

SAR TEST REPORT

File administrators Martin Ao

Test Engineer Martin Ao

Manager Dixon Hao

Morein D: XDN

STUEMO016072605210RFH Report Reference No....::

FCC ID.....:: 2AJTUS550

Compiled by

Supervised by

(position+printed name+signature)..:

(position+printed name+signature)..:

Approved by

(position+printed name+signature)..:

Date of issue....: Aug 26, 2016

Representative Laboratory Name .:

Address....:

The Testing and Technology Center for Industrial Testing Laboratory Name **Products of Shenzhen Entry-Exit Inspection and**

Quarantine Bureau

Address....: No.149, Gongye 7th Rd. Nanshan District, Shenzhen, China

Applicant's name..... South Geo-science Technology Co., Ltd.

Room 301 South Building, No.24-26 Keyun Road, Tian He Address....:

District, Guangzhou, China

Test specification:

ANSI C95.1-1999 Standard:

47CFR §2.1093

Test item description: High precision industrial grade GNSS receiver pad

Trade Mark: SOUTH, SANDING, KOLIDA, RUIDE, TIANYU, TEXCEL

Manufacturer..... Guangzhou South Satellite Navigation Co., Ltd.

Model/Type reference.....: S550

S510, S520, S540, S560, D40, D50, D60, K40, K50, K60 Listed Models:

Operation Frequency..... GSM 850/PCS1900,WCDMA Band V/Band II,WLAN2.4G,Bluetooth

GSM(GMSK,8PSK),WCDMA/HSDPA/HSUPA(QPSK), Modulation Type WIFI(DSSS,OFDM),Bluetooth(GFSK,8DPSK,Π/4DQPSK),

Hardware version: LONGZHU MB V1.4

Software version: 1.00.151118.M55100

Rating: DC 3.70V

Result....: **PASS**

TEST REPORT

Test Report No. :	STUEMO016072605210RFH	Aug 26, 2016
	310EMO010072003210RFH	Date of issue

Equipment under Test : High precision industrial grade GNSS receiver pad

Model /Type : S550

Listed Models : S510, S520, S540, S560, D40, D50, D60, K40, K50, K60

Applicant : South Geo-science Technology Co., Ltd.

Address : Room 301 South Building, No.24-26 Keyun Road, Tian He

District, Guangzhou, China

Manufacturer : Guangzhou South Satellite Navigation Co., Ltd.

Address : Layer 2-3, N0.52-54 Jian Zhong Road, Tian He District,

Guangzhou, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
V1.0	2016-08-26	Initial Issue	

Contents

2.1. General Remarks 7 2.2. Product Description 7 2.3. Statement of Compliance 8 3. TEST ENVIRONMENT 3.1. Address of the test laboratory 9 3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.2. DASY4 E-field Probe System 12 4.3. Phantoms 13 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue pulselectric Parameters for Head and Body Phantoms 18 4.8. Tissue equivalent liquid properties 18 4.9. System Check 19 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 22 5.1. C		6
2.1. General Remarks 7 2.2. Product Description 7 2.3. Statement of Compliance 8 3. TEST ENVIRONMENT 3.1. Address of the test laboratory 9 3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.2. DASY4 E-field Probe System 12 4.3. Phantoms 12 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue equivalent liquid properties 18 4.8. Tissue equivalent liquid properties 18 4.9. System Check 15 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 2 5.1. Conducted Power Results<		
2.2. Product Description 7 2.3. Statement of Compliance 8 3. TEST ENVIRONMENT 3.1. Address of the test laboratory 9 3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.2. DASY4 E-field Probe System 12 4.3. Phantoms 13 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue Delectric Parameters for Head and Body Phantoms 16 4.8. Tissue equivalent liquid properties 18 4.9. System Check 19 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 2 5.1. Conducted Power Results 22 5.2.		7
2.2. Product Description 7 2.3. Statement of Compliance 8 3. TEST ENVIRONMENT 3.1. Address of the test laboratory 9 3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.2. DASY4 E-field Probe System 12 4.3. Phantoms 13 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue Delectric Parameters for Head and Body Phantoms 18 4.8. Tissue equivalent liquid properties 18 4.9. System Check 19 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 2 5.1. Conducted Power Results 22 5.2.		
2.3. Statement of Compliance 8 3. TEST ENVIRONMENT 3.1. Address of the test laboratory 9 3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.1. SAR Measurement Set-up 12 4.3. Phantoms 12 4.3. Phantoms 13 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 16 4.8. Tissue equivalent liquid properties 18 4.9. System Check 15 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5.1. Conducted Power Results 22 5.2. Transmit Antennas and SAR Measurement Position 31 5.3. <td></td> <td></td>		
3. TEST ENVIRONMENT 3.1. Address of the test laboratory 3.2. Environmental conditions 3.3. SAR Limits 3.4. Equipments Used during the Test 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 4.1. SAR Measurement Set-up 4.2. DASY4 E-field Probe System 4.3. Phantoms 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 35.8 Measurement Uncertainty (300MHz-3GHz) 36.8		
3.1. Address of the test laboratory 9 3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.2. DASY4 E-field Probe System 12 4.3. Phantoms 13 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 18 4.8. Tissue equivalent liquid properties 18 4.9. System Check 19 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 2 5.1. Conducted Power Results 22 5.2. Transmit Antennas and SAR Measurement Position 31 5.3. Standalone SAR Test Exclusion Considerations and Estimated SAR 32 5.5.		8
3.2. Environmental conditions 3.3. SAR Limits 9.3.4. Equipments Used during the Test 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1. SAR Measurement Set-up 4.1. SAR Measurement Set-up 4.2. DASY4 E-field Probe System 4.3. Phantoms 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 21. TEST CONDITIONS AND RESULTS 22. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 32. Standalone SAR Test Exclusion Considerations and Estimated SAR 32. SAR Measurement Results 33. SAR Measurement Results 34. Repeat SAR Measurement Results 5. SAR Measurement Results 5. SAR Measurement Results 5. Simultaneous TX SAR Considerations 5. Simultaneous TX SAR Considerations 5. Measurement Uncertainty (300MHz-3GHz)		9
3.2. Environmental conditions 9 3.3. SAR Limits 9 3.4. Equipments Used during the Test 10 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 1 4.1. SAR Measurement Set-up 11 4.2. DASY4 E-field Probe System 12 4.3. Phantoms 13 4.4. Device Holder 14 4.5. Scanning Procedure 14 4.6. Data Storage and Evaluation 16 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 18 4.8. Tissue equivalent liquid properties 18 4.9. System Check 19 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 2 5.1. Conducted Power Results 22 5.2. Transmit Antennas and SAR Measurement Position 31 5.3. Standalone SAR Test Exclusion Considerations 32 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 32 5		9
3.4. Equipments Used during the Test 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 4.1. SAR Measurement Set-up 4.2. DASY4 E-field Probe System 4.3. Phantoms 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5. Transmit Antennas and SAR Measurement Position 5. Standalone SAR Test Exclusion Considerations 5. SAR Measurement Results 5. SAR Measurement Results 5. Repeat SAR Measurement Results 5. Signultaneous TX SAR Considerations 5. Signultaneous TX SAR Considerations 5. Signultaneous TX SAR Considerations 5. Measurement Uncertainty (300MHz-3GHz)		
4. SAR MEASUREMENTS SYSTEM CONFIGURATION 4.1. SAR Measurement Set-up 4.2. DASY4 E-field Probe System 4.3. Phantoms 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz)		9
4.1. SAR Measurement Set-up 4.2. DASY4 E-field Probe System 4.3. Phantoms 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 4.12. TEST CONDITIONS AND RESULTS 4.13. Tissue Dielectric Parameters for Head and Body Phantoms 4.4. Tissue equivalent liquid properties 4.5. System Check 4.6. Tissue Power Results 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 4.11. Power Reduction 5. Test Conducted Power Results 5. Transmit Antennas and SAR Measurement Position 5. Standalone SAR Test Exclusion Considerations 5. Standalone SAR Test Exclusion Considerations and Estimated SAR 5. SAR Measurement Results 5. SAR Measurement Results 5. SAR Measurement Results 5. Simultaneous TX SAR Considerations 5. Measurement Uncertainty (300MHz-3GHz)		10
4.2. DASY4 E-field Probe System 4.3. Phantoms 13 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 18 4.8. Tissue equivalent liquid properties 18 4.9. System Check 19 4.10. SAR measurement procedure 20 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 22 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 32 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 35	STEM CONFIGURATION	11
4.3. Phantoms 4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 4.11. Power Reduction 4.12. TEST CONDITIONS AND RESULTS 4.13. Standalone SAR Test Exclusion Considerations 4.4. Standalone SAR Test Exclusion Considerations 4.5. SAR Measurement Results 4.6. Data Storage and Evaluation and Estimated SAR 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 4.12. Test Conditions 4.13. Test Conditions 4.14. Test Conditions 4.15. Standalone SAR Test Exclusion Considerations 4.6. Standalone SAR Test Exclusion Considerations and Estimated SAR 4.7. Simultaneous TX SAR Considerations 4.8. Tissue device Head and Body Phantoms 4.9. Tissue		11
4.4. Device Holder 4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 4.11. Power Reduction 4.12. TEST CONDITIONS AND RESULTS 4.13. Conducted Power Results 5.1 TEST CONDITIONS AND RESULTS 4.14. Conducted Power Results 5.15. Standalone SAR Test Exclusion Considerations 5.16. Standalone SAR Test Exclusion Considerations 5.17. Simultaneous TX SAR Considerations 5.18. Measurement Uncertainty (300MHz-3GHz) 5.19. Measurement Uncertainty (300MHz-3GHz) 5.19. Measurement Hesults 5.19. Measurement Uncertainty (300MHz-3GHz) 5.19. Measurement Uncertainty (300MHz-3GHz)		12
4.5. Scanning Procedure 4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 35		13
4.6. Data Storage and Evaluation 4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 2 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 36		14
4.7. Tissue Dielectric Parameters for Head and Body Phantoms 4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 5.9 Sandalone Sar Test Exclusion Sar		
4.8. Tissue equivalent liquid properties 4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 5.9 Test Conducted Power Results 5.10 And Test Exclusion Considerations 5.11 And Test Exclusion Considerations 5.12 And Test Exclusion Considerations 5.13 And Test Exclusion Considerations 5.14 And Test Exclusion Considerations 5.15 And Test Exclusion Considerations 5.16 And Test Exclusion Considerations 5.17 Simultaneous TX SAR Considerations 5.18 Measurement Uncertainty (300MHz-3GHz)	and and Pady Phantoms	
4.9. System Check 4.10. SAR measurement procedure 4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.		18
4.10. SAR measurement procedure 4.11. Power Reduction 21 5. TEST CONDITIONS AND RESULTS 22 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 31 5.3. Standalone SAR Test Exclusion Considerations 32 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 32 5.5. SAR Measurement Results 33 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 35 5.8. Measurement Uncertainty (300MHz-3GHz) 36	5	19
4.11. Power Reduction 5. TEST CONDITIONS AND RESULTS 5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 22 23 24 25 26 27 27 27 28 29 20 20 21 20 21 21 21 22 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20		20
5.1. Conducted Power Results 5.2. Transmit Antennas and SAR Measurement Position 5.3. Standalone SAR Test Exclusion Considerations 5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR 5.5. SAR Measurement Results 5.6. Repeat SAR Measurement Results 5.7. Simultaneous TX SAR Considerations 5.8. Measurement Uncertainty (300MHz-3GHz) 5.9 SAR Measurement Uncertainty (300MHz-3GHz)		21
5.2.Transmit Antennas and SAR Measurement Position315.3.Standalone SAR Test Exclusion Considerations325.4.Standalone SAR Test Exclusion Considerations and Estimated SAR325.5.SAR Measurement Results335.6.Repeat SAR Measurement Results345.7.Simultaneous TX SAR Considerations355.8.Measurement Uncertainty (300MHz-3GHz)35	RESULTS	22
5.3.Standalone SAR Test Exclusion Considerations325.4.Standalone SAR Test Exclusion Considerations and Estimated SAR325.5.SAR Measurement Results335.6.Repeat SAR Measurement Results345.7.Simultaneous TX SAR Considerations355.8.Measurement Uncertainty (300MHz-3GHz)35		22
5.4.Standalone SAR Test Exclusion Considerations and Estimated SAR325.5.SAR Measurement Results335.6.Repeat SAR Measurement Results345.7.Simultaneous TX SAR Considerations355.8.Measurement Uncertainty (300MHz-3GHz)35	urement Position	31
5.5.SAR Measurement Results335.6.Repeat SAR Measurement Results345.7.Simultaneous TX SAR Considerations355.8.Measurement Uncertainty (300MHz-3GHz)35		32
5.6.Repeat SAR Measurement Results345.7.Simultaneous TX SAR Considerations355.8.Measurement Uncertainty (300MHz-3GHz)35	onsiderations and Estimated SA	32
5.7. Simultaneous TX SAR Considerations 35 5.8. Measurement Uncertainty (300MHz-3GHz) 35		33
5.8. Measurement Uncertainty (300MHz-3GHz) 35		
	1-3G112)	36
		38
6. CALIBRATION CERTIFICATE 4	ATE	42
6.1. Probe Calibration Certificate 42		42
	te	53
6.3. D1900V2 Dipole Calibration Ceriticate 61		61
6.4. DAE4 Calibration Certificate 70		70
7. LIQUID DEPTH 7		73

