

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-3692/21-02-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

indurad GmbH

Belvedereallee 5

52070 Aachen / GERMANY Phone: + 49 241 538070-0 Contact: Matthias Rabel

e-mail: <u>matthias.rabel@indurad.com</u>

Manufacturer

indurad GmbH

Belvedereallee 5

52070 Aachen / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: iRTT ClientPersonal

Model name: iRTT-CP

FCC ID: 2AJRSIRTTCP

Frequency: 5925 MHz to 7250 MHz

Technology tested: Wideband

Radio Communications

Antenna: Integrated antenna: Single Ceramic Chip Antenna

Power supply: 3.1 V to 4.1 V DC by battery

Temperature range: -20°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:			
Thomas Vogler	Frank Heussner			
Lab Manager	Testing Manager			

Radio Communications

1 Table of contents

1	Table o	f contents	2
2	Genera	l information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test st	andard/s, references and accreditations	
4	Report	ing statements of conformity – decision rule	5
5	Test er	vironment	6
6	Test ite	em	е
	6.1 6.2	General description	
7	Descrip	otion of the test setup	7
	7.1 7.2 7.3	Shielded semi anechoic chamber	10
8	Sequer	nce of testing	14
	8.1 8.2 8.3 8.4	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	15 16
9	Measu	rement uncertainty	18
10	Sun	nmary of measurement results	19
11	Add	itional comments	19
12	Mea	surement results	21
	12.1 12.2 12.3 12.4	10 dB - Bandwidth	24 38
13	Glos	ssary	46
14	Doc	ument history	47
15	Δαα	reditation Certificate - D-PL-12076-01-05	47

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2021-12-21

 Date of receipt of test item:
 2022-01-04

 Start of test:*
 2022-01-04

 End of test:*
 2022-02-04

Person(s) present during the test: Martin Gritzan (Pretests power settings)

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 47

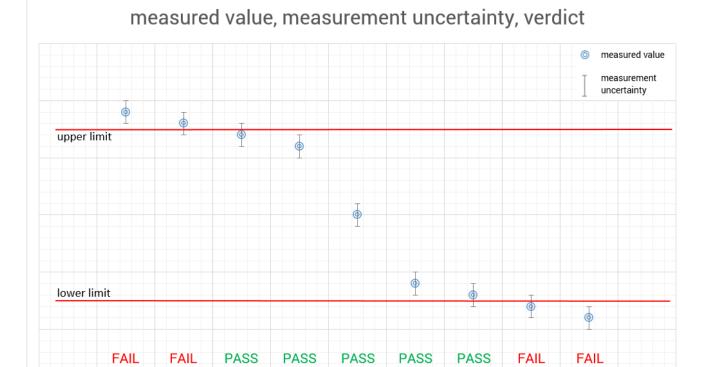
^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description
		American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and
		Electronic Equipment in the Range of 9 kHz to 40 GHz
ANGLOGO 10 2012	-/-	American National Standard of Procedures for Compliance
ANSI C63.10-2013	-/-	Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akkrediterungsstelle D-P-1-12076-01-05


© CTC advanced GmbH Page 4 of 47

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

© CTC advanced GmbH Page 5 of 47

5 Test environment

		T_nom	+22 °C during room temperature tests
Temperature	:	T_{max}	+60 °C during high temperature tests
		T_{min}	-20 °C during low temperature tests
Relative humidity content	:		49 %
Barometric pressure	:		990 hPa to 1010 hPa
		V_{nom}	3.7 V DC by battery
Power supply	:	V_{max}	4.1 V
		V_{min}	3.1 V

6 Test item

6.1 General description

Kind of test item :	iRTT ClientPersonal		
Model name :	iRTT-CP		
S/N serial number :	292dbb		
Power setting /	0v42424242 / 0vC0 (Tost mode)		
Pulse generation delay :	0x43434343 / 0xC0 (Test mode)		
Hardware status :	V3		
Software status :	n/a		
Firmware status :	v3.14		
Frequency band :	5925 MHz to 7250 MHz		
Type of radio transmission:	Wideband		
Use of frequency spectrum :	Wideballd		
Type of modulation :	Pulse-Code Modulation		
Number of channels :	1		
Antenna :	Integrated antenna: Single Ceramic Chip Antenna		
Power supply :	3.1 V to 4.1 V DC by battery		
Temperature range :	-20°C to +60°C		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-3692/21-02-01_AnnexA

1-3692/21-02-01_AnnexB 1-3692/21-02-01_AnnexD

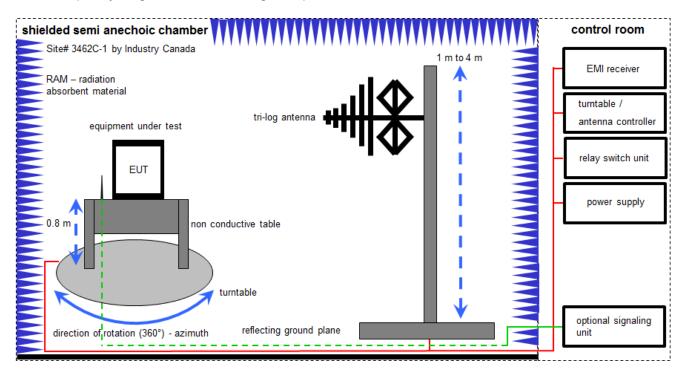
© CTC advanced GmbH Page 6 of 47

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 47

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

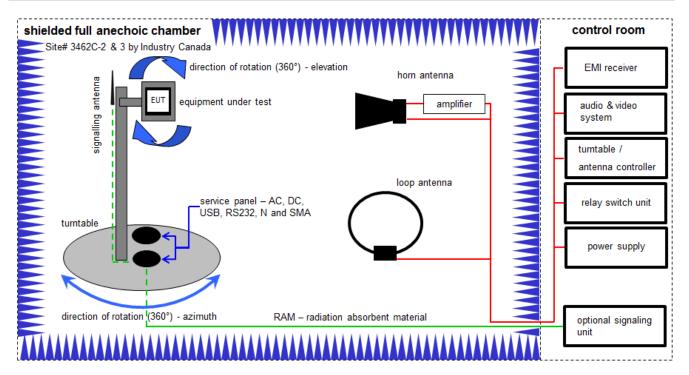
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

