

Certificate Number: 5055.02

TEST REPORT FOR WLAN TESTING

Report No.: SRTC2021-9004(F)-21082801(F)

Product Name: Smart Phone

Applicant: HMD global Oy

Manufacturer: HMD global Oy

Specification: FCC Part 15 Subpart C (2020)

FCC ID: 2AJOTTA-1390

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30 Shixing Street, Shijingshan District, Beijing, P.R.China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. GENERAL INFORMATION.....	2
1.1 Notes of the test report	2
1.2 Information about the testing laboratory	2
1.3 Applicant's details	2
1.4 Manufacturer's details.....	2
1.5 Test Environment.....	3
2 DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1Final Equipment Build Status	4
2.2 Description of Test Modes.....	5
2.2.1 Test Mode Applicability and Tested Channel Detail.....	5
2.3 EUT Operating conditions.....	6
2.4 Support Equipment	7
3 REFERENCE SPECIFICATION.....	8
4 KEY TO NOTES AND RESULT CODES.....	8
5 RESULT SUMMARY.....	9
6 TEST RESULT	10
6.1 Peak Power Output.....	10
6.2 6dB Bandwidth.....	11
6.3 Transmitter Power Spectral Density	12
6.4 Conducted Out of band emission measurement	13
6.5 Band-edge measurement	14
7 MEASUREMENT UNCERTAINTIES	16
8 TEST EQUIPMENTS.....	17
APPENDIX A – TEST DATA OF CONDUCTED EMISSION.....	18

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC). The test results relate only to individual items of the samples which have been tested. The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)
Address:	15th Building, No.30 Shixing Street, Shijingshan District, P.R.China
City:	Beijing
Country or Region:	P.R.China
Contacted person:	Liu Jia
Tel:	+86 10 57996183
Fax:	+86 10 57996388
Email:	liujiaf@srtc.org.cn

1.3 Applicant's details

Company:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo Finland
Contacted person:	Reza Serafat
Tel:	+491735287964
Email:	reza.serafat@hmdglobal.com

1.4 Manufacturer's details

Company:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo Finland

1.5 Test Environment

Date of Receipt of test sample at SRTC:	2021-08-22
Testing Start Date:	2021-08-22
Testing End Date:	2021-08-25

Environmental Data:	Temperature (°C)	Humidity (%)
Ambient:	25	50

Normal Supply Voltage (V d.c.):	3.85
---------------------------------	------

2 DESCRIPTION OF THE DEVICE UNDER TEST

2.1 Final Equipment Build Status

Frequency Band:	2.412GHz~2.462GHz
Number of Channel For 20MHz:	11
Number of Channel For 40MHz:	7
Modulation Type:	802.11b 802.11g 802.11n (HT20/HT40)
Power Supply:	Battery or Charger
Hardware Version:	V1.0
Software Version:	000T_0_315
IMEI or Sample:	359196240004435
Antenna type:	Refer to Note
Antenna connector:	Refer to Note

Note: Antenna requirement (FCC part 15.203)

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The antenna(s) of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Note: The antenna provides to the EUT, please refer to the following table:

Brand	Model	Antenna gain	Frequency band (GHz)	Antenna type	Connector Type
N/A	N/A	Ant7: -2.5dBi	2.4GHz~2.4835GHz	Integrated	N/A

The antenna gain is provided by the customer and involved in the calculation and influence of the test results. Our laboratory takes the value declared by the customer as the criterion, and the customer is responsible for the antenna gain value. Manufacturers ensure that their designs will not be modified by the user or third party's arbitrary antenna parameters and performance.

2.2 Description of Test Modes

11 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	---	---

2.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE \geq 1G	RE $<$ 1G	PLC	APCM	
-	✓	✓	✓	✓	-

Where

RE \geq 1G: Radiated Emission above 1GHz

RE $<$ 1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	1/6/11 For HT20 3/6/9 For HT40	DBPSK/BPSK	1,6, 6.5,13.5 8.6,17.2

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	1/6/11 For HT20 3/6/9 For HT40	DBPSK/BPSK	1,6, 6.5,13.5 8.6,17.2

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	6	DBPSK	1

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
1 to 11	1/6/11 For HT20 3/6/9 For HT40	DBPSK/BPSK	1,6, 6.5,13.5 8.6,17.2

2.3 EUT Operating conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

2.4 Support Equipment

The following support equipment was used to exercise the DUT during testing:

Equipment:	Battery
Manufacturer:	Guangdong Fenghua New Energy Co., Ltd.
Model Number:	P660

3 REFERENCE SPECIFICATION

Specification	Version	Title
FCC part15 Subpart C	2020	Intentional radiators
ANSI C63.10	2013	Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 558074D01 V05R02	April 2, 2019	Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules

4 KEY TO NOTES AND RESULT CODES

Code	Meaning
PASS	Test result shows that the requirements of the relevant specification have been met.
FAIL	Test result shows that the requirements of the relevant specification have not been met.
N/T	Test case is not tested.