<u>8.</u>

Page 5 of 75 Report No.: STUEMO016072605210RFH

TEST SETUP PHOTOS 74

1. TEST STANDARDS

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation:Portable Devices

<u>KDB447498 D01 General RF Exposure Guidance v06 :</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04, Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

<u>KDB248227 D01 802.11 Wi-Fi SAR v02r02:</u> SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS <u>kDB616217 D04 SAR for laptop and tablets v01r02:</u> SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers

Page 7 of 75

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Aug.22, 2016
Testing commenced on	:	Aug.24, 2016
Testing concluded on	:	Aug.25, 2016

2.2. Product Description

The Guangzhou SOUTH Surveying & Mapping Instrument Co., Ltd.'s Model: S550or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description	
Name of EUT	High precision industrial grade GNSS receiver pad
Model Number S550, S510, S520, S540, S560, D40,	
Woder Namber	D50, D60, K40, K50, K60
	GMSK for GSM/GPRS and 8PSK ;QPSK for
Modilation Type	WCDMA;DSSS/OFDM for WIFI2.4G;
	GFSK/8DPSK/Π/4DQPSK for Bluetooth
Antenna Type	Internal
Device category	Portable Device
Exposure category	General population/uncontrolled environment
EUT Type	Production Unit
Rated Vlotage	DC 3.70 Battery
For more information see the following data	asheet

Technical Characteristics		
2G		
Support Networks	GSM, GPRS	
Support Band	GSM850/PCS1900	
Fraguenov	GSM850: 824.2~848.8MHz	
Frequency	GSM1900: 1850.2~1909.8MHz	
Type of Modulation	GMSK, 8PSK	
Antenna Type	Internal Antenna	
GPRS/EDGE Class	Class 12	
GSM Release Version	R99	
GPRS operation mode	Class B	
DTM Mode	Not Supported	
3G		
Support Networks	WCDMA RMC12.2K,HSDPA,HSUPA	
Support Band	WCDMA Band II/V	
Frequency Range	WCDMA Band V: 826.4~846.6MHz	
	WCDMA Band II: 1852.4~1907.6MHz	
Type of Modulation	QPSK	
HSDPA UE Category	10	
HSUPA UE Category	6	
Antenna Type	Internal Antenna	
WiFi		
Support Standards	802.11b, 802.11g, 802.11n	
Frequency Range	2412-2462MHz for 11b/g/n(HT20)	
Type of Modulation	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM	
Data Rate	1-11Mbps, 6-54Mbps, up to 78Mbps	
Quantity of Channels	11 for 11b/g/n(HT20)	
Channel Separation	5MHz	
Antenna Type	PIFA Antenna	
Bluetooth		
Bluetooth Version	V2.1+EDR	

Page 8 of 75

Report No.: \$	STUEMO0160726052	210RFH
----------------	------------------	--------

Frequency Range	2402-2480MHz
Data Rate	1Mbps, 2Mbps, 3Mbps
Modulation	GFSK, π/4 QDPSK, 8DPSK
Quantity of Channels	79/40
Channel Separation	1MHz
Antenna Type	PIFA Antenna

2.3. Statement of Compliance

The maximum of results of SAR found during testing are follows:

<Highest Reported standalone SAR Summary>

Classment Class	Distance	Frequency Band	Body (Report 1g SAR(W/Kg)	Highest simultaneous Transmission 1g SAR(W/Kg)
		GSM850	1.001	
PCE	Omm	GSM1900	1.062	1.396
PCE	0mm	WCDMA Band V	0.854	1.390
		WCDMA Band II	1.039	
Note: WWAN can transmit simultaneously with bluetooth.				

Note: WWAN can transmit simultaneously with bluetooth. WIFI cannot transmit simultaneously with bluetooth. WWAN can transmit simultaneously with bluetooth

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau

No.149, Gongye 7th Rd. Nanshan District, Shenzhen, China

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /Uncontrolled	(Occupational /Controlled		
	Exposure Environment)	Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.4. Equipments Used during the Test

			Serial	Calik	oration
Test Equipment	Manufacturer	Type/Model	Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	760	2016/06/24	1
E-field Probe	SPEAG	EX3DV4	3836	2016/07/07	1
System Validation Dipole D900V2	SPEAG	D900V2	1d086	2016/07/01	3
System Validation Dipole 1900V2	SPEAG	D1900V2	5d194	2015/01/07	3
Network analyzer	Agilent	8753E	US37390562	2016/03/15	1
Universal Radio Communication Tester	Aglient	E5515C	GB46311339	2015/10/20	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	1
Dual Directional Coupler	Agilent	778D	50127	2015/10/20	1
Dual Directional Coupler	Agilent	772D	50348	2015/10/20	1
Attenuator	PE	PE7005-10	E048	2015/10/20	1
Attenuator	PE	PE7005-3	E049	2015/10/20	1
Attenuator	Woken	WK0602-XX	E050	2015/10/20	1
Power meter	Agilent	E4417A	GB41292254	2015/10/20	1
Power Meter	Agilent	E7356A	GB54762536	2015/10/20	1
Power sensor	Agilent	8481H	MY41095360	2015/10/20	1
Power Sensor	Agilent	E9327A	Us40441788	2015/10/18	1
Signal generator	IFR	2032	203002/100	2015/10/20	1
Amplifier	AR	75A250	302205	2015/10/20	1

Report No.: STUEMO016072605210RFH

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated values;
 - c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

Report No.: STUEMO016072605210RFH

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

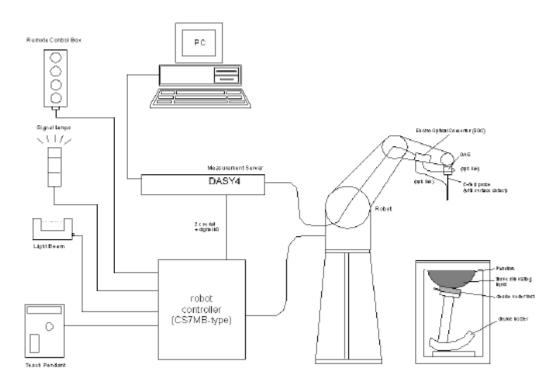
The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.