© CTC advanced GmbH Page 8 of 47


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	НР	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Semi anechoic chamber	300023	MWB AG	-/-	300000551	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
8	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	08.12.2021	07.12.2022
9	n. a.	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-

© CTC advanced GmbH Page 9 of 47

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter / 1 meter, loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

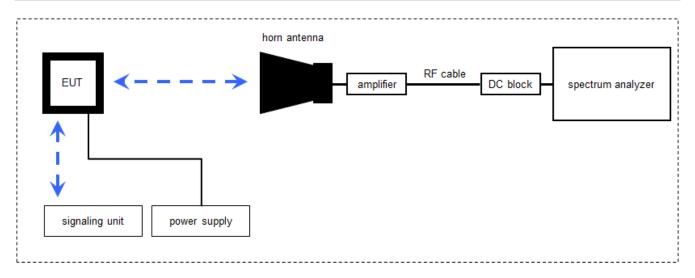
Example calculation:

 $OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 \mu W)$

© CTC advanced GmbH Page 10 of 47

Equipment table (Chamber C):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	A,B,C	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
5	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	08.12.2022
6	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	A,B,C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
8	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-
9	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	30.06.2023


Equipment table (OTA):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	Power supply GPIB dc power supply, 0- 50 Vdc, 0-2 A	6633A	HP	2851A01222	300001530	vlKI!	10.12.2019	09.12.2022
2	A,B,C	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland		300003327	ne	-/-	-/-
3	A,B,C	CTIA-Chamber - Positioning Equipment	CTIA-Chamber - Positioning Equipment	EMCO/2		300003328	ne	-/-	-/-
4	A,B,C	Signal- and Spectrum Analyzer	FSW26	R&S	101371	300005697	k	09.12.2021	08.12.2022
5	A,B,C	PC	Precision M4800	DELL	19414201934	300004957	-/-	-/-	-/-
6	A,B,C	EMC Software Chamber A	EMC32-MEB	R&S	n.a.	300005477	-/-	-/-	-/-
7	A,B,C	RF Amplifier	AMF-7D-01001800- 22-10P	NARDA-MITEQ Inc	2089864	300005633	ev	-/-	-/-
8	B, C	Lowpass Filter (Chebyshev)	WLKX14-4700-4900- 21000-30SS	Wainwright Instruments GmbH	1	300005655	ev	-/-	-/-
9	А	High Pass Filter (Chebyshev)	WHNX6-8374- 10600-26500-40CC	Wainwright Instruments GmbH	1	300005656	ev	-/-	-/-
10	А	Std. Gain Horn Antenna 11.90- 18.00 GHz	1824-20	Flann	263	300002471	ev	-/-	-/-
11	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	ev	-/-	-/-
12	С	Breitband Doppelsteg- Hornantenne 0.5-6 GHz, 300 W	BBHA 9120 E	Schwarzbeck	212	300003214	vlKI!	22.06.2021	21.06.2024

© CTC advanced GmbH Page 11 of 47

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna e.g. 75 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] -20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μ W)

Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 12 of 47

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Spectrum Analyzer	FSW50	Rohde & Schwarz	101332	300005935	k	20.01.2022	31.01.2023
2	n. a.	Spectrum Analyzer	FSW50	Rohde & Schwarz	101560	300006179	k	19.03.2021	18.03.2022
3	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	30.06.2021	29.06.2022
4	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	29.10.2021	28.10.2023
5	n.a.	DC Power Supply, 60V, 10A	6038A	HP	2848A07027	300001174	vlKI!	08.12.2020	07.12.2023
6	n. a.	Temperature Test Chamber	T-40/50	CTS GmbH	064023	300003540	ev	08.05.2020	07.05.2022
7	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKI!	18.02.2019	17.02.2022
8	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKI!	21.01.2020 17.01.2022	20.01.2022 31.01.2024
9	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	23.01.2020 17.01.2022	22.01.2022 31.01.2024

© CTC advanced GmbH Page 13 of 47

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 14 of 47

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 47

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 47

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 17 of 47

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	±3%

© CTC advanced GmbH Page 18 of 47

10 Summary of measurement results

×	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
П	This test report is only a partial test report.
	The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR47 §15.207, §15.209, §15.250 RSS-210, RSS-Gen	see table	2022-02-14	-/-

Test specification clause	Test case	Temperature conditions	Power source	Pass	Fail	NA	NP	Remark
§15.250 (a), (b), (e)(4) RSS-210 K.2, K.4(d)	10 dB Bandwidth	Nominal	Nominal	×				complies
§15.209 §15.250 (d), (e)(1-3) RSS-210 K.3, K.4(a-c) RSS-Gen	TX Radiated Emissions	Nominal	Nominal	X				complies
§15.250(a), (e)(4) § 2.1055 RSS-210 K.2, K.4(d)	Frequency Stability	Nominal Extreme	Nominal Extreme	X				complies
§15.207 RSS-Gen 8.8	Conducted Emissions < 30 MHz	Nominal	Nominal			\boxtimes		-/-

Note: NA = Not Applicable; NP = Not Performed

11 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

© CTC advanced GmbH Page 19 of 47

Test mode:	No test mode available.
	Special test mode/software is used. Description of test mode as declared by customer: As a test signal a frame with 128 Bytes of randomized payload including checksum is transmitted once every 1ms. Modulation, transmission power and pulse generation parameters are equal to the application firmware. All frames are transmitted with the same power level regardless of frame length. This test signal gives a worst-case upper boundary for the application firmware's channel usage.