5 RESULT SUMMARY

No.	Test case	Reference	Verdict
1	Transmitter Output Power	15.247(b)(3)	Pass
2	6dB Bandwidth	15.247(a)(2)	Pass
3	Transmitter Power Spectral Density	15.247(e))	Pass
4	Conducted Out of band emission measurement	15.247(d)	Pass
5	Band Edge	15.247(d)	Pass
6	Antenna requirement	15.203	Pass(refer to section 2.1)

This Test Report Is Issued by: Mr. Peng Zhen 	Checked by: Ms. Liu Jia
Tested by: Mr. Li Bin 	Issued date: 20210906

6 TEST RESULT

6.1 Peak Power Output

6.2.1 Test limit

Part15.247 (b) (3)

The maximum permissible conducted output power is 1 Watt.

6.2.2 Test Procedure Used

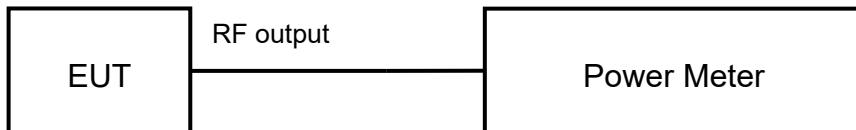
ANSI C63.10-2013 – Section 11.9.1.3

ANSI C63.10-2013 – Section 11.9.2.3.2

KDB 558074 D01 v05r02 – Section 8.3.1.3

6.2.3 Test Settings

Peak Power Measurement


The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

6.2.4 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.2.5 Test result

The test results are shown in Appendix A.

6.2 6dB Bandwidth

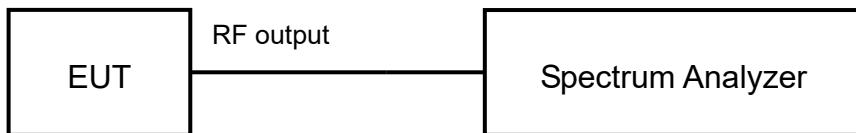
6.1.1 Test limit

Part15.247 (a) (2)

The minimum permissible 6dB bandwidth is 500 kHz

6.1.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2


KDB 558074 D01 v05r02 – Section 8.2

6.1.3 Test Settings

1. The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 100 kHz
3. VBW \geq 3 x RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize

6.1.4 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.1.5 Test result

The test results are shown in Appendix A.

6.3 Transmitter Power Spectral Density

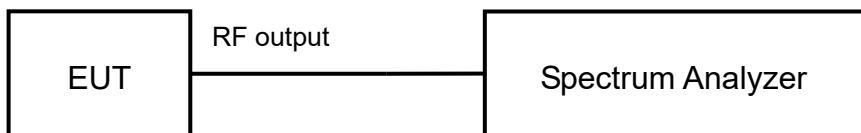
6.3.1 Test limit

Part15.247 (e)

The maximum permissible power spectral density is 8.0dBm in any 3 kHz band.

6.3.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD


KDB 558074 D01 v05r02 – Section 8.4

6.3.3 Test Settings

1. Analyzer was set to the center frequency of the DTS channel under investigation
2. Span = 1.5 times the DTS channel bandwidth
3. RBW = 3 kHz
4. VBW = 10 kHz
5. Detector = peak
6. Sweep time = auto couple
7. Trace mode = max hold
8. Trace was allowed to stabilize

6.3.4 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.3.5 Test result

The test results are shown in Appendix A.

6.4 Conducted Out of band emission measurement

6.4.1 Test limit

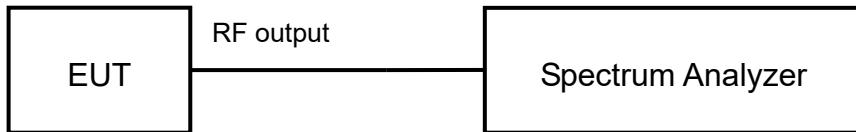
Part 15.247(d): The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth.