The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY4 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.


The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

Page 12 of 75 Report No.: STUEMO016072605210RFH

4.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 10 MHz to 4 GHz;

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

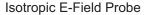
Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g;

Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)

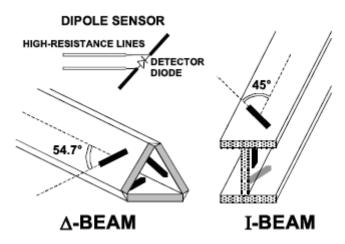

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI



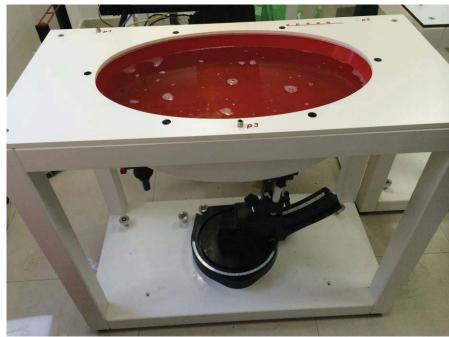
The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.



SAM Twin Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A

cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and

validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	≤3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Page 16 of 75 Report No.: STUEMO016072605210RFH

Maximum 700m scan	enatial rec	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm	$3-4 \text{ GHz: } \leq 5 \text{ mm}^*$
Waximum 200m scan	spatiai res	oration. Δx_{200m} , Δy_{200m}	$2-3 \text{ GHz:} \leq 5 \text{ mm}^*$	$4-6 \text{ GHz:} \le 4 \text{ mm}^*$
				$3-4$ GHz: ≤ 4 mm
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$4-5$ GHz: ≤ 3 mm
				$5-6 \text{ GHz: } \leq 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	om(n-1) mm
Minimum zoom scan volume	X, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages. **Data Evaluation**

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi Device parameters: - Frequency f cf

- Crest factor Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field (DASY parameter)

dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated: $E-\mathrm{fieldprobes}: \qquad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

 $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ $(\mathbf{i} = \mathbf{x}, \mathbf{y}, \mathbf{z})$ $(\mathbf{i} = \mathbf{x}, \mathbf{y}, \mathbf{z})$ H- fieldprobes :

= compensated signal of channel i With = sensor sensitivity of channel i Normi

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

= sensor sensitivity factors for H-field probes

= carrier frequency [GHz] f

Εi = electric field strength of channel i in V/m Ηi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

> Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

Page 18 of 75

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

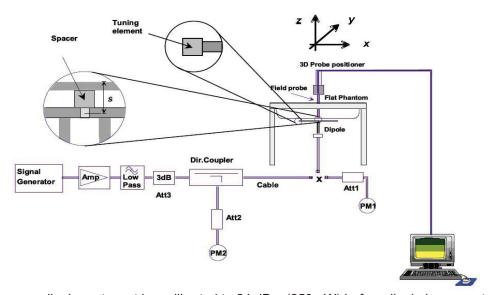
Ingredient	835MHz		1900MHz		1750	1750 MHz		MHz	2600MHz	
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	41.45	52.5	55.242	69.91	55.782	69.82	62.7	73.2	62.3	72.6
Salt	1.45	1.40	0.306	0.13	0.401	0.12	0.50	0.10	0.20	0.10
Sugar	56	45.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Preventol	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.452	29.96	43.817	30.06	36.8	26.7	37.5	27.3

Target Frequency	Н	ead	В	ody
(MHz)	$\epsilon_{ m r}$	σ(S/m)	$\epsilon_{ m r}$	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid

Tissue	Measured	Target [*]	Tissue		Measure	Liquid			
Type	Frequency (MHz)	$\epsilon_{ m r}$	σ	ε _r	Dev.	σ	Dev.	Temp.	Test Data
900B	835	0.97	55.2	0.96	-1.0%	54.7	-0.9%	22.1	8/24/2016
1900B	1900	1.52	53.3	1.51	-0.7%	53.5	0.4%	22.2	8/25/2016



4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Photo of Dipole Setup

System Check in Body Tissue Simulating Liquid

Frequency	Test Date	_	Dielectric Parameters		Measured Normalized Tar		1W Target SAR _{1g}	Limit (±10%
		ϵ_{r}	σ(s/m)	(℃)		(W/Kg)		Deviation)
900MHz	2015/08/24	0.96	54.7	22.1	2.55	10.2	10.9	-6.4%
1900MHz	2015/08/25	1.51	53.5	22.2	10.4	41.6	40.1	3.7%

Note:

- 1. The graph results see system check.
- 2. Target Values used derive from the calibration certificate

4.10. SAR measurement procedure

The procedure for assessing the average SAR value consists of the following steps:

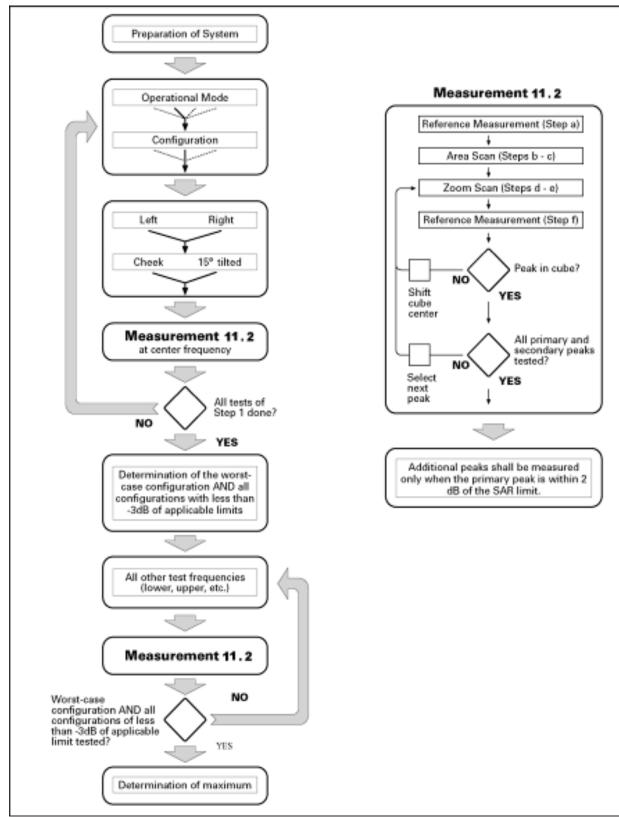
Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Report No.: STUEMO016072605210RFH

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.


Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 7 x 7 x 7 points (5mmE545mmE545mm) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

Power Drift Measurement

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement.

Block diagram of the tests to be performed

4.11. Power Reduction

The product without any power reduction.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No.: STUEMO016072605210RFH

3. For Body SAR testing, GPRS / EDGE should be evaluated, therefore the EUT was set in GPRS (4 Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Conducted Power Measurement Results(GSM 850/1900)

