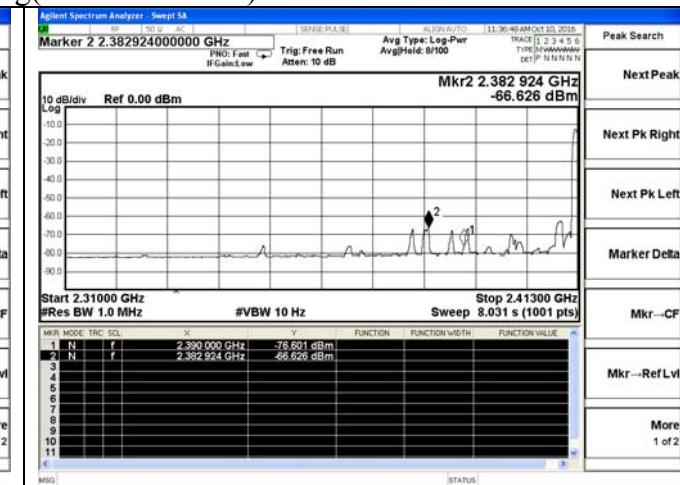
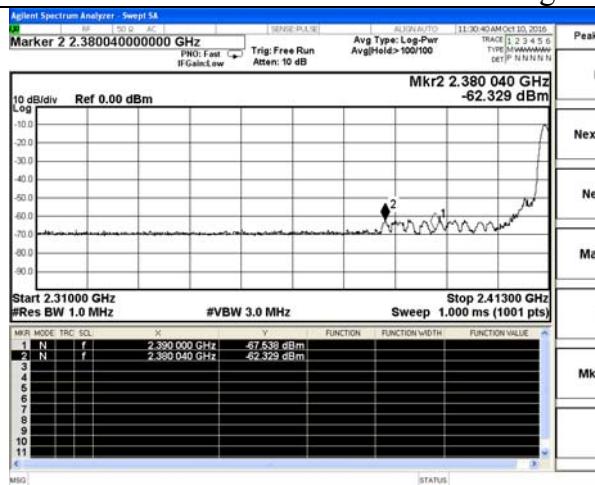
Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab.. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4952.31	43.99	33.26	35.14	3.98	46.09	74	-27.91	Peak	Horizontal
4952.38	32.21	33.26	35.14	3.98	34.31	54	-19.69	Average	Horizontal
4952.25	44.56	33.26	35.14	3.98	46.66	74	-27.34	Peak	Vertical
4952.36	36.54	33.26	35.14	3.98	38.64	54	-15.36	Average	Vertical

Notes:

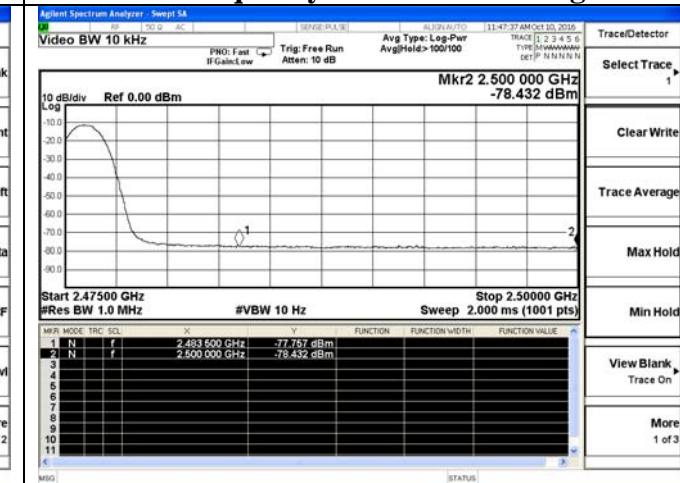
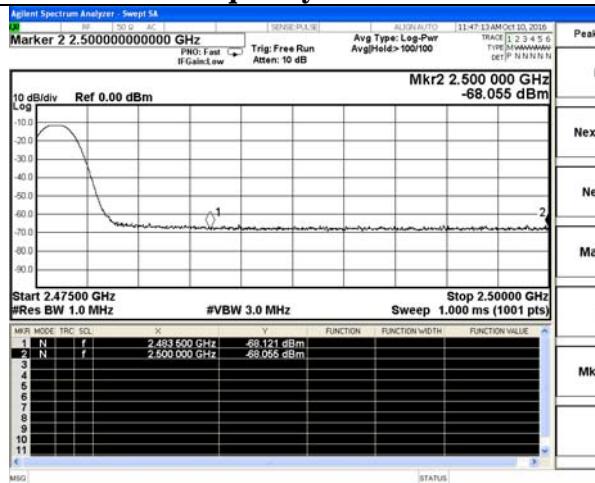
1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
3. 18~25GHz at least have 20dB margin. No recording in the test report.