© CTC advanced GmbH Page 20 of 47

12 Measurement results

12.1 10 dB - Bandwidth

Description:

Measurement of the -10 dB bandwidth of the wanted signal.

§15.250(a)

The -10 dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions of operation including the effects from stepped frequency, frequency hopping or other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

§15.250(b)

The -10 dB bandwidth of the fundamental emission shall be at least 50 MHz. For transmitters that employ frequency hopping, stepped frequency or similar modulation types, measurement of the -10 dB minimum bandwidth specified in this paragraph shall be made with the frequency hop or step function disabled and with the transmitter operating continuously at a fundamental frequency following the provisions of § 15.31(m).

§15.250(e)(4)

The -10 dB bandwidth is based on measurement using a peak detector, a 1 MHz resolution bandwidth, and a video bandwidth greater than or equal to the resolution bandwidth.

© CTC advanced GmbH Page 21 of 47

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Video bandwidth:	1 MHz	
Resolution bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

Limits:

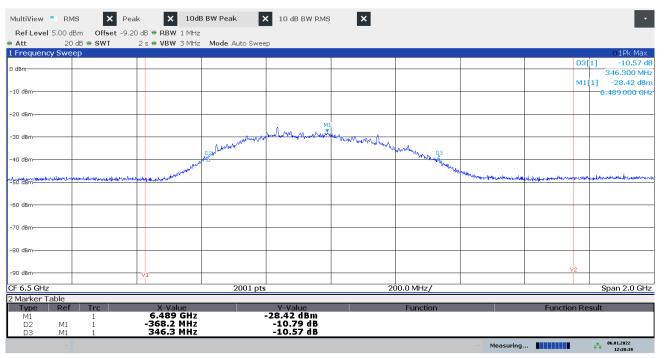
§15.250(a).

ì	310.200(a),
	Lower -10 dB point > 5925 MHz
	Upper -10 dB point < 7250 MHz

§15.250(b)

-10 dB bandwidth > 50 MHz

Results:


Lower -10 dB point [MHz]	Upper -10 dB point [MHz]	- 10 dB bandwidth [MHz]	Plot
6120.8	6835.3	714.5	1

Verdict: Compliant

© CTC advanced GmbH Page 22 of 47

Plot 1: -10 dB bandwidth

12:38:19 06.01.2022

© CTC advanced GmbH Page 23 of 47

12.2 TX Radiated Emissions

Description:

Measurement of the radiated emissions in transmit mode.

Measurement:

§15.250(d)(4), §15.209:

310.200(a)(1), 310.203.			
Measurement parameter			
Detector:	Peak/QPeak		
Sweep time:	1 s		
Resolution bandwidth:	120kHz		
Video bandwidth:	≥ RBW		
Trace-Mode:	Max Hold		

§15.250(d)(1):

Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

§15.250(d)(2):

Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Resolution bandwidth:	30 kHz / 1 kHz	
Video bandwidth:	300 kHz / 3 kHz	
Trace-Mode:	Max Hold	

§15.250(d)(3):

Measurement parameter			
Detector:	Pos-Peak		
Resolution bandwidth:	50 MHz		
Video bandwidth:	80 MHz		
Span:	Zero span		
Trace-Mode:	Max Hold		

© CTC advanced GmbH Page 24 of 47

Limits:

Radiated emissions at or below 960 MHz (§15.250(d)(4), §15.209):

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30	30 (29.5 dBμV/m)	30		
30 – 88	100 (40 dBμv/m)	3		
88 – 216	150 (43.5 dBμV/m)	3		
216 – 960	200 (46 dBμV/m)	3		
> 960	500 (54 dBμV/m)	3		

§15.250(d)

Emissions from a transmitter operating under this section shall not exceed the following equivalent isotropically radiated power (EIRP) density levels:

§15.250(d)(1)

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth:

<u>, </u>	3
Frequency in MHz	EIRP in dBm
960 to 1610	-75.3
1610 to 1990	-63.3
1990 to 3100	-61.3
3100 to 5925	-51.3
5925 to 7250	-41.3
7250 to 10600	-51.3
Above 10600	-61.3

§15.250(d)(2)

In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

§15.250(d)(3)

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs and this 50 MHz bandwidth must be contained within the 5925-7250 MHz band. The peak EIRP limit is 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed by the measurement instrument. RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than RBW. If RBW is greater than 3 MHz, the application for certification filed with the Commission shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

© CTC advanced GmbH Page 25 of 47

Further provisions of CFR 47 §15.250:

§15.250(d)(5)

Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in § 15.209 provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B of this part. Emissions from these digital circuits shall not be employed in determining the –10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

§15.250(e)(1)

All emissions at and below 960 MHz are based on measurements employing a CISPR quasi-peak detector. Unless otherwise specified, all RMS average emission levels specified in this section are to be measured utilizing a 1 MHz resolution bandwidth with a one millisecond dwell over each 1 MHz segment. The frequency span of the analyzer should equal the number of sampling bins times 1 MHz and the sweep rate of the analyzer should equal the number of sampling bins times one millisecond. The provision in § 15.35(c) that allows emissions to be averaged over a 100 millisecond period does not apply to devices operating under this section. The video bandwidth of the measurement instrument shall not be less than the resolution bandwidth and trace averaging shall not be employed. The RMS average emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

§15.250(e)(2)

The peak emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

§15.250(e)(3)

For transmitters that employ frequency hopping, stepped frequency or similar modulation types, the peak emission level measurement, the measurement of the RMS average emission levels, and the measurement to determine the frequency at which the highest level emission occurs shall be made with the frequency hop or step function active. Gated signals may be measured with the gating active. The provisions of § 15.31(c) continue to apply to transmitters that employ swept frequency modulation.