	Conducted Power Measurement Results (GSM 850/1900)										
		Burst Co	nducted pov	ver (dBm)		Aver	age power (d	dBm)			
GSM	l 850	Chann	el/Frequenc	y(MHz)	1	Chann	el/Frequency	y(MHz)			
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8			
GS	SM	32.54	32.76	32.67	-9.03dB	23.51	23.73	23.64			
	1TX slot	32.46	32.20	32.21	-9.03dB	23.43	23.17	23.18			
GPRS	2TX slot	30.34	30.34	30.35	-6.02dB	24.32	24.32	24.33			
(GMSK)	3TX slot	28.42	28.39	28.34	-4.26dB	24.16	24.13	24.08			
	4TX slot	27.23	27.23	27.40	-3.01dB	24.22	24.22	24.39			
	/	/	/	/	/	/	/	/			
EGPRS	/	/	/	/	/	/	/	/			
(8PSK)	/	/	/	/	/	/	/	/			
	/	/	/	/	/	/	/	/			
		Burst Co	nducted pov	ver (dBm)		Aver	age power (d	dRm)			
				701 (G.D.III)		71101	ago pomo: (t	aDiii)			
GSM	1000	Chann	el/Frequenc		,	Chann	el/Frequency	y(MHz)			
GSM	1900		.		1						
GSM	1900	Chann	el/Frequenc	y(MHz)	1	Chann	el/Frequency	y(MHz)			
	1900	Chann 512/	el/Frequenc 661/	y(MHz) 810/	-9.03dB	Chann 512/	el/Frequency 661/	y(MHz) 810/			
		Chann 512/ 1850.2	el/Frequenc 661/ 1880	y(MHz) 810/ 1909.8	-9.03dB -9.03dB	Chann 512/ 1850.2	el/Frequency 661/ 1880	y(MHz) 810/ 1909.8			
	SM	Chann 512/ 1850.2 29.64	el/Frequenc 661/ 1880 29.85	y(MHz) 810/ 1909.8 29.70		Chann 512/ 1850.2 20.61	el/Frequency 661/ 1880 20.82	y(MHz) 810/ 1909.8 20.67			
GS	SM 1TX slot	Chann 512/ 1850.2 29.64 29.23	el/Frequenc 661/ 1880 29.85 29.52	y(MHz) 810/ 1909.8 29.70 29.73	-9.03dB	Chann 512/ 1850.2 20.61 20.20	el/Frequenc 661/ 1880 20.82 20.49	y(MHz) 810/ 1909.8 20.67 20.70			
GS GPRS	SM 1TX slot 2TX slot	Chann 512/ 1850.2 29.64 29.23 27.39	el/Frequenc 661/ 1880 29.85 29.52 27.30	y(MHz) 810/ 1909.8 29.70 29.73 27.20	-9.03dB -6.02dB	Chann 512/ 1850.2 20.61 20.20 21.37	el/Frequenc 661/ 1880 20.82 20.49 21.28	810/ 1909.8 20.67 20.70 21.18			
GS GPRS	M 1TX slot 2TX slot 3TX slot	Chann 512/ 1850.2 29.64 29.23 27.39 26.30	el/Frequenc 661/ 1880 29.85 29.52 27.30 26.44	y(MHz) 810/ 1909.8 29.70 29.73 27.20 26.31	-9.03dB -6.02dB -4.26dB	Chann 512/ 1850.2 20.61 20.20 21.37 22.04	el/Frequency 661/ 1880 20.82 20.49 21.28 22.18	810/ 1909.8 20.67 20.70 21.18 22.05			
GS GPRS	M 1TX slot 2TX slot 3TX slot	Chann 512/ 1850.2 29.64 29.23 27.39 26.30	el/Frequenc 661/ 1880 29.85 29.52 27.30 26.44	y(MHz) 810/ 1909.8 29.70 29.73 27.20 26.31	-9.03dB -6.02dB -4.26dB	Chann 512/ 1850.2 20.61 20.20 21.37 22.04	el/Frequency 661/ 1880 20.82 20.49 21.28 22.18	810/ 1909.8 20.67 20.70 21.18 22.05			
GPRS (GMSK)	M 1TX slot 2TX slot 3TX slot	Chann 512/ 1850.2 29.64 29.23 27.39 26.30	el/Frequenc 661/ 1880 29.85 29.52 27.30 26.44	y(MHz) 810/ 1909.8 29.70 29.73 27.20 26.31	-9.03dB -6.02dB -4.26dB	Chann 512/ 1850.2 20.61 20.20 21.37 22.04	el/Frequency 661/ 1880 20.82 20.49 21.28 22.18	810/ 1909.8 20.67 20.70 21.18 22.05			

Notes:

1) Division Factors

To average the power, the division factor is as follows:

- 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
- 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB
- 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
- 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
- According to the conducted power as above, the GPRS measurements are performed with 4Txslots for GPRS850 and GPRS1900.

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)

Page 23 of 75 Report No.: STUEMO016072605210RFH

- vi. Select HSDPA Uplink Parameters
- vii. Set Delta ACK, Delta NACK and Delta CQI = 8
- viii. Set Ack-Nack Repetition Factor to 3
- ix. Set CQI Feedback Cycle (k) to 4 ms
- x. Set CQI Repetition Factor to 2
- xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	β _d (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station R&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Report No.: STUEMO016072605210RFH

Sub- test	βς	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

General Note

- 1. Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.
- 2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.
- 3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Conducted Power Measurement Results(WCDMA Band V/II)

	band	WCDMA	Band V resu	It (dBm)	WCDMA	A Band II resul	t (dBm)	
Item	Dallu	Chanr	nel/Frequency	/(MHz)	Channel/Frequency(MHz)			
	ARFCN	4132/826.4	4183/836.6	4233/846.6	9262/1852.4	9400/1880.0	9538/1907.6	
RMC	12.2kbps	23.78	23.45	23.22	23.66	23.24	23.15	
AMR	12.2kbps	23.75	23.44	23.19	23.63	23.22	23.11	
	Sub - Test 1	22.21	22.26	22.22	22.33	22.23	22.11	
HSDPA	Sub - Test 2	22.18	21.33	22.18	22.45	21.55	22.32	
ПЭДРА	Sub - Test 3	22.25	21.25	22.36	22.41	21.36	22.55	
	Sub - Test 4	21.15	21.43	21.24	21.41	21.74	21.34	
	Sub - Test 1	20.74	21.25	20.24	20.32	21.36	20.35	
	Sub - Test 2	20.44	20.23	20.49	20.41	20.33	20.26	
HSUPA	Sub - Test 3	21.35	21.33	21.74	21.20	21.41	21.22	
	Sub - Test 4	20.51	20.14	20.32	20.11	20.25	20.36	
	Sub - Test 5	20.01	21.36	20.21	20.41	21.46	20.37	

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
			1	7.47
	1	2412	2	7.42
			5.5	7.38
			11	7.33
			1	8.18
IEEE 802.11b	6	2437	2 5.5	8.12 8.09
			11	8.01
			1	8.32
			2	8.30
	11	2462	5.5	8.25
			11	8.22
			6	7.10
			9	7.08
			12	7.04
		0.440	18	7.01
	1	2412	24	6.98
			36	6.96
			48	6.92
			54	6.90
			6	6.79
			9	6.76
			12	6.74
IEEE 000 11a	6	2427	18	6.71
IEEE 802.11g	6	2437	24	6.68
			36	6.66
			48	6.63
			54	6.60
			6	6.59
			9	6.58
			12	6.53
	11	2462	18	6.47
	, ,	2102	24	6.44
			36	6.42
			48	6.39
			54	6.35
			MCS0	7.93
			MCS1	7.91
			MCS2	7.87
	1	2412	MCS3	7.84
			MCS4 MCS5	7.83 7.79
			MCS6	7.79
			MCS7	7.73
		+	MCS0	7.73
			MCS1	7.48
IEEE 802.11n			MCS2	7.44
HT20			MCS3	7.42
	6	2437	MCS4	7.41
			MCS5	7.37
			MCS6	7.34
			MCS7	7.32
			MCS0	7.36
			MCS1	7.33
	11	2462	MCS2	7.31
			MCS3	7.27
			MCS4	7.24

Page 26 of 75

Report No.:	STUEMO01607	72605210RFH
-------------	--------------------	-------------

MCS5	7.22
MCS6	7.18
MCS7	7.17

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

WLAN2.4G Turn up Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
9	0	2.48	2.5

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is **2.5** which is <= 3, SAR testing is not required.

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Power (dBm)
	0	2402	1.745
GFSK	39	2441	0.869
	78	2480	0.605
	0	2402	-1.118
8DPSK	39	2441	-2.085
	78	2480	-2.049
_	0	2402	-1.152
π/4DQPSK	39	2441	-2.085
	78	2480	-2.040

Report No.: STUEMO016072605210RFH

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Bluetooth Turn up Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
2	0	2.48	0.50

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is **0.50** which is <= 3, SAR testing is not required.

Manufacturing tolerance

GSM Speech

Page 28 of 75

GSM 850 (GMSK) (Burst Average Power)				
Channel	Channel 128	Channel 190	Channel 251	
Target (dBm)	32.0	32.0	32.0	
Tolerance ±(dB)	1.0	1.0	1.0	
GSM 1900 (GMSK) (Burst Average Power)				
Channel	Channel 512	Channel 661	Channel 810	
Target (dBm)	29.0	29.0	29.0	
Tolerance ±(dB)	1.0	1.0	1.0	

	GSM 850 GPRS (GMSK) (Burst Average Power)				
Cha	nnel	128	190	251	
1 Txslot	Target (dBm)	32.0	32.0	32.0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	30.0	30.0	30.0	
2 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	28.0	28.0	28.0	
3 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	27.0	27.0	27.0	
4 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0	
GSM 1900 GPRS (GMSK) (Burst Average Power)					
Cha	nnel	512	661	810	
1 Txslot	Target (dBm)	29.0	29.0	29.0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	27.0	27.0	27.0	
2 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	26.0	26.0	26.0	
3 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	25.0	25.0	25.0	
4 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0	

UMTS

	<u> </u>	113			
	UMTS	Band V			
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1.0	1.0	1.0		
UMTS Band V HSDPA(sub-test 1)					
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0		
UMTS Band V HSDPA(sub-test 2)					
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	UMTS Band V H	SDPA(sub-test 3)			
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	UMTS Band V H	SDPA(sub-test 4)			
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		
UMTS Band V HSUPA(sub-test 1)					
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	UMTS Band V H	SUPA(sub-test 2)			

