

Certificate Number: 5055.02

TEST REPORT FOR

BLUETOOTH TESTING

Report No.: SRTC2021-9004(F)-21082801(D)

Product Name: Smart Phone

Applicant: HMD global Oy

Manufacturer: HMD global Oy

Specification: FCC Part 15 Subpart C (2020)

FCC ID: 2AJOTTA-1390

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30 Shixing Street, Shijingshan District, Beijing, P.R.China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. GENERAL INFORMATION	2
1.1 Notes of the test report	2
1.2 Information about the testing laboratory	2
1.3 Applicant's details	2
1.4 Manufacturer's details.....	2
1.5 Test Environment.....	3
2 DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1 Final Equipment Build Status.....	4
2.2 Description of Test Modes.....	5
2.2.1 Test Mode Applicability and Tested Channel Detail.....	5
2.3 Duty Cycle of Test Signal.....	7
2.4 EUT operating conditions.....	7
2.5 Support Equipment	7
3 REFERENCE SPECIFICATION.....	8
4 KEY TO NOTES AND RESULT CODES.....	8
5 RESULT SUMMARY.....	9
6 TEST RESULT	10
6.1 20dB Bandwidth.....	10
6.2 Channel Separation	11
6.3 Peak Transmitter Output Power	12
6.4 Dwell Time	13
6.5 Number of Hopping Frequencies.....	14
6.6 Conducted out of band emission measurement.....	15
6.7 Band-edge measurement	16
7 MEASUREMENT UNCERTAINTIES	17
8 TEST EQUIPMENTS.....	18
APPENDIX A – TEST DATA OF CONDUCTED EMISSION.....	19

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC). The test results relate only to individual items of the samples which have been tested. The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)
Address:	15th Building, No.30 Shixing Street, Shijingshan District, P.R.China
City:	Beijing
Country or Region:	P.R.China
Contacted person:	Liu Jia
Tel:	+86 10 57996183
Fax:	+86 10 57996388
Email:	liujiaf@srtc.org.cn

1.3 Applicant's details

Company:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo Finland
Contacted person:	Reza Serafat
Tel:	+491735287964
Email:	reza.serafat@hmdglobal.com

1.4 Manufacturer's details

Company:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo Finland

1.5 Test Environment

Date of Receipt of test sample at SRTC:	2021-08-22
Testing Start Date:	2021-08-22
Testing End Date:	2021-08-25

Environmental Data:	Temperature (°C)	Humidity (%)
Ambient:	25	50

Normal Supply Voltage (V d.c.):	3.85
---------------------------------	------

2 DESCRIPTION OF THE DEVICE UNDER TEST

2.1 Final Equipment Build Status

Frequency Range:	2.402GHz~2.480GHz
Number of Channel:	79
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Duplex Mode:	TDD
Channel Spacing:	1MHz
Data Rate:	1Mbps, 2 Mbps, 3 Mbps
Power Supply:	Battery or Charger
Hardware Version:	V1.0
Software Version:	000T_0_315
IMEI:	359196240004435
Antenna type:	Refer to Note1
Antenna connector:	Refer to Note1

Antenna requirement (FCC part 15.203)

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The antenna(s) of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Note1: The antenna provide to the EUT, please refer to the following table:

Brand	Model	Antenna gain	Frequency range(GHz)	Antenna type	Connector Type
N/A	N/A	-2.5dBi	2.402GHz~2.480GHz	Integrated	N/A

Manufacturers ensure that their designs will not be modified by the user or third parties arbitrary antenna parameters and performance. The EUT complies with the requirement of §15.203.

2.2 Description of Test Modes

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)								
0	2402	16	2418	32	2434	48	2450	64	2466
1	2403	17	2419	33	2435	49	2451	65	2467
2	2404	18	2420	34	2436	50	2452	66	2468
3	2405	19	2421	35	2437	51	2453	67	2469
4	2406	20	2422	36	2438	52	2454	68	2470
5	2407	21	2423	37	2439	53	2455	69	2471
6	2408	22	2424	38	2440	54	2456	70	2472
7	2409	23	2425	39	2441	55	2457	71	2473
8	2410	24	2426	40	2442	56	2458	72	2474
9	2411	25	2427	41	2443	57	2459	73	2475
10	2412	26	2428	42	2444	58	2460	74	2476
11	2413	27	2429	43	2445	59	2461	75	2477
12	2414	28	2430	44	2446	60	2462	76	2478
13	2415	29	2431	45	2447	61	2463	77	2479
14	2416	30	2432	46	2448	62	2464	78	2480
15	2417	31	2433	47	2449	63	2465		