© CTC advanced GmbH Page 26 of 47

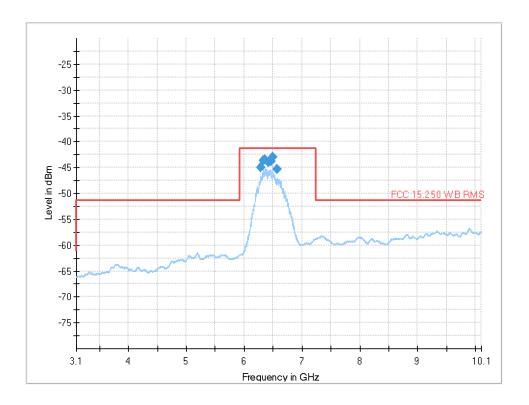
Results:

Fundamental emission:

Frequency f [MHz]	Max RMS power in dBm/MHz	Max Peak power in dBm/50 MHz	Plot
6489.643	-43.0	-4.28	2, 3

Emissions outside the band:

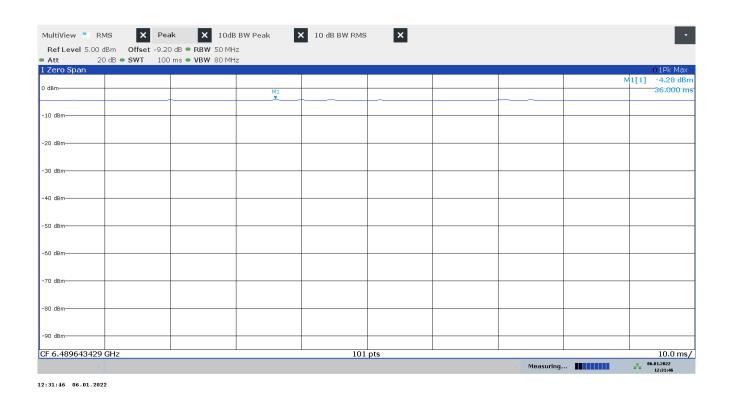
Frequency f [GHz]	Detector	Measured level [dBm]	Limit [dBm]	Margin [dB]
24.2338	RMS	-62.24	-61.3	0.94


Note: See plots below for additional information

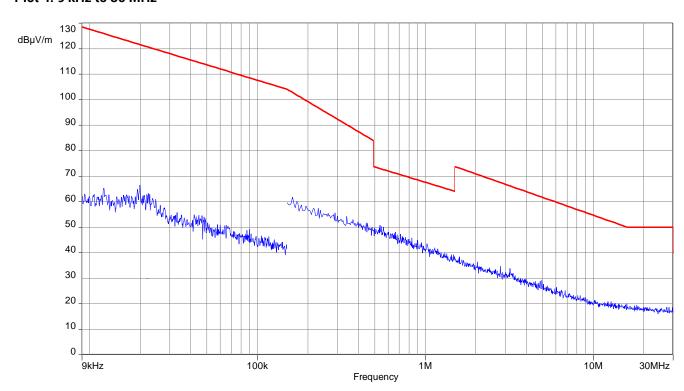
Verdict: Compliant

© CTC advanced GmbH Page 27 of 47

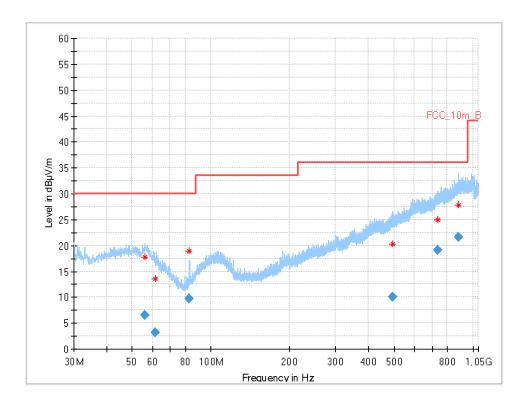
Plot 2: Fundamental emission: RMS



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
6291.121143	-45.02	-41.30	3.72	1000.000	٧	216.0	65.0	-116.7
6325.510143	-43.70	-41.30	2.40	1000.000	٧	216.0	62.0	-116.4
6360.894000	-43.42	-41.30	2.12	1000.000	V	215.0	64.0	-116.3
6422.846429	-43.92	-41.30	2.62	1000.000	V	216.0	61.0	-116.1
6458.185143	-43.88	-41.30	2.58	1000.000	٧	216.0	62.0	-116.1
6489.643429	-43.00	-41.30	1.70	1000.000	٧	215.0	63.0	-116.2
6575.060429	-45.36	-41.30	4.06	1000.000	V	217.0	56.0	-115.9