Page 29 of 75

Report No.: STUEMO016072605210RFH

Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	20.0	20.0	20.0		
Tolerance ±(dB)	1.0	1.0	1.0		
UMTS Band V HSUPA(sub-test 3)					
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		
UMTS Band V HSUPA(sub-test 4)					
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	20.0	19.0	19.0		
Tolerance ±(dB)	1.0	1.0	1.0		
UMTS Band V HSUPA(sub-test 5)					
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		

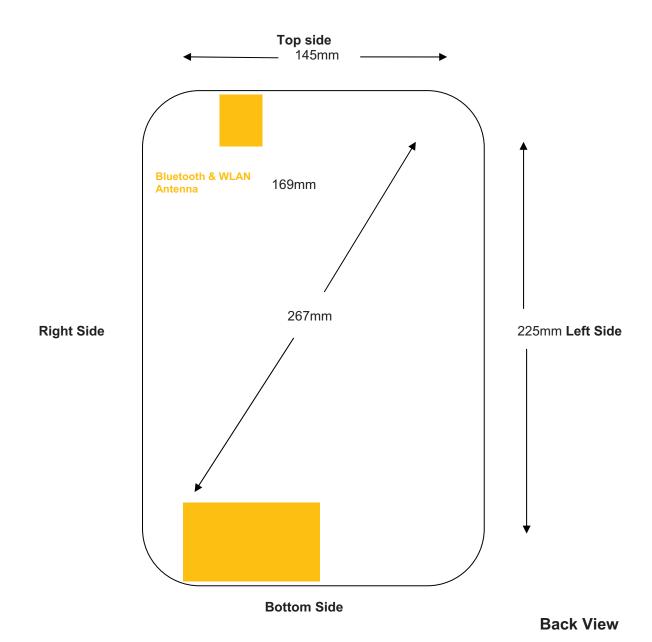
UMTS Band II					
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SDPA(sub-test 1)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SDPA(sub-test 2)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SDPA(sub-test 3)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SDPA(sub-test 4)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SUPA(sub-test 1)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SUPA(sub-test 2)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	20.0	20.0	20.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SUPA(sub-test 3)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	UMTS Band II HSUPA(sub-test 4)				
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	20.0	19.0	19.0		
Tolerance ±(dB)	1.0	1.0	1.0		
		SUPA(sub-test 5)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0		

WiFi

IEEE 802.11b (Average)				
Channel Channel 1 Channel 6 Channel 11				
Target (dBm)	8.0	8.0	8.0	

Page 30 of 75

Report No.: STUEMO016072605210RFH


Tolerance ±(dB)	1.0	1.0	1.0
	IEEE 802.11	g (Average)	
Channel	Channel 1	Channel 6	Channel 11
Target (dBm)	7.0	7.0	7.0
Tolerance ±(dB)	1.0	1.0	1.0
	IEEE 802.11n l	HT20 (Average)	
Channel	Channel 1	Channel 6	Channel 11
Target (dBm)	7.0	7.0	7.0
Tolerance ±(dB)	1.0	1.0	1.0

Bluetooth

Bluetootii											
	GF	SK									
Channel	Channel 0	Channel 39	Channel 78								
Target (dBm)	1.0	1.0	1.0								
Tolerance ±(dB)	1.0	1.0	1.0								
	8DPSK										
Channel	Channel 0	Channel 39	Channel 78								
Target (dBm)	-2.0	-2.0	-2.0								
Tolerance ±(dB)	1.0	1.0	1.0								
	π/4D0	QPSK									
Channel	Channel 0	Channel 39	Channel 78								
Target (dBm)	-2.0	-2.0	-2.0								
Tolerance ±(dB)	1.0	1.0	1.0								

5.2. Transmit Antennas and SAR Measurement Position

Distance of The Antenna to the EUT surface and edge										
Antennas	ntennas Front Back Top Side Bottom Side Left Side Right Side									
WWAN										

Positions for SAR tests										
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side									
WWAN	Yes	Yes	No	Yes	No	Yes				

5.3. Standalone SAR Test Exclusion Considerations

Per KDB447498 for standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

Report No.: STUEMO016072605210RFH

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by::

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

	Standalone SAR test exclusion considerations											
Modulation	Frequency (MHz)	Configuration	Maximum Average Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR Exclusion					
IEEE 802.11b	2480	Body	9	5	2.5	3.0	yes					
IEEE 802.11g	2480	Body	8	5	1.99	3.0	yes					
IEEE 802.11n HT20	2480	Body	8	5	1.99	3.0	yes					
Bluetooth*	2480	Body	2	5	0.50	3.0	yes					

Remark:

- 1. Maximum average power including tune-up tolerance;
- 2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 3. Maximum average power including tune-up tolerance;

5.4. Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

	Estimated stand alone SAR										
Communication system	Frequency (MHz)	Configuration	Maximum Power (including tune-up tolerance) (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)						
WLAN2.4G	2480	Body	9	5	0.334						
Bluetooth*	2480	Body	2	5	0.074						

5.5. SAR Measurement Results

It is determined by user manual for the distance between the EUT and the phantom bottom.

The distance is 10mm and just applied to the condition of body worn accessory.

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR×10^{(PTarget-PMeasured)/10}

Where P_{Target} is the power of manufacturing upper limit;

 P_{Measured} is the measured power

Duty Cycle

Report No.: STUEMO016072605210RFH

Mode	Duty Cycle
GPRS for GSM850	1:2
GPRS for GSM1900	1:2
WCDMA850/1900	1:1

SAR Values [GSM 850]

				Conducted	Maximum	_		SAR _{1-g} res	ults(W/kg)	
Ch. Freq. (MHz)	Time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results	
measured / reported SAR numbers - Body (distance 0mm)										
251	848.8	4Txslots	Front	27.40	28.00	-0.01	1.148	0.543	0.623	
251	848.8	4Txslots	Back	27.40	28.00	-0.16	1.148	0.872	1.001	Plot 1
251	848.8	4Txslots	Right Side	27.40	28.00	-0.11	1.148	0.275	0.316	
251	848.8	4Txslots	Bottom Side	27.40	28.00	-0.17	1.148	0.284	0.326	
128	824.2	4Txslots	Back	27.23	28.00	0.11	1.194	0.772	0.922	
189	836.4	4Txslots	Back	27.23	28.00	0.02	1.194	0.792	0.946	

SAR Values IGSM 19001

				Conducted	Maximum			SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
measured / reported SAR numbers – Body (hotspot open, distance 0mm)										
512	1850.2	4Txslots	Front	25.72	26.00	-0.10	1.067	0.412	0.439	
512	1850.2	4Txslots	Back	25.72	26.00	0.10	1.067	0.987	1.053	
512	1850.2	4Txslots	Right Side	25.72	26.00	-0.14	1.067	0.207	0.221	
512	1850.2	4Txslots	Bottom Side	25.72	26.00	0.04	1.067	0.779	0.831	
661	1880	4Txslots	Back	25.27	26.00	-0.01	1.183	0.872	1.032	
810	1909.8	4Txslots	Back	25.19	26.00	0.02	1.205	0.881	1.062	Plot 2
661	1880	4Txslots	Bottom Side	25.27	26.00	0.11	1.183	0.679	0.803	
810	1909.8	4Txslots	Bottom Side	25.19	26.00	0.03	1.205	0.711	0.857	

				SAR Value	es [WCDMA Ba	nd Vj					
				Conducted	Maximum			SAR _{1-g} res	ults(W/kg)		
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results	
	measured / reported SAR numbers - Body (hotspot open, distance 0mm)										
4132	826.4	RMC	Front	23.78	24.00	-0.11	1.052	0.524	0.551		
4132	826.4	RMC	Back	23.78	24.00	0.05	1.052	0.791	0.832		
4132	826.4	RMC	Right Side	23.78	24.00	-0.09	1.052	0.253	0.266		
4132	826.4	RMC	Bottom Side	23.78	24.00	-0.12	1.052	0.217	0.228		
4182	836.4	RMC	Back	23.45	24.00	0.04	1.135	0.752	0.854	Plot 3	
4233	846.6	RMC	Back	23.22	24.00	0.02	1.197	0.672	0.804		

SAR Values [WCDMA Band II]

				Conducted	Maximum	-		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Graph Results
	measured / reported SAR numbers - Body (hotspot open, distance 0mm)									
9262	1852.4	RMC	Front	23.66	24.00	-0.12	1.081	0.649	0.702	
9262	1852.4	RMC	Back	23.66	24.00	0.04	1.081	0.911	0.985	
9262	1852.4	RMC	Right Side	23.66	24.00	-0.05	1.081	0.205	0.222	
9262	1852.4	RMC	Bottom Side	23.66	24.00	-0.19	1.081	0.747	0.808	
9400	1880	RMC	Back	23.24	24.00	-0.01	1.191	0.872	1.039	Plot 4
9538	1907.6	RMC	Back	23.15	24.00	0.02	1.216	0.824	1.002	
9400	1880	RMC	Bottom Side	23.24	24.00	0.11	1.191	0.679	0.809	
9538	1907.6	RMC	Bottom Side	23.15	24.00	0.13	1.216	0.661	0.804	