6.7 Results for Band edge Testing (Conducted)

Note: Only recorded the worst test result.



Tx-2412, GFSK, Non-hopping

Freq. MHz	Reading Level dBm	Antenna Gain dBi	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
2380.04	-62.33	0.00	32.87	74	-41.13	Peak
2390.00	-67.54	0.00	27.66	74	-46.34	Peak
2382.92	-66.63	0.00	28.57	54	-25.43	Average
2390.00	-76.60	0.00	18.60	54	-35.40	Average



Tx-2476, GFSK, Non-hopping

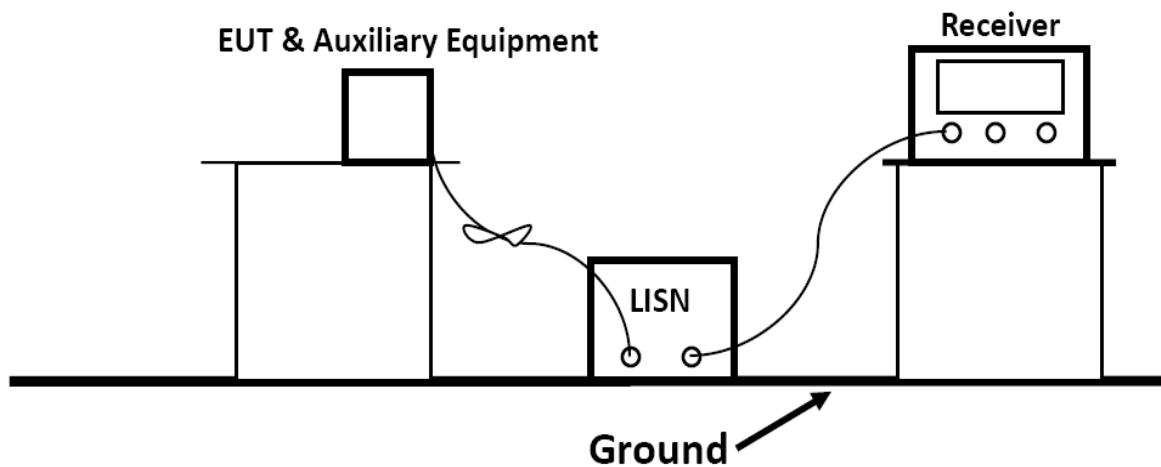
Freq. MHz	Reading Level dBm	Antenna Gain dBi	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
2483.50	-68.12	0.00	27.08	74	-46.92	Peak
2500.00	-68.06	0.00	27.14	74	-46.86	Peak
2483.50	-77.76	0.00	17.44	54	-35.56	Average
2500.00	-78.43	0.00	16.77	54	-37.23	Average

Band edge Testing(Restricted Band)

Test frequency: 2412MHz-Peak

Test frequency: 2476MHz-Peak

Test frequency: 2476MHz-Average

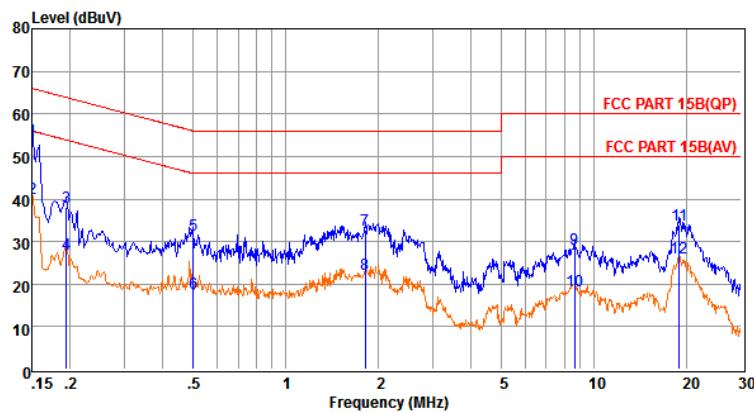

7. LINE CONDUCTED EMISSIONS

7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range(MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