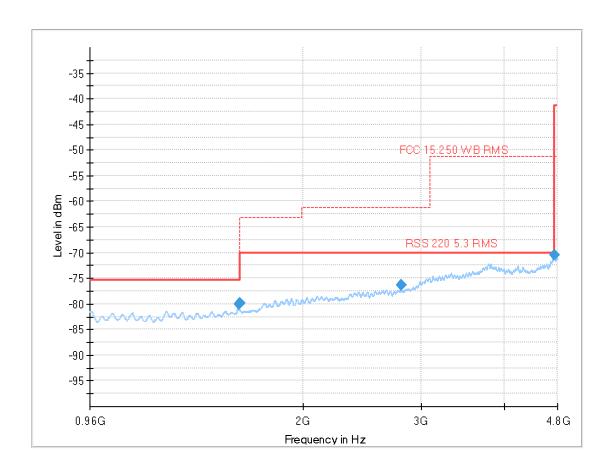

© CTC advanced GmbH Page 28 of 47

Plot 3: Fundamental emission: Max Peak


Plot 4: 9 kHz to 30 MHz

© CTC advanced GmbH Page 29 of 47

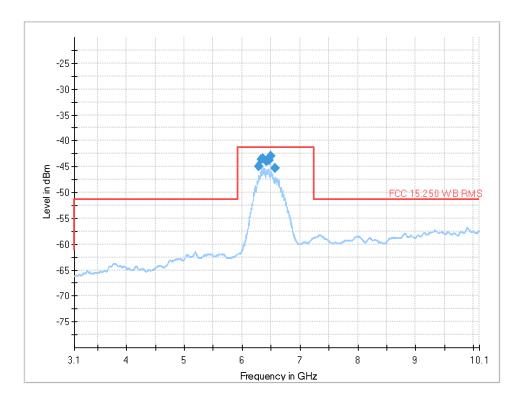
Plot 5: 30 MHz to 1 GHz



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
56.016	6.62	30.0	23.4	1000	120.0	351.0	٧	26	16
61.577	3.12	30.0	26.9	1000	120.0	276.0	Н	0	13
82.794	9.76	30.0	20.2	1000	120.0	311.0	Н	184	9
492.549	9.99	36.0	26.0	1000	120.0	400.0	Н	90	20
734.073	19.06	36.0	16.9	1000	120.0	139.0	Н	45	23
880.790	21.60	36.0	14.4	1000	120.0	131.0	V	139	25

© CTC advanced GmbH Page 30 of 47

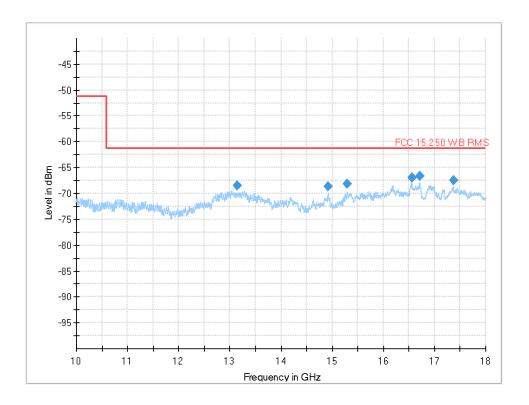
Plot 6: 960 MHz to 4.8 GHz



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1603.573000	-80.01	-75.30	4.71	1000.000	٧	35.0	5.0	-137.6
1606.656000	-80.01	-75.30	4.71	1000.000	V	95.0	9.0	-137.6
1607.168000	-79.93	-75.30	4.63	1000.000	٧	95.0	4.0	-137.6
2804.472000	-76.31	-61.30	15.01	1000.000	٧	75.0	15.0	-133.4
2804.839000	-76.31	-61.30	15.01	1000.000	٧	27.0	9.0	-133.4
4749.255000	-70.43	-51.30	19.13	1000.000	٧	222.0	11.0	-126.1

© CTC advanced GmbH Page 31 of 47

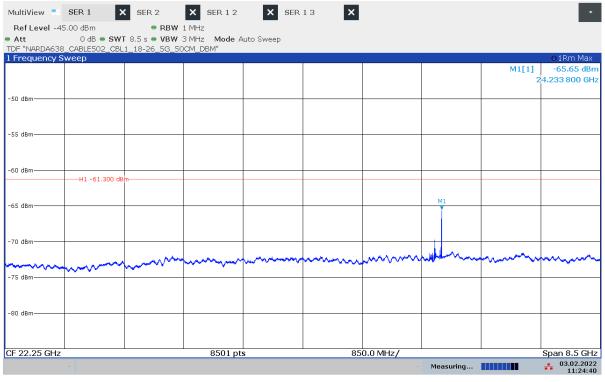
Plot 7: 3.1 GHz to 10.5 GHz



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
6291.121143	-45.02	-41.30	3.72	1000.000	V	216.0	65.0	-116.7
6325.510143	-43.70	-41.30	2.40	1000.000	V	216.0	62.0	-116.4
6360.894000	-43.42	-41.30	2.12	1000.000	V	215.0	64.0	-116.3
6422.846429	-43.92	-41.30	2.62	1000.000	V	216.0	61.0	-116.1
6458.185143	-43.88	-41.30	2.58	1000.000	٧	216.0	62.0	-116.1
6489.643429	-43.00	-41.30	1.70	1000.000	٧	215.0	63.0	-116.2
6575.060429	-45.36	-41.30	4.06	1000.000	V	217.0	56.0	-115.9

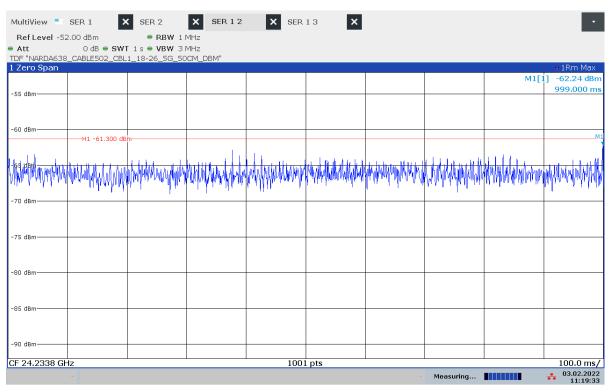
© CTC advanced GmbH Page 32 of 47

Plot 8: 10 GHz to 18 GHz



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
13138.810000	-68.41	-61.30	7.11	1000.000	٧	95.0	19.0	-124.8
14917.730000	-68.66	-61.30	7.36	1000.000	Н	235.0	165.0	-125.1
15292.807500	-68.22	-61.30	6.92	1000.000	V	12.0	135.0	-124.3
16556.918750	-66.92	-61.30	5.62	1000.000	Н	245.0	89.0	-121.6
16706.466250	-66.71	-61.30	5.41	1000.000	Н	215.0	136.0	-122.2
17369.031250	-67.47	-61.30	6.17	1000.000	Н	236.0	105.0	-121.5