5.6. Repeat SAR Measurement Results

				Conducted	Maximum			SAR _{1-g} res				
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Ratio		
	measured / reported SAR numbers - Body (hotspot open, distance 0mm)											
251	848.8	4Txslots	Back	27.40	28.00	-0.16	1.148	0.872	1.001	1		
251	848.8	4Txslots	Back	27.40	28.00	-0.15	1.148	0.869	0.998	1.003		
661	1880	4Txslots	Back	25.19	26.00	-0.01	1.205	0.881	1.062	1		
661	1880	4Txslots	Back	25 19	26.00	-0.01	1 205	0.879	1 059	1 002		

General Note:

- 1. Per KDB 865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg
- 2. Per KDB 865664 D01, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

5.7. Simultaneous TX SAR Considerations

5.6.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT and WiFi modules sharing same antenna, GSM and WCDMA module sharing a single antenna:

Application Simultaneous Transmission information:

Air-Interface	Band (MHz)	Type	Simultaneous Transmissions		
GSM	GPRS/EDGE	DT	Yes,WLAN or BT/BLE		
WCDMA	BandV/II	DT	Yes,WLAN or BT/BLE		
WLAN	2450	DT	Yes,GSM,GPRS,EDGE,UMTS		
BT/BLE	2450	DT	Yes,GSM,GPRS,EDGE,UMTS		
Note: DT-Digital Transport					

5.4.2 Evaluation of Simultaneous SAR

Simultaneous transmission SAR for WiFi and GSM/WCDMA

Test Position	GSM850 Reported SAR _{1-q} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WCDMA Band V Reported SAR _{1-g} (W/Kg)	WCDMA Band II Reported SAR _{1-g} (W/Kg)	WiFi Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut. Meas. Required
Front	0.623	0.439	0.551	0.702	0.334	1.036	1.6	no	no
Back	1.001	1.062	0.854	1.039	0.334	1.396	1.6	no	no
Right Side	0.326	0.221	0.266	0.222	0.334	0.66	1.6	no	no
Bottom Side	0.623	0.857	0.228	0.809	0.334	1.191	1.6	no	no
Top Side	1	1	1	/	0.334	0.334	1.6	no	no

Simultaneous transmission SAR for Bluetooth and GSM/WCDMA

Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	WCDMA Band V Reported SAR _{1-g} (W/Kg)	WCDMA Band II Reported SAR _{1-g} (W/Kg)	Bluetooth Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separation ratio	Simut. Meas. Required
Front	0.623	0.439	0.551	0.702	0.084	0.786	1.6	no	no
Back	1.001	1.062	0.854	1.039	0.084	1.146	1.6	no	no
Right Side	0.326	0.221	0.266	0.222	0.084	0.41	1.6	no	no
Bottom Side	0.623	0.857	0.228	0.809	0.084	0.941	1.6	no	no
Top Side	1	1	1	/	0.084	0.084	1.6	no	no

5.8. Measurement Uncertainty (300MHz-3GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is ≥ 1.5 W/kg for 1-g SAR according to KDB865664D01.

5.9. System Check Results

Date: 08/24/2016

DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086 Program Name: System Performance Check at 900 MHz Body

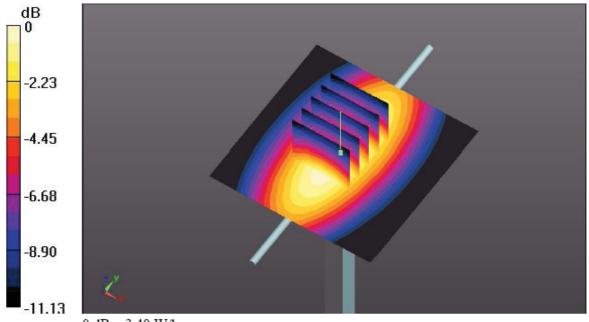
Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 54.7$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3836; ConvF(8.95, 8.95, 8.95); Calibrated: 7/7/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.76 mW/g Maximum value of SAR (measured) = 3.40 mW/g

0 dB = 3.40 W/kg

Date: 8/25/2016

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194

Program Name: System Performance Check at 1900 MHz Body

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

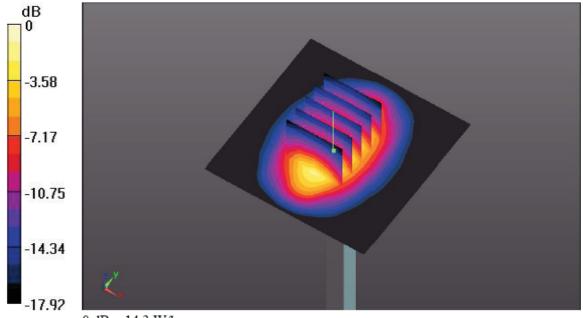
Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ε_r = 53.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(7.33, 7.33, 7.33); Calibrated: 7/7/2016;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.9 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.43 mW/g Maximum value of SAR (measured) = 14.3 mW/g

0 dB = 14.3 W/kg

5.10. SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

Report No.: STUEMO016072605210RFH

#1

Date: 8/24/2015

DUT: S905; Type: SI PIN; Serial: IMEI Number

Program Name: s905

Communication System: GPRS850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.969 \text{ mho/m}$; $\varepsilon_r = 55.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(9.25, 9.25, 9.25); Calibrated: 7/7/2016;

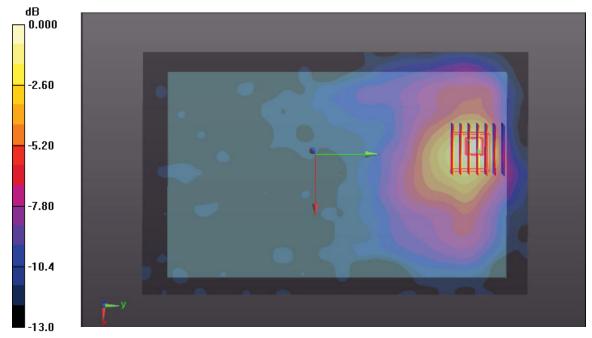
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn760; Calibrated: 6/24/2016

- Phantom: SAM 2; Type: SAM; Serial: TP-1432

- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.11 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.1 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.872 mW/g; SAR(10 g) = 0.373 mW/gMaximum value of SAR (measured) = 1.13 mW/g

0 dB = 1.13 mW/g

#2

Date: 8/25/2015

DUT: S905; Type: SI PIN; Serial: IMEI Number

Program Name: s905

Communication System: GPRS1900; Frequency: 1909.8 MHz; Duty Cycle: 1:2

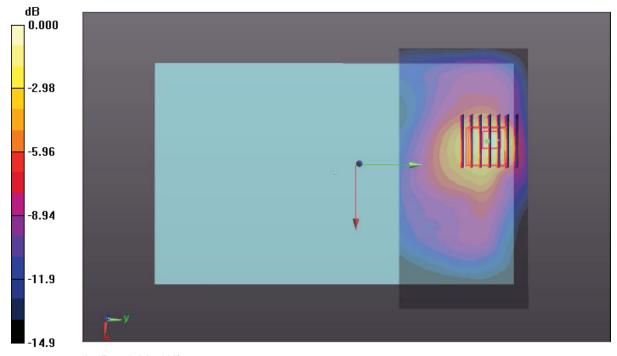
Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(7.33, 7.33, 7.33); Calibrated: 7/7/2016;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Back/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.23 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.881 mW/g; SAR(10 g) = 0.523 mW/g Maximum value of SAR (measured) = 1.22 mW/g

0 dB = 1.22 mW/g

#3

Date: 8/24/2015

DUT: S905; Type: SI PIN; Serial: IMEI Number

Program Name: s905

Communication System: W850; Frequency: 836.4 MHz; Duty Cycle: 1:1

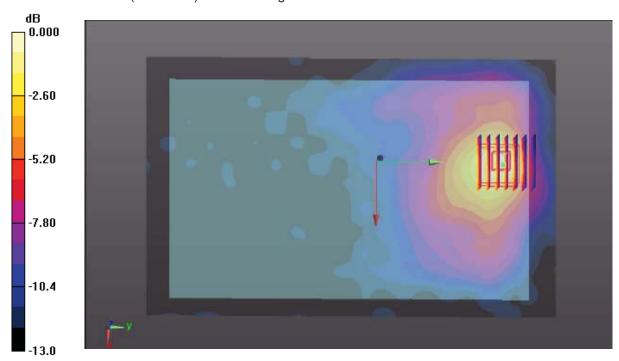
Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(9.25, 9.25, 9.25); Calibrated: 7/7/2016;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Back/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.925 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = 0.117 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.752 mW/g; SAR(10 g) = 0.393 mW/g Maximum value of SAR (measured) = 0.911 mW/g

0 dB = 0.911 mW/g

#4

Date: 8/25/2015

DUT: S905; Type: SI PIN; Serial: IMEI Number

Program Name: s905

Communication System: W1900; Frequency: 1880 MHz; Duty Cycle: 1:1

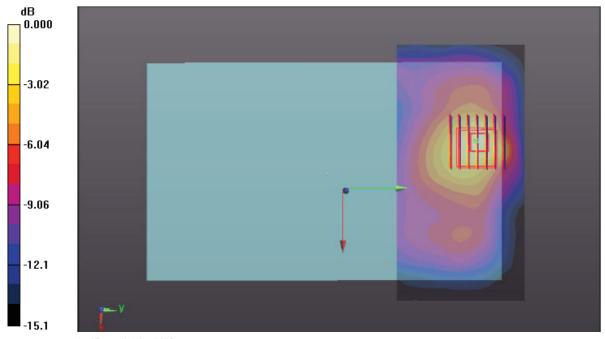
Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(7.33, 7.33, 7.33); Calibrated: 7/7/2016;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Back/Area Scan (71x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.17 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = 0.140 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.872 mW/g; SAR(10 g) = 0.593 mW/g Maximum value of SAR (measured) = 1.12 mW/g