2.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE \geq 1G	RE < 1G	PLC	APCM	
GFSK, π/4DQPSK, 8DPSK	✓	✓	✓	✓	-

Where

RE \geq 1G: Radiated Emission above 1GHz

RE < 1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 78	39	GFSK, π/4DQPSK, 8DPSK	1Mbps, 2 Mbps, 3 Mbps

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 78	39	GFSK, $\pi/4$ DQPSK, 8DPSK	1Mbps, 2 Mbps, 3 Mbps

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 78	39	GFSK, $\pi/4$ DQPSK, 8DPSK	1Mbps, 2 Mbps, 3 Mbps

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 78	0, 39, 78	GFSK, $\pi/4$ DQPSK, 8DPSK	1Mbps, 2 Mbps, 3 Mbps

2.3 Duty Cycle of Test Signal

Modulation Type	Duty Cycle	Correction factor(dB)
GFSK(DH5)	77.07%	1.13
$\pi/4$ DQPSK(DH5)	63.47%	1.97
8DPSK(DH5)	77.07%	1.13

2.4 EUT operating conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

2.5 Support Equipment

The following support equipment was used to exercise the DUT during testing:

Equipment:	Battery
Manufacturer:	Guangdong Fenghua New Energy Co., Ltd.
Model Number:	P660

3 REFERENCE SPECIFICATION

Specification	Version	Title
FCC part15 Subpart C	2020	Intentional radiators
ANSI C63.10	2013	Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 558074D01 V05R02r02	April 2, 2019	Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules

4 KEY TO NOTES AND RESULT CODES

Code	Meaning
PASS	Test result shows that the requirements of the relevant specification have been met.
FAIL	Test result shows that the requirements of the relevant specification have not been met.
N/T	Test case is not tested.

5 RESULT SUMMARY

No.	Test case	Reference	Verdict
1	20dB Bandwidth	15.247(a)(1)(iii)	Pass
2	Channel Separation	15.247(a)(1)	Pass
3	Peak Transmitter Output Power	15.247(b)(1)	Pass
4	Dwell Time	15.247(a)(1)(iii)	Pass
5	Number of Hopping Frequencies	15.247(a)(1)(iii)	Pass
6	Conducted out of band emission measurement	15.247(d)	Pass
7	Band-edge	15.247(d)	Pass
8	Antenna requirement	15.203	Pass(refer to section 2.1)

Note: The device is designed according to specifications of SIG, So it has a full support to Medium access protocol and fully compliant with the KDB558074 standard. The device is compliant Pseudorandom hopping, Equal hopping frequency, receiver bandwidth synchronize and have same bandwidth with transmitted signal. And the ability to have adaptive hopping when encountering other signals.

This Test Report Is Issued by: Mr. Peng Zhen 	Checked by: Ms. Liu Jia
Tested by: Mr. Li Bin 	Issued date: 20210906

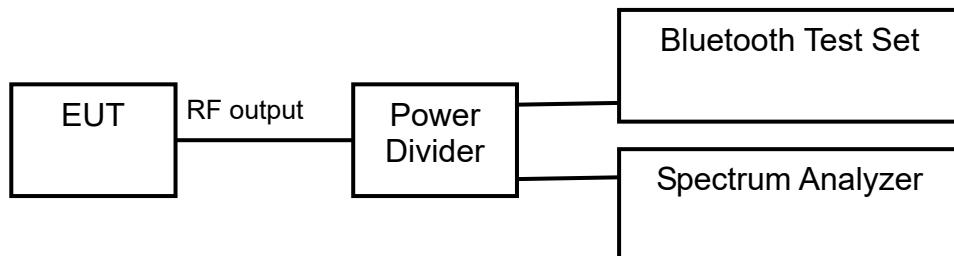
6 TEST RESULT

6.1 20dB Bandwidth

6.1.1 Test limit

FCC Part15.247 (a.1.iii)

The bandwidth at 20dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.