6.4.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3
KDB 558074 D01 v05r02 – Section 8.5

6.4.3 Reference level measurement Settings

Establish a reference level by using the following procedure:


- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 MHz
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ 300 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

6.4.4 Test Settings

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ 300 kHz.
- d) Detector = peak.
- e) Set span to encompass the spectrum to be examined
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

6.4.5 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.4.6 Test result

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. The test results are shown in Appendix A.

6.5 Band-edge measurement

6.5.1 Test limit

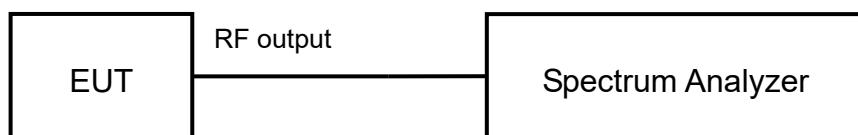
Part 15.247(d): The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth.

6.5.2 Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3
KDB 558074 D01 v05r02 – Section 8.7.2

6.5.3 Reference level measurement Settings

Establish a reference level by using the following procedure:


- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 MHz
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ 300 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

6.5.4 Test Settings

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ 300 kHz.
- d) Detector = peak.
- e) Set span to encompass the spectrum to be examined
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

6.5.5 Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

6.5.6 Test result

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. The test results are shown in Appendix A.

7 MEASUREMENT UNCERTAINTIES

Items	Uncertainty	
6dB Bandwidth	3kHz	
Peak power output	0.67dB	
Transmitter Power Spectral Density	0.75dB	
Band edge compliance	1.20dB	
Conducted Out of band emission measurement	30MHz~1GHz	2.83dB
	1GHz~12.75GHz	2.50dB
	12.75GHz~25GHz	2.75dB

8 TEST EQUIPMENTS

No.	Name/ Model	Manufacturer	S/N	Cal date	Cal Due date
1.	Spectrum Analyzer / FSV40	R&S	101065	2021.06.21	2022.06.20
2.	Spectrum Analyzer / FSW	R&S	101581	2021.02.19	2022.02.18
3.	Signal Analyzer / N9020A	Agilent	MY48010771	2021.05.18	2022.05.17
4.	Bluetooth Test Set / MT8852B	Anritsu	1329003	2021.06.21	2022.06.20
5.	Power Divider / 11667A	HP	19632	2021.06.21	2022.06.20
6.	Power Meter E4416A	Agilent	MY52370013	2021.04.13	2022.04.12
7.	Power Sensor E9323A	Agilent	MY52150008	2021.04.13	2022.04.12
8.	Signal Generator / SMBV100A	R&S	260910	2021.06.21	2022.06.20
9.	Temperature chamber / SH241	ESPEC	92013758	2021.06.21	2022.06.20
10.	Fully-Anechoic Chamber / 12.65m×8.03m×7.50m	FRANKONIA	----	----	----
11.	Semi-Anechoic/Chamber / 23.18m×16.88m×9.60m	FRANKONIA	---	----	----
12.	Turn table Diameter:1m	FRANKONIA	----	----	----
13.	Turn table Diameter:5m	FRANKONIA	----	----	----
14.	Antenna master FAC(MA4.0)	MATURO	----	----	----
15.	Antenna master SAC(MA4.0)	MATURO	----	----	----
16.	Shielding room / 9.080m×5.255m×3.525m	FRANKONIA	----	----	----
17.	Double-Ridged Waveguide Horn Antenna / HF 907	R&S	100512	2021.06.21	2022.06.20
18.	Double-Ridged Waveguide Horn Antenna / HF 907	R&S	100513	2021.06.21	2022.06.20
19.	Ultra log antenna / HL562	R&S	100016	2021.06.21	2022.06.20
20.	Receive antenna /3160-09	SCHWARZ-BECK	002058-002	2021.06.21	2022.06.20
21.	EMI test receiver / ESI 40	R&S	100015	2021.06.21	2022.06.20
22.	EMI test receiver / ESCS30	R&S	100029	2021.06.21	2022.06.20
23.	Receive antenna / HL562	R&S	100167	2021.06.21	2022.06.20
24.	AMN / ENV216	R&S	3560.6550.12	2021.06.21	2022.06.20
25.	WLAN AP WIA3300-20	SKSpruce	8152017060700339	---	---
26.	Notebook E470c	Lenovo	PF10UZW7	---	---

APPENDIX A – TEST DATA OF CONDUCTED EMISSION

Please refer to the attachment.