

|       |     |                                                      |               |      |             |
|-------|-----|------------------------------------------------------|---------------|------|-------------|
| 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)          | 5G NR FR1 TDD | 7.89 | $\pm 9.6\%$ |
| 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)          | 5G NR FR1 TDD | 7.87 | $\pm 9.6\%$ |
| 10803 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)         | 5G NR FR1 TDD | 7.93 | $\pm 9.6\%$ |
| 10805 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)        | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10806 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)        | 5G NR FR1 TDD | 8.37 | $\pm 9.6\%$ |
| 10809 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)        | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10810 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)        | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10812 | AAC | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)        | 5G NR FR1 TDD | 8.35 | $\pm 9.6\%$ |
| 10817 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)        | 5G NR FR1 TDD | 8.35 | $\pm 9.6\%$ |
| 10818 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10819 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.33 | $\pm 9.6\%$ |
| 10820 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.30 | $\pm 9.6\%$ |
| 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10822 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.36 | $\pm 9.6\%$ |
| 10824 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.39 | $\pm 9.6\%$ |
| 10825 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10827 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.42 | $\pm 9.6\%$ |
| 10828 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 8.43 | $\pm 9.6\%$ |
| 10829 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 8.40 | $\pm 9.6\%$ |
| 10830 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.63 | $\pm 9.6\%$ |
| 10831 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.73 | $\pm 9.6\%$ |
| 10832 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.74 | $\pm 9.6\%$ |
| 10833 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.70 | $\pm 9.6\%$ |
| 10834 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.75 | $\pm 9.6\%$ |
| 10835 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.70 | $\pm 9.6\%$ |
| 10836 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.66 | $\pm 9.6\%$ |
| 10837 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.68 | $\pm 9.6\%$ |
| 10839 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.70 | $\pm 9.6\%$ |
| 10840 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)          | 5G NR FR1 TDD | 7.67 | $\pm 9.6\%$ |
| 10841 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)         | 5G NR FR1 TDD | 7.71 | $\pm 9.6\%$ |
| 10843 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)        | 5G NR FR1 TDD | 8.49 | $\pm 9.6\%$ |
| 10844 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)        | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10846 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)        | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10854 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10855 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.36 | $\pm 9.6\%$ |
| 10856 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.37 | $\pm 9.6\%$ |
| 10857 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.35 | $\pm 9.6\%$ |
| 10858 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.36 | $\pm 9.6\%$ |
| 10859 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.34 | $\pm 9.6\%$ |
| 10860 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10861 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.40 | $\pm 9.6\%$ |
| 10863 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10864 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.37 | $\pm 9.6\%$ |
| 10865 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)      | 5G NR FR1 TDD | 8.41 | $\pm 9.6\%$ |
| 10866 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10868 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.89 | $\pm 9.6\%$ |
| 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)     | 5G NR FR2 TDD | 5.75 | $\pm 9.6\%$ |
| 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)  | 5G NR FR2 TDD | 5.86 | $\pm 9.6\%$ |
| 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)    | 5G NR FR2 TDD | 5.75 | $\pm 9.6\%$ |
| 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | $\pm 9.6\%$ |
| 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)    | 5G NR FR2 TDD | 6.61 | $\pm 9.6\%$ |
| 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | $\pm 9.6\%$ |
| 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)        | 5G NR FR2 TDD | 7.78 | $\pm 9.6\%$ |
| 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)     | 5G NR FR2 TDD | 8.39 | $\pm 9.6\%$ |
| 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)       | 5G NR FR2 TDD | 7.95 | $\pm 9.6\%$ |
| 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)    | 5G NR FR2 TDD | 8.41 | $\pm 9.6\%$ |
| 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)       | 5G NR FR2 TDD | 8.12 | $\pm 9.6\%$ |
| 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)    | 5G NR FR2 TDD | 8.38 | $\pm 9.6\%$ |
| 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)      | 5G NR FR2 TDD | 5.75 | $\pm 9.6\%$ |
| 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)   | 5G NR FR2 TDD | 5.96 | $\pm 9.6\%$ |
| 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)     | 5G NR FR2 TDD | 6.57 | $\pm 9.6\%$ |
| 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)  | 5G NR FR2 TDD | 6.53 | $\pm 9.6\%$ |
| 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)     | 5G NR FR2 TDD | 6.61 | $\pm 9.6\%$ |