6.1.2 Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2

6.1.3 Test settings

1. The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 20dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 20. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 – 5% OBW
3. VBW \geq 3 x RBW
4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
5. Detector = Peak
6. Trace mode = max hold
7. Sweep = auto couple
8. The trace was allowed to stabilize

6.1.4 Test Setup

6.1.5 Test result

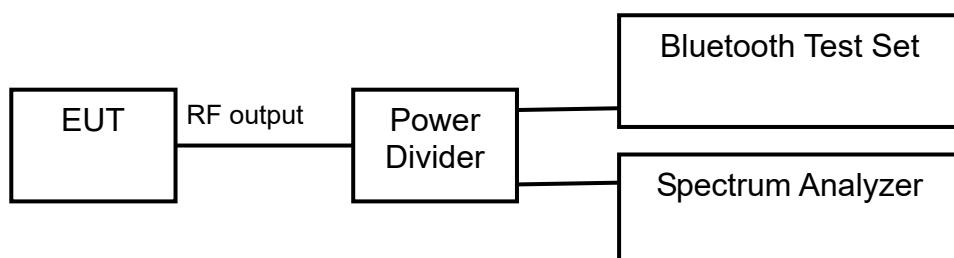
The test results are shown in Appendix A.

6.2 Channel Separation

6.2.1 Test limit

FCC Part15.247 (a) (1)

Measurement is made with EUT operating in hopping mode. The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.


6.2.2 Test Procedure Used

ANSI C63.10-2013 – Section 7.8.2

6.2.3 Test Settings

1. Span = Wide enough to capture peaks of two adjacent channels
2. RBW = 30% of channel spacing. Adjust as necessary to best identify center of each individual channel
3. VBW \geq RBW
4. Sweep = Auto
5. Detector = Peak
6. Trace mode = max hold
7. The trace was allowed to stabilize.
8. Marker-delta function used to determine separation between peaks of the adjacent channels

6.2.4 Test Setup

6.2.5 Test result

The test results are shown in Appendix A.

6.3 Peak Transmitter Output Power

6.3.1 Test limit

FCC Part 15.247(b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW) →

Modulation type	GFSK	$\pi/4$ DQPSK	8DPSK
Maximum Output Power	30.0dBm	30.0dBm	30.0dBm

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW) →

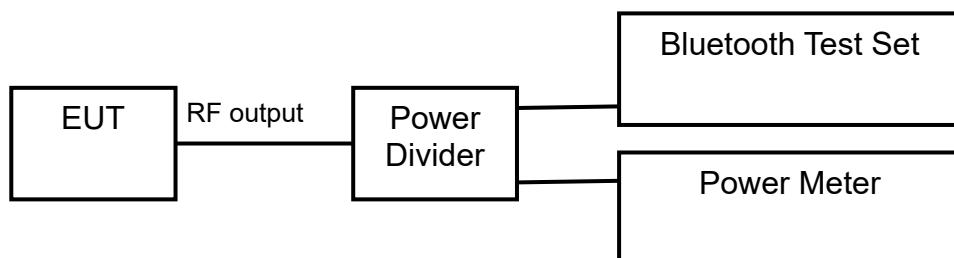
Modulation type	GFSK	$\pi/4$ DQPSK	8DPSK
Maximum Output Power	21.0dBm	21.0dBm	21.0dBm

6.3.2 Test Procedure Used

ANSI C63.10-2013 – Section 7.8.5

ANSI C63.10-2013 – Section 11.9.2.3.2 method AVGPM-G

6.3.3 Test Settings


Peak Power Measurement

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than the occupied bandwidth.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

6.3.4 Test Setup

6.3.5 Test result

The test results are shown in Appendix A.

6.4 Dwell Time

6.4.1 Test Description

The Equipment under Test (EUT) was set up in a shielded room to perform the dwell time measurements.

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss.

The time slot length is measured of three different packet types which are available in the Bluetooth technology. Those are DH1, DH3 and DH5 packets. The dwell time is calculated by:

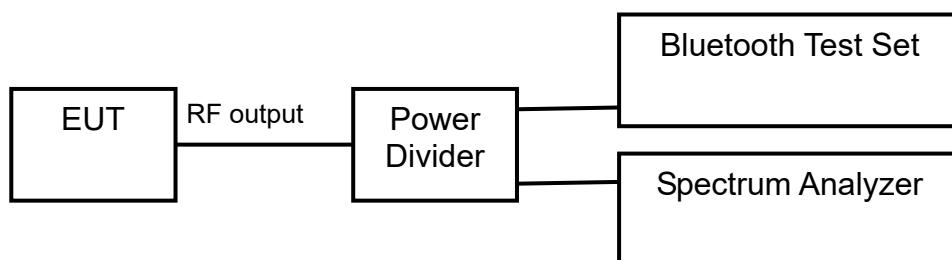
Dwell time = time slot length * hop rate * 31.6/ number of hopping channels with:

- hop rate=1600/2 * 1/s for DH1 packets =800
- hop rate=1600/4 * 1/s for DH3 packets =400
- hop rate=1600/6 * 1/s for DH5 packets =266.67
- Number of hopping channels=79
- 31.6 s=0.4 seconds multiplied by the number of hopping channels=0.4s * 79

6.4.2 Test limit

FCC Part 15.247(a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

6.4.3 Test Settings

ANSI C63.10-2013 Section 7.8.4

1. Span = zero span, centered on a hopping channel
2. RBW \leq channel spacing and $\gg 1/T$, where T is expected dwell time per channel
3. Sweep = as necessary to capture entire dwell time. Second plot may be required to demonstrate two successive hops on a channel
4. Trigger is set with appropriate trigger delay to place pulse near the center of the plot
5. Detector = peak
6. Trace mode = max hold
7. Marker-delta function used to determine transmit time per hop

6.4.4 Test Setup

6.4.5 Test result

The test results are shown in Appendix A.

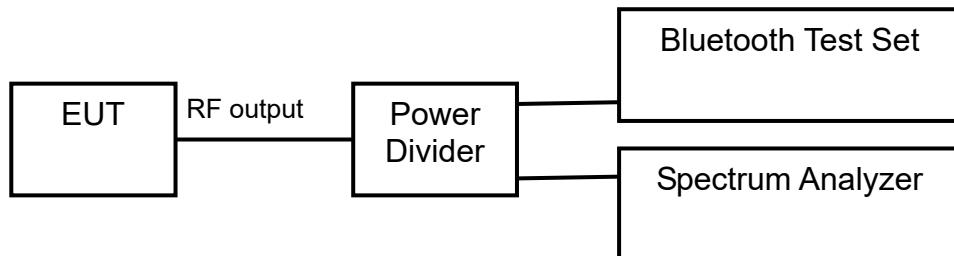
6.5 Number of Hopping Frequencies

6.5.1 Test Description

The Equipment under Test (EUT) was set up in a shielded room to perform the number of hopping frequencies measurement. The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss.

6.5.2 Test limit

FCC Part15.247 (a) (1) (iii)


Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

6.5.3 Test Settings

ANSI C63.10-2013 Section 7.8.3

1. Span = frequency of band of operation (divided into two plots)
2. RBW < 30% of channel spacing or 20dB bandwidth, whichever is smaller.
3. VBW \geq RBW
4. Sweep = auto
5. Detector = peak
6. Trace mode = max hold
7. Trace was allowed to stabilize

6.5.4 Test Setup

6.5.5 Test result

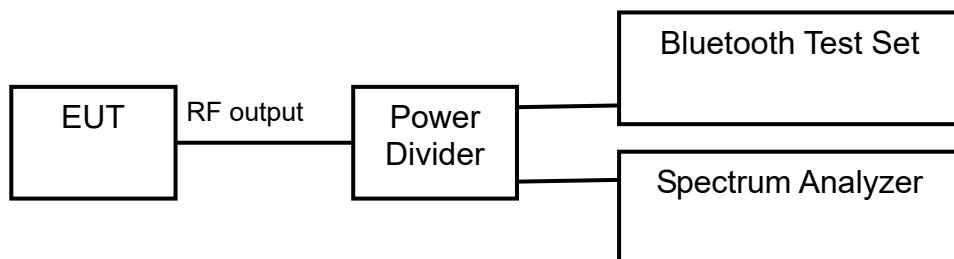
The test results are shown in Appendix A.

6.6 Conducted out of band emission measurement

6.6.1 Test limit

FCC Part15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.


6.6.2 Test Procedure Used

ANSI C63.10-2013 – Section 7.8.8

6.6.3 Test Settings

1. Start frequency was set to 30MHz and stop frequency was set to 26GHz
2. RBW = 1MHz* (See note below)
3. VBW = 3MHz
4. Detector = Peak
5. Trace mode = max hold
6. Sweep time = auto couple
7. The trace was allowed to stabilize

6.6.4 Test Setup

6.6.5 Test result

The test results are shown in Appendix A .