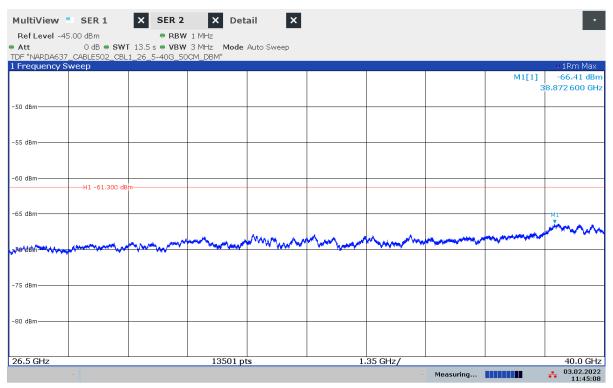
© CTC advanced GmbH Page 33 of 47



Plot 9: 18 GHz to 26.5 GHz

11:24:40 03.02.2022

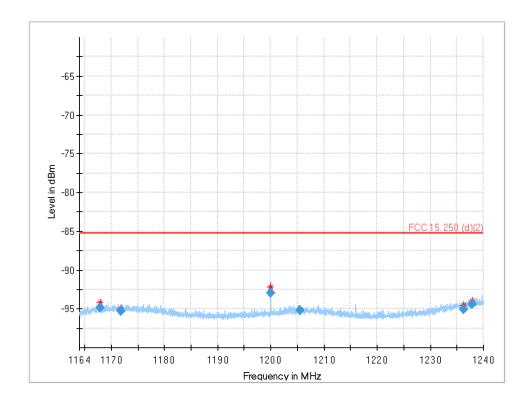
Plot 10: 18 GHz to 26.5 GHz, detail



11:19:33 03.02.2022

© CTC advanced GmbH Page 34 of 47

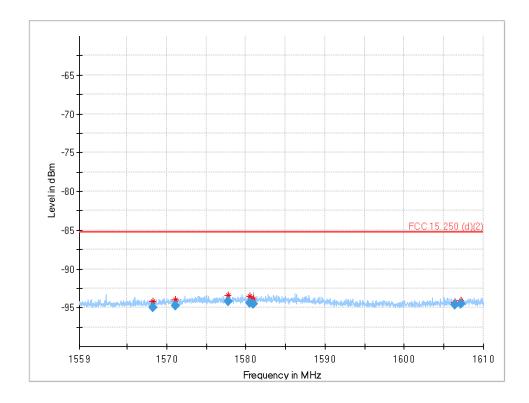
Plot 11: 26.5 GHz to 40.0 GHz



11:45:08 03.02.2022

© CTC advanced GmbH Page 35 of 47

Plot 12: 1164 MHz to 1240 MHz (§15.250 (d)(2), RSS-210 K.3(b))



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1167.983650	-94.85	-85.30	9.55	30.000	٧	-2.0	27.0	-139.6
1171.779447	-95.31	-85.30	10.01	30.000	Н	5.0	69.0	-139.5
1199.994707	-92.91	-85.30	7.61	30.000	٧	87.0	163.0	-139.5
1205.449670	-95.20	-85.30	9.90	30.000	٧	-4.0	121.0	-139.5
1236.300703	-95.06	-85.30	9.76	30.000	Н	2.0	107.0	-138.8
1237.926867	-94.44	-85.30	9.14	30.000	٧	-4.0	165.0	-138.7

© CTC advanced GmbH Page 36 of 47

Plot 13: 1559 MHz to 1610 MHz (§15.250 (d)(2), RSS-210 K.3(b))

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1568.260835	-94.97	-85.30	9.67	30.000	Н	-2.0	38.0	-137.8
1571.077175	-94.76	-85.30	9.46	30.000	Н	-5.0	155.0	-137.8
1577.744540	-94.17	-85.30	8.87	30.000	٧	-2.0	77.0	-137.8
1580.529350	-94.39	-85.30	9.09	30.000	٧	1.0	5.0	-137.7
1580.966330	-94.58	-85.30	9.28	30.000	Н	343.0	39.0	-137.7
1606.360625	-94.62	-85.30	9.32	30.000	Н	2.0	78.0	-137.9
1607.200145	-94.47	-85.30	9.17	30.000	Н	5.0	32.0	-137.9

© CTC advanced GmbH Page 37 of 47

12.3 Frequency Stability

Description:

§15.250(a)

The -10 dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions of operation including the effects from stepped frequency, frequency hopping or other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

Additional information: see chapter 12.1.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Video bandwidth:	1 MHz	
Resolution bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

Limits:

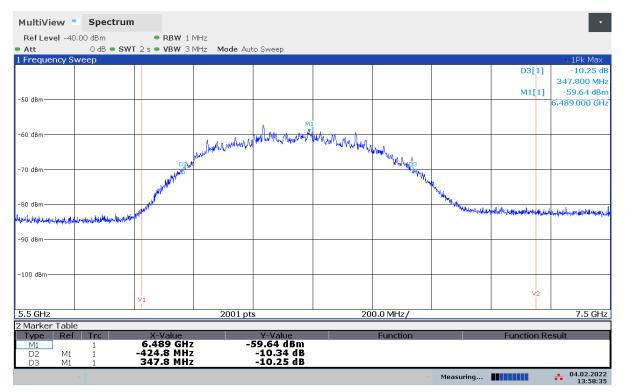
§ 1	5	2	5	n	a	١
v	J.		J	u	a	,

g13.230(a),		
	Lower -10 dB point > 5925 MHz	
	Upper -10 dB point < 7250 MHz	

§15.250(b)

-10 dB bandwidth > 50 MHz	•	3.0.200(2)
		-10 dB bandwidth > 50 MHz

© CTC advanced GmbH Page 38 of 47

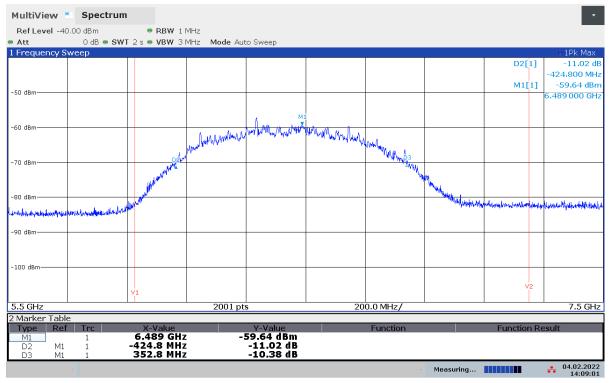


Results:

Test Condition	Lower -10 dB point [MHz]	Upper -10 dB point [MHz]	- 10 dB bandwidth [MHz]	Plot
-20 °C / V _{nom}	6064.2	6836.8	772.6	21
-10 °C / V _{nom}	6064.2	6841.8	777.6	22
0 °C / V _{nom}	6064.2	6843.8	779.6	23
+10 °C / V _{nom}	6074.2	6836.8	762.6	24
+20 °C / V _{min}	6110.2	6836.8	726.6	25
+20 °C / V _{nom}	6098.2	6835.8	737.6	26
+20 °C / V _{max}	6137.2	6835.8	698.6	27
+30 °C / V _{nom}	6097.2	6835.8	738.6	28
+40 °C / V _{nom}	6108.2	6834.8	726.6	29
+50 °C / V _{nom}	6105.2	6801.8	696.6	30
+60 °C / V _{nom}	6109.2	6800.8	691.6	31

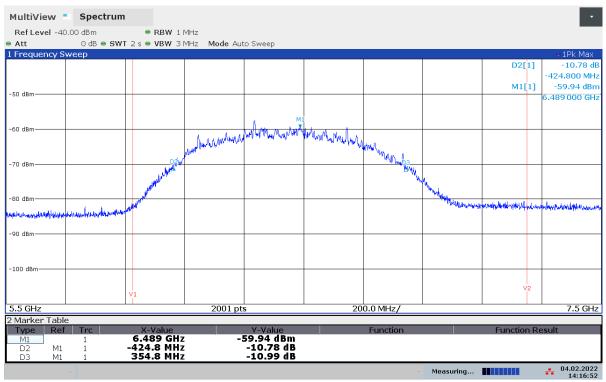
Verdict: Compliant

Plot 14: -20 °C, Vnom



13:58:36 04.02.2022

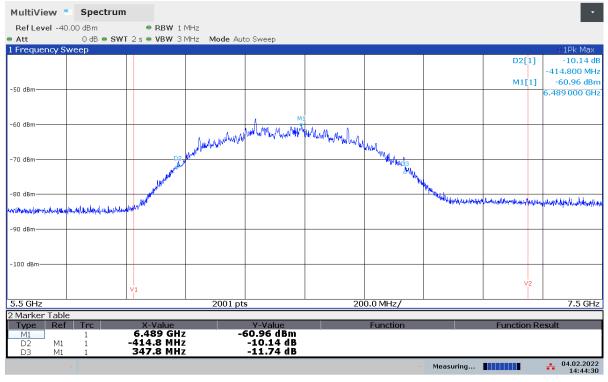
© CTC advanced GmbH Page 39 of 47



Plot 15: -10 °C, Vnom

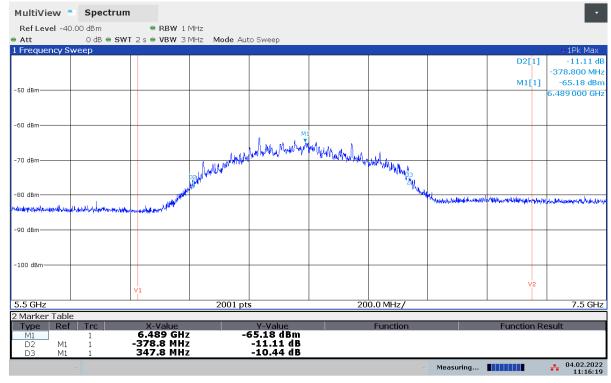
14:09:02 04.02.2022

Plot 16: 0 °C, Vnom



14:16:53 04.02.2022

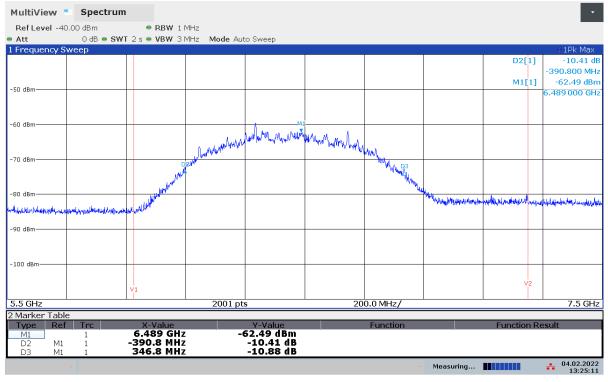
© CTC advanced GmbH Page 40 of 47



Plot 17: +10 °C, Vnom

14:44:30 04.02.2022

Plot 18: +20 °C, Vmin = 3.25 V (Note: below this value the DUT switches off automatically)