0 dB = 1.12 mW/g

6. Calibration Certificate

6.1. Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client Sunway Certificate No: Z16-97101 CALIBRATION CERTIFICATE Object EX3DV4 - SN:3836 Calibration Procedure(s) FD-Z11-2-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: July 07, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 101919 27-Jun-16 (CTTL, No.J16X04777) Jun-17 Power sensor NRP-Z91 101547 27-Jun-16 (CTTL, No.J16X04777) Jun-17 Power sensor NRP-Z91 101548 27-Jun-16 (CTTL, No.J16X04777) Jun-17 Reference10dBAttenuator 18N50W-10dB 13-Mar-16(CTTL,No.J16X01547) Mar-18 Reference20dBAttenuator 18N50W-20dB 13-Mar-16(CTTL, No.J16X01548) Mar-18 Reference Probe EX3DV4 SN 3617 26-Aug-15(SPEAG,No.EX3-3617_Aug15) Aug-16 DAE4 SN 1331 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Jan -17 ID# Secondary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGeneratorMG3700A 6201052605 27-Jun-16 (CTTL, No.J16X04776) Jun-17 Network Analyzer E5071C MY46110673 26-Jan-16 (CTTL, No.J16X00894) Jan -17 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: July 08 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97101

Page 1 of 11

Page 43 of 75

Report No.: STUEMO016072605210RFH

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97101

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3836

Calibrated: July 07, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z16-97101

Page 3 of 11

Page 45 of 75

Report No.: STUEMO016072605210RFH

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.40	0.46	0.43	±10.8%
DCP(mV) ^B	93.2	100.2	98.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	167.8	±2.0%	
		Y	0.0	0.0	1.0		182.5	
		Z	0.0	0.0	1.0		176.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

 $[\]frac{A}{a}$ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.43	9.43	9.43	0.30	0.80	±12%
835	41.5	0.90	9.42	9.42	9.42	0.15	1.58	±12%
900	41.5	0.97	9.03	9.03	9.03	0.15	1.46	±12%
1750	40.1	1.37	8.04	8.04	8.04	0.14	1.63	±12%
1900	40.0	1.40	7.60	7.60	7.60	0.16	1.59	±12%
2300	39.5	1.67	7.45	7.45	7.45	0.53	0.68	±12%
2450	39.2	1.80	7.07	7.07	7.07	0.54	0.71	±12%
2600	39.0	1.96	6.96	6.96	6.96	0.61	0.66	±12%
5200	36.0	4.66	5.32	5.32	5.32	0.40	1.42	±13%
5300	35.9	4.76	5.13	5.13	5.13	0.40	1.40	±13%
5500	35.6	4.96	4.85	4.85	4.85	0.40	1.35	±13%
5600	35.5	5.07	4.59	4.59	4.59	0.40	1.45	±13%
5800	35.3	5.27	4.71	4.71	4.71	0.40	1.45	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.38	9.38	9.38	0.30	0.85	±12%
835	55.2	0.97	9.25	9.25	9.25	0.17	1.44	±12%
900	55.0	1.05	8.95	8.95	8.95	0.14	1.60	±12%
1750	53.4	1.49	7.64	7.64	7.64	0.17	1.71	±12%
1900	53.3	1.52	7.33	7.33	7.33	0.18	1.80	±12%
2300	52.9	1.81	7.45	7.45	7.45	0.51	0.80	±12%
2450	52.7	1.95	7.20	7.20	7.20	0.62	0.70	±12%
2600	52.5	2.16	6.99	6.99	6.99	0.52	0.79	±12%
5200	49.0	5.30	4.83	4.83	4.83	0.50	1.25	±13%
5300	48.9	5.42	4.60	4.60	4.60	0.50	1.35	±13%
5500	48.6	5.65	4.32	4.32	4.32	0.50	1.35	±13%
5600	48.5	5.77	4.20	4.20	4.20	0.50	1.40	±13%
5800	48.2	6.00	4.30	4.30	4.30	0.50	1.30	±13%

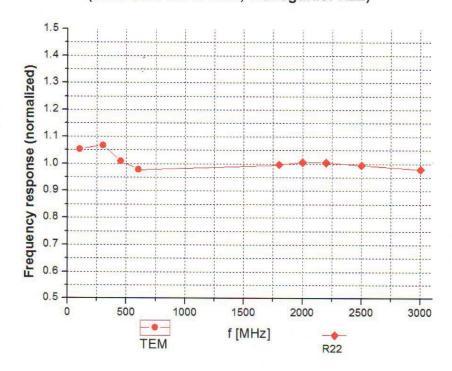
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z16-97101

Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

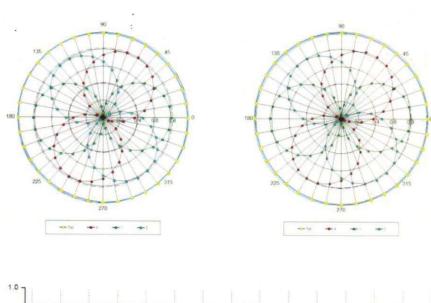
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

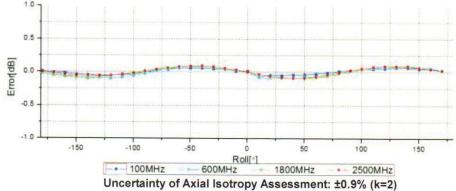


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

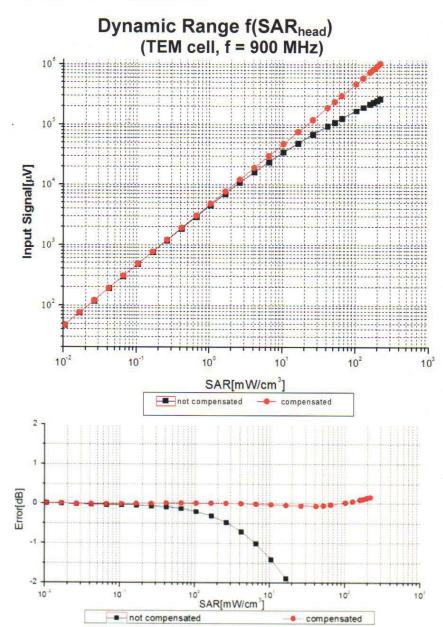




Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

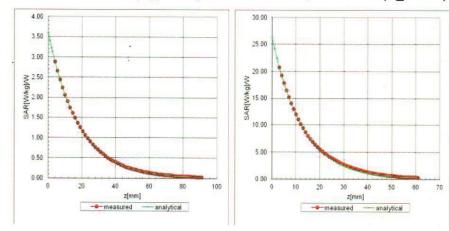


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

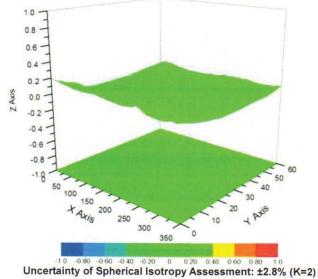
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z16-97101

Page 9 of 11



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Fax: +86-10-62304633-2209 <u>Http://www.chinattl.cn</u> E-mail: cttl@chinattl.com


Conversion Factor Assessment

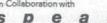
f=900 MHz, WGLS R9(H_convF)

f=1900 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836


Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	47.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Page 53 of 75 Report No.: STUEMO016072605210RFH

6.2. D900V2 Dipole Calibration Ceriticate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tpt:+86-10-62304633-2079 Fax:+86-10-62304633-2504 Email: cttl@chinattl.com

Sunway

Http://www.chinattl.cn

Certificate No:

Z16-97102

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 1d086

Calibration Procedure(s)

Client -

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

July 1, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ond humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	数
Reviewed by:	Qi Dianyuan	SAR Project Leader	200
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Ferritz
		A CONTRACTOR OF THE PARTY OF TH	

Issued: July 4, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97102

Page 1 of 8

Page 54 of 75 Report No.: STUEMO016072605210RFH

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China T&T+86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97102

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel.≱86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL -	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.74 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.88 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	1.07 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	P. WELL
SAR measured	250 mW input power	1.80 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	7.14 mW /g ± 20.4 % (k=2)

Certificate No: Z16-97102

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9Ω- 7.86jΩ
Return Loss	- 22.1dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9Ω- 8.14jΩ	
Return Loss	- 20.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.514 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
JAPOS DISALTAR MARTINISTIC	- Servin March

Certificate No: Z16-97102

Add: No.51 Xueyuan Road, Haidiau District, Beijing, 100191, China Tela-86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 07.01.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d086

Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; $\sigma = 0.988$ S/m; $\epsilon_r = 41.16$; $\rho = 1000$ kg/m³