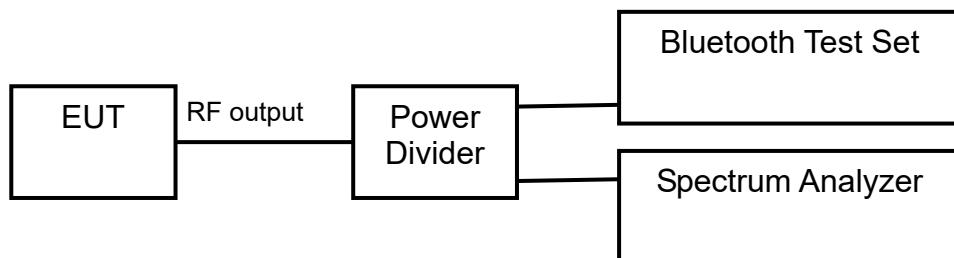
The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

6.7 Band-edge measurement

6.7.1 Test limit

FCC Part15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.


6.7.2 Test Procedure Used

ANSI C63.10-2013 – Section 6.10.4

6.7.3 Test Settings

1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
2. Span was set large enough so as to capture all out of band emissions near the band edge
3. RBW = 100 kHz
4. VBW = 300 kHz
5. Detector = Peak
6. Number of sweep points $\geq 2 \times \text{Span}/\text{RBW}$
7. Trace mode = max hold
8. Sweep time = auto couple
9. The trace was allowed to stabilize

6.7.4 Test Setup

6.7.6 Test result

The test results are shown in Appendix A.

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

7 MEASUREMENT UNCERTAINTIES

Items	Uncertainty	
6dB Bandwidth	3kHz	
Peak power output	0.67dB	
Band edge compliance	1.20dB	
Conducted Out of band emission measurement	30MHz~1GHz	2.83dB
	1GHz~12.75GHz	2.50dB
	12.75GHz~25GHz	2.75dB

8 TEST EQUIPMENTS

No.	Name/ Model	Manufacturer	S/N	Cal date	Cal Due date
1.	Spectrum Analyzer / FSV40	R&S	101065	2021.06.21	2022.06.20
2.	Spectrum Analyzer / FSW	R&S	101581	2021.02.19	2022.02.18
3.	Signal Analyzer / N9020A	Agilent	MY48010771	2021.05.18	2022.05.17
4.	Bluetooth Test Set / MT8852B	Anritsu	1329003	2021.06.21	2022.06.20
5.	Power Divider / 11667A	HP	19632	2021.06.21	2022.06.20
6.	Power Meter E4416A	Agilent	MY52370013	2021.04.13	2022.04.12
7.	Power Sensor E9323A	Agilent	MY52150008	2021.04.13	2022.04.12
8.	Signal Generator / SMBV100A	R&S	260910	2021.06.21	2022.06.20
9.	Temperature chamber / SH241	ESPEC	92013758	2021.06.21	2022.06.20
10.	Fully-Anechoic Chamber / 12.65m×8.03m×7.50m	FRANKONIA	----	----	----
11.	Semi-Anechoic/Chamber / 23.18m×16.88m×9.60m	FRANKONIA	---	----	----
12.	Turn table Diameter:1m	FRANKONIA	----	----	----
13.	Turn table Diameter:5m	FRANKONIA	----	----	----
14.	Antenna master FAC(MA4.0)	MATURO	----	----	----
15.	Antenna master SAC(MA4.0)	MATURO	----	----	----
16.	Shielding room / 9.080m×5.255m×3.525m	FRANKONIA	----	----	----
17.	Double-Ridged Waveguide Horn Antenna / HF 907	R&S	100512	2021.06.21	2022.06.20
18.	Double-Ridged Waveguide Horn Antenna / HF 907	R&S	100513	2021.06.21	2022.06.20
19.	Ultra log antenna / HL562	R&S	100016	2021.06.21	2022.06.20
20.	Receive antenna /3160-09	SCHWARZ-BECK	002058-002	2021.06.21	2022.06.20
21.	EMI test receiver / ESI 40	R&S	100015	2021.06.21	2022.06.20
22.	EMI test receiver / ESCS30	R&S	100029	2021.06.21	2022.06.20
23.	Receive antenna / HL562	R&S	100167	2021.06.21	2022.06.20
24.	AMN / ENV216	R&S	3560.6550.12	2021.06.21	2022.06.20
25.	WLAN AP WIA3300-20	SKSpruce	8152017060700339	---	---
26.	Notebook E470c	Lenovo	PF10UZW7	---	---

APPENDIX A – TEST DATA OF CONDUCTED EMISSION

Please refer to the attachment.