|       |     |                                                     |               |      |             |
|-------|-----|-----------------------------------------------------|---------------|------|-------------|
| 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | $\pm 9.6\%$ |
| 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)        | 5G NR FR2 TDD | 7.78 | $\pm 9.6\%$ |
| 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)     | 5G NR FR2 TDD | 8.35 | $\pm 9.6\%$ |
| 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)       | 5G NR FR2 TDD | 8.02 | $\pm 9.6\%$ |
| 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)    | 5G NR FR2 TDD | 8.40 | $\pm 9.6\%$ |
| 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)       | 5G NR FR2 TDD | 8.13 | $\pm 9.6\%$ |
| 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)    | 5G NR FR2 TDD | 8.41 | $\pm 9.6\%$ |
| 10897 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.66 | $\pm 9.6\%$ |
| 10898 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.67 | $\pm 9.6\%$ |
| 10899 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.67 | $\pm 9.6\%$ |
| 10900 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10901 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10902 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10903 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10904 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10905 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10906 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | $\pm 9.6\%$ |
| 10907 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.78 | $\pm 9.6\%$ |
| 10908 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.93 | $\pm 9.6\%$ |
| 10909 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.96 | $\pm 9.6\%$ |
| 10910 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.83 | $\pm 9.6\%$ |
| 10911 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.93 | $\pm 9.6\%$ |
| 10912 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.84 | $\pm 9.6\%$ |
| 10913 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.84 | $\pm 9.6\%$ |
| 10914 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.85 | $\pm 9.6\%$ |
| 10915 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.83 | $\pm 9.6\%$ |
| 10916 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.87 | $\pm 9.6\%$ |
| 10917 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.94 | $\pm 9.6\%$ |
| 10918 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.86 | $\pm 9.6\%$ |
| 10919 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.86 | $\pm 9.6\%$ |
| 10920 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.87 | $\pm 9.6\%$ |
| 10921 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.84 | $\pm 9.6\%$ |
| 10922 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.82 | $\pm 9.6\%$ |
| 10923 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.84 | $\pm 9.6\%$ |
| 10924 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.84 | $\pm 9.6\%$ |
| 10925 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.95 | $\pm 9.6\%$ |
| 10926 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.84 | $\pm 9.6\%$ |
| 10927 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.94 | $\pm 9.6\%$ |
| 10928 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)       | 5G NR FR1 FDD | 5.52 | $\pm 9.6\%$ |
| 10929 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.52 | $\pm 9.6\%$ |
| 10930 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.52 | $\pm 9.6\%$ |
| 10931 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51 | $\pm 9.6\%$ |
| 10932 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51 | $\pm 9.6\%$ |
| 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51 | $\pm 9.6\%$ |
| 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51 | $\pm 9.6\%$ |
| 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51 | $\pm 9.6\%$ |
| 10936 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD | 5.90 | $\pm 9.6\%$ |
| 10937 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.77 | $\pm 9.6\%$ |
| 10938 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.90 | $\pm 9.6\%$ |
| 10939 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.82 | $\pm 9.6\%$ |
| 10940 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.89 | $\pm 9.6\%$ |
| 10941 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.83 | $\pm 9.6\%$ |
| 10942 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.85 | $\pm 9.6\%$ |
| 10943 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.95 | $\pm 9.6\%$ |
| 10944 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.81 | $\pm 9.6\%$ |
| 10945 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.85 | $\pm 9.6\%$ |
| 10946 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.83 | $\pm 9.6\%$ |
| 10947 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.87 | $\pm 9.6\%$ |
| 10948 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.94 | $\pm 9.6\%$ |
| 10949 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.87 | $\pm 9.6\%$ |
| 10950 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.94 | $\pm 9.6\%$ |
| 10951 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.92 | $\pm 9.6\%$ |
| 10952 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)   | 5G NR FR1 FDD | 8.25 | $\pm 9.6\%$ |
| 10953 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD | 8.15 | $\pm 9.6\%$ |



No.I22N00821-HAC RF

ER3DV6 – SN:2302

June 19, 2020

|       |     |                                                     |               |      |             |
|-------|-----|-----------------------------------------------------|---------------|------|-------------|
| 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD | 8.23 | $\pm 9.6\%$ |
| 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD | 8.42 | $\pm 9.6\%$ |
| 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)   | 5G NR FR1 FDD | 8.14 | $\pm 9.6\%$ |
| 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD | 8.31 | $\pm 9.6\%$ |
| 10958 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD | 8.61 | $\pm 9.6\%$ |
| 10959 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD | 8.33 | $\pm 9.6\%$ |
| 10960 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)   | 5G NR FR1 TDD | 9.32 | $\pm 9.6\%$ |
| 10961 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 TDD | 9.36 | $\pm 9.6\%$ |
| 10962 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 TDD | 9.40 | $\pm 9.6\%$ |
| 10963 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 TDD | 9.55 | $\pm 9.6\%$ |
| 10964 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)   | 5G NR FR1 TDD | 9.29 | $\pm 9.6\%$ |
| 10965 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD | 9.37 | $\pm 9.6\%$ |
| 10966 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD | 9.55 | $\pm 9.6\%$ |
| 10967 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD | 9.42 | $\pm 9.6\%$ |
| 10968 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | $\pm 9.6\%$ |

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ER3-2302\_Jun20

Page 21 of 21



No.I22N00821-HAC RF

ER3DV6-SN: 2424 (2021)

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
S Servizio svizzero di taratura  
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 0108

Client TMC-SZ (Auden