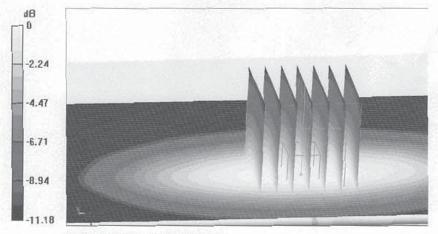
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(9.82, 9.82, 9.82); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

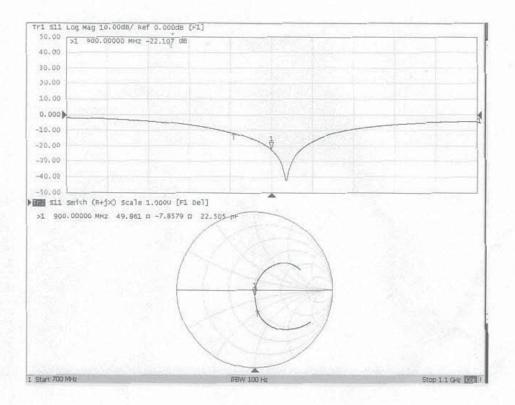

dy=5mm, dz=5mm

Reference Value = 48.86 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.13 W/kg

SAR(1 g) = 2.72 W/kg; SAR(10 g) = 1.74 W/kg

Maximum value of SAR (measured) = 3.49 W/kg


0 dB = 3.49 W/kg = 5.43 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel::3286-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Telp=86-10-62304633-2679 Fax: +86-10-62304633-2504 E-miil: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 07.01.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d086

Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 900 MHz; $\sigma = 1.065 \text{ S/m}$; $\epsilon_r = 55.08$; $\rho = 1000 \text{ kg/m}^3$

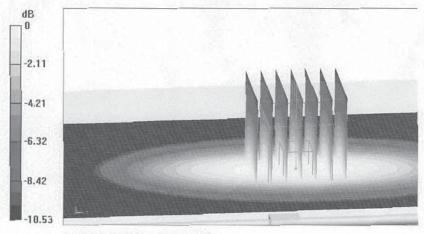
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(9.9,9,9,9,9); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn771; Calibrated: 2016-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

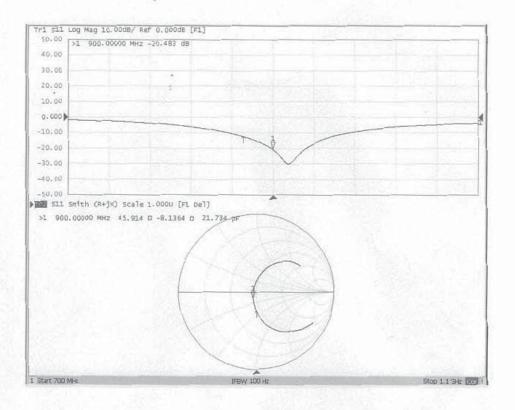
Reference Value = 55.76 V/m; Power Drift = -0.04 dB

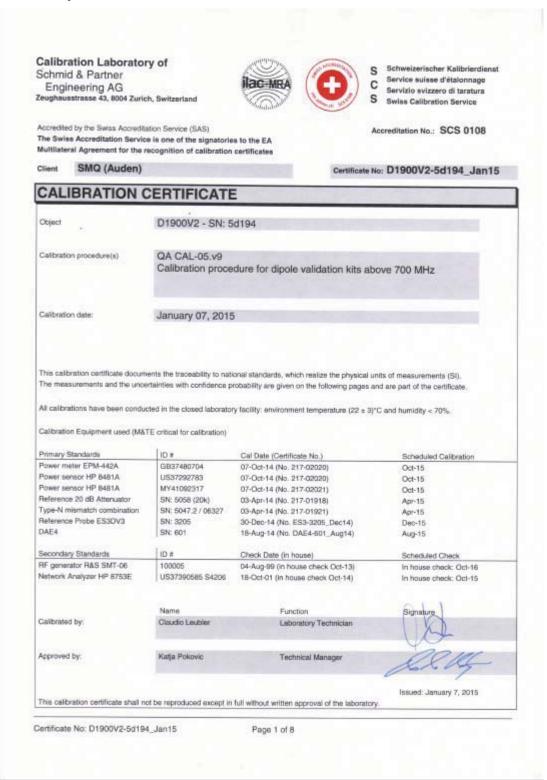
Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 2.74 W/kg; SAR(10 g) = 1.8 W/kg

Maximum value of SAR (measured) = 3.45 W/kg

0 dB = 3.45 W/kg = 5.38 dBW/kg


Certificate No: Z16-97102


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Telas 86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chioattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

6.3. D1900V2 Dipole Calibration Ceriticate

Page 62 of 75

Report No.: STUEMO016072605210RFH

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d194_Jan15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

to the second se	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

A STATE OF THE STA	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Page 64 of 75

Report No.: STUEMO016072605210RFH

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω + 4.9]Ω	
Return Loss	- 24.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 5.1 jΩ	
Return Loss	- 25.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	May 06, 2014		

DASY5 Validation Report for Head TSL

Date: 07.12.2015

Test Laboratory: SPEAG, Zurich, Switzerland

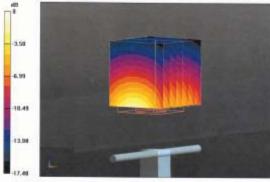
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d194

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\epsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

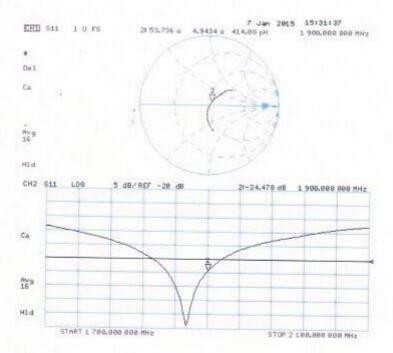
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.35 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.5 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.32 W/kgMaximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d194

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³

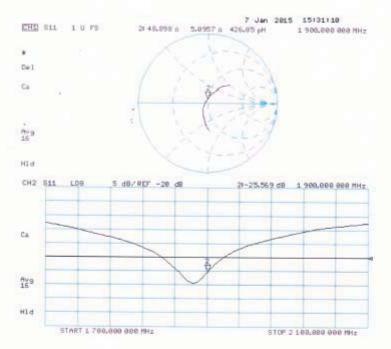
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

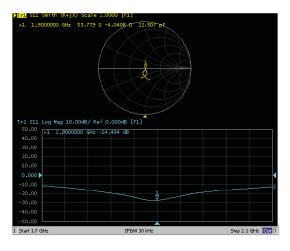

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.88 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.31 W/kg Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

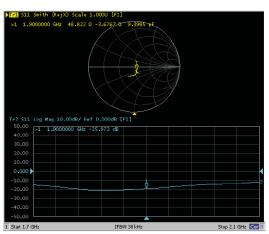
Impedance Measurement Plot for Body TSL

D1900V2, serial no. 5d194 Extended Dipole Calibrations

Page 69 of 75


Referring to KDB 865664D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D1900V2, serial no. 5d194								
	1900 Head				1900	1900 Body		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)
2015-1-7	-24.5		53.7		-25.6		48.9	
2016-1-2	-24.5	0	53.8	0.1	-26.0	1.6	48.8	0.1


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data>- D1900V2, serial no. 5d194

1900MHz Head

1900MHz Body

Page 70 of 75

Report No.: STUEMO016072605210RFH

6.4. DAE4 Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Client : Sur	nway	Certific	cate No: Z16-97100		
CALIBRATION	CERTIFICAT	E			
Object	DAE4 -	SN: 760			
Calibration Procedure(s)		-2-002-01			
·	(DAEx)	tion Procedure for the Data A	equisition Electronics		
Calibration date: June 24		4, 2016			
measurements(SI). The r pages and are part of the	neasurements and certificate.	the uncertainties with confidence	, which realize the physical units or probability are given on the following		
humidity<70%.	en conducted in	the closed laboratory facility: e	nvironment temperature(22±3)°C and		
Calibration Equipment us	ed (M&TE critical fo	or calibration)			
Primary Standards	ID# Cal	Date(Calibrated by, Certificate N	o.) Scheduled Calibration		
Process Calibrator 753	1971018	06-July-15 (CTTL, No:J15X0425)	7) July-16		
	Name	Function	Signature		
Calibrated by:	Yu Zongying	SAR Test Engineer			
Reviewed by:	Qi Dianyuan	SAR Project Leader	20		
Approved by:	Lu Bingsong	Deputy Director of the labor	atory frame fr		
			Issued: June 25, 2016		
This calibration certificate	shall not be reprod	duced except in full without writter			

Certificate No: Z16-97100

Page 1 of 3

Page 71 of 75

Report No.: STUEMO016072605210RFH

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- D.C Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Page 72 of 75

Report No.: STUEMO016072605210RFH

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV , full range = -100...+300 mV

Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	z
High Range	403.785 ± 0.15% (k=2)	405.082 ± 0.15% (k=2)	405.373 ± 0.15% (k=2)
Low Range	3.97148 ± 0.7% (k=2)	3.98467 ± 0.7% (k=2)	3.96141 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	248.5° ± 1 °
---	--------------

7. <u>Liquid depth</u>

Photograph of the depth in the Body Phantom

8. Test Setup Photos

0mm Back Side Setup Photo

0mm Front Side Setup Photo

0mm Right Side Setup Photo

0mm Bottom Side Setup Photo

.....End of Report.....