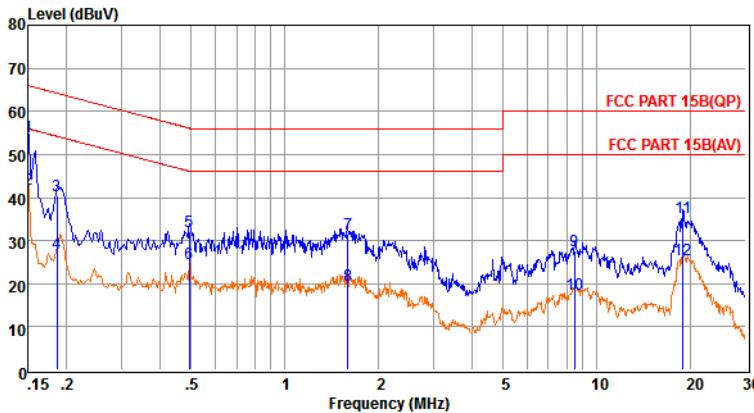
7.2 Block Diagram of Test Setup



7.3 Test Results

PASS.

Only record the worst test result in this report.


The test data please refer to following page.

Env. Ins: 24*/56%
Pol: LINE

Freq	Reading	LISN	Fac	Cab	Measured	Limit	Over	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB		
1	0.15	34.21	9.57	0.02	53.80	66.00	-12.20	QP
2	0.15	20.56	9.57	0.02	40.15	55.99	-15.84	Average
3	0.19	18.57	9.62	0.02	38.21	63.84	-25.63	QP
4	0.19	7.32	9.62	0.02	26.96	53.84	-26.88	Average
5	0.50	11.77	9.62	0.04	31.43	56.00	-24.57	QP
6	0.50	-1.72	9.62	0.04	17.94	46.00	-28.06	Average
7	1.81	12.93	9.64	0.05	32.62	56.00	-23.38	QP
8	1.81	2.62	9.64	0.05	22.31	46.00	-23.69	Average
9	8.64	8.49	9.69	0.08	28.26	60.00	-31.74	QP
10	8.64	-1.46	9.69	0.08	18.31	50.00	-31.69	Average
11	18.92	13.92	9.75	0.11	33.78	60.00	-26.22	QP
12	18.92	6.26	9.75	0.11	26.12	50.00	-23.88	Average

Remarks: 1. Measured = Reading +Cable Loss.
2. The emission levels that are 20dB below the official limit are not reported.

Env. Ins: 24*/56%
Pol: NEUTRAL

Freq	Reading	LISN	Fac	Cab	Measured	Limit	Over	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB		
1	0.15	34.36	9.70	0.02	54.08	66.00	-11.92	QP
2	0.15	22.13	9.70	0.02	41.85	55.99	-14.14	Average
3	0.19	20.84	9.62	0.02	40.48	64.20	-23.72	QP
4	0.19	7.44	9.62	0.02	27.08	54.19	-27.11	Average
5	0.49	12.33	9.62	0.04	31.99	56.10	-24.11	QP
6	0.49	4.89	9.62	0.04	24.55	46.10	-21.55	Average
7	1.59	11.75	9.63	0.05	31.43	56.00	-24.57	QP
8	1.59	0.01	9.63	0.05	19.69	46.00	-26.31	Average
9	8.50	7.98	9.71	0.08	27.77	60.00	-32.23	QP
10	8.50	-2.29	9.71	0.08	17.50	50.00	-32.50	Average
11	18.92	15.35	9.85	0.11	35.31	60.00	-24.69	QP
12	18.92	5.75	9.85	0.11	25.71	50.00	-24.29	Average

Remarks: 1. Measured = Reading +Cable Loss.
2. The emission levels that are 20dB below the official limit are not reported.

Note: Pre-scan all modes and recorded the worst case results in this report. (AC 120V/60Hz)

8. ANTENNA REQUIREMENT

8.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

8.2 Antenna Connected Construction

8.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connected to PCB board and no consideration of replacement. Please see EUT photo for details.

8.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters:

Measurement parameter	
Detector:	Peak
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Trace-Mode:	Max hold

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth devices, the GFSK mode is used.

Limits:

FCC	IC
Antenna Gain	
6.0dBi	

T _{nom}	V _{nom}	lowest channel 2412 MHz	middle channel 2440 MHz	highest channel 2476 MHz
Conducted power [dBm] Measured with GFSK modulation		-11.76	-12.17	-12.44
Radiated power [dBm] Measured with GFSK modulation		-12.65	-12.33	-14.20
Gain [dBi] Calculated		-0.89	-0.16	-1.77
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)	

Result: -/-

-----THE END OF REPORT-----