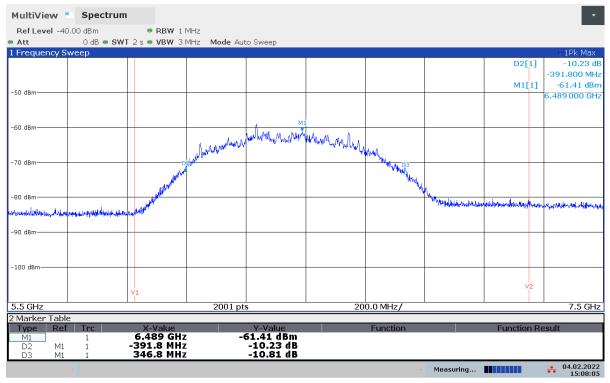
11:16:20 04.02.2022

© CTC advanced GmbH Page 41 of 47

Plot 19: +20 °C, Vnom

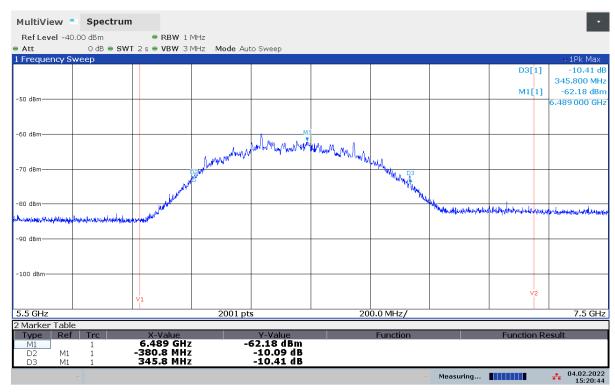
13:25:11 04.02.2022

Plot 20: +20 °C, Vmax



11:24:27 04.02.2022

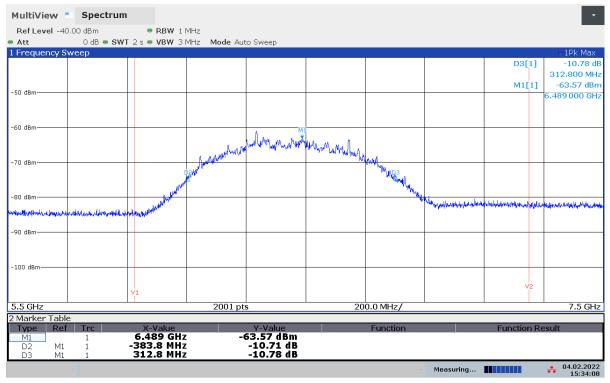
© CTC advanced GmbH Page 42 of 47



Plot 21: +30 °C, Vnom

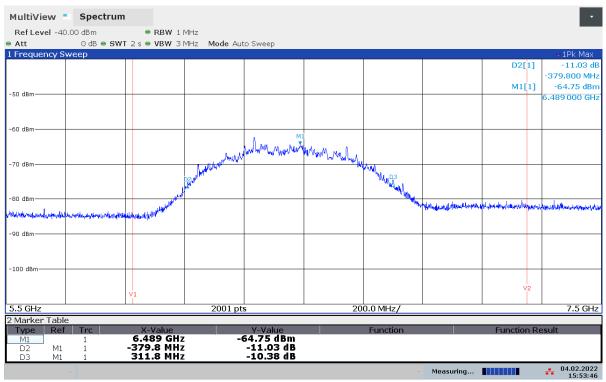
15:08:05 04.02.2022

Plot 22: +40 °C, Vnom



15:20:44 04.02.2022

© CTC advanced GmbH Page 43 of 47



Plot 23: +50 °C, Vnom

15:34:09 04.02.2022

Plot 24: +60 °C, Vnom

15:53:46 04.02.2022

© CTC advanced GmbH Page 44 of 47

12.4 Conducted emissions < 30MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Parameter			
Detector:	Peak - Quasi Peak / Average		
Sweep time:	Auto		
Video bandwidth:	F < 150 kHz: 200 Hz		
video balldwidtii.	F > 150 kHz: 9 kHz		
Resolution bandwidth:	F < 150 kHz: 1 kHz		
Resolution bandwidth.	F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace-Mode:	Max Hold		

Limits:

FCC			IC
CFR Part 15.207(a)		RSS-Gen 8.8	
Conducted Spurious Emi		Emissions < 30 MHz	
Frequency (MHz)	Quasi-Peak (dBµV)		Average (dBμV)
0.15 - 0.5	66 to 56*		56 to 46*
0.5 - 5	56		46
5 - 30.0	60		50

^{*}Decreases with the logarithm of the frequency

Results:

DUT employs battery power for operation.

Verdict: Not applicable

© CTC advanced GmbH Page 45 of 47

13 Glossary

	EUT	Equipment under test
	DUT	Device under test
	UUT	Unit under test
	GUE	GNSS User Equipment
	ETSI	European Telecommunications Standards Institute
	EN	European Standard
	FCC	Federal Communications Commission
	FCC ID	Company Identifier at FCC
	IC	Industry Canada
	PMN	Product marketing name
	HMN	Host marketing name
	HVIN	Hardware version identification number
	FVIN	Firmware version identification number
	EMC	Electromagnetic Compatibility
	HW	Hardware
	SW	Software
lı	nv. No.	Inventory number
	l or SN	Serial number
	С	Compliant
	NC	Not compliant
	NA	Not applicable
	NP	Not performed
	PP	Positive peak
	QP	Quasi peak
	AVG	Average
	ОС	Operating channel
	ocw	Operating channel bandwidth
	OBW	Occupied bandwidth
	ООВ	Out of band
	DFS	Dynamic frequency selection
	CAC	Channel availability check
	OP	Occupancy period
	NOP	Non occupancy period
	DC	Duty cycle
	PER	Packet error rate
	CW	Clean wave
	МС	Modulated carrier
	WLAN	Wireless local area network
	RLAN	Radio local area network
	DSSS	Dynamic sequence spread spectrum
	OFDM	Orthogonal frequency division multiplexing
	=::00	Frequency hopping spread spectrum
	FHSS	rrequericy hopping spread spectrum
	GNSS	Global Navigation Satellite System

© CTC advanced GmbH Page 46 of 47

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-02-14

15 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkhelmer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spitsimarkt 10 Europa-Allee S2 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by ordy Ossi-Ing. (Physical Eigens Head of Division) The certificate together with its owner reflects the sistus of the sine of the date of issue. The current stotus of the scape of accordations can be Josed in the disturband of accredited bodies of Describe Adventiberungsticle Gmb4. Integr/Inventible Content/Occredited-bodies-dodes.	The accreditation was granted gursuant to the Act on the Accreditation Body (A&Scallea) of 31 July 2009 (Federa Law Gazette Jr. 2625) and the Regulation (ES) No 785/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union, 128 of 9) July 2008, p. 20) DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation formul (AF) and International Laboratory Accreditation Coperation (ILIAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.upoean-accreditation.org ILAC: www.lac.org IAF: www.lac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf

© CTC advanced GmbH Page 47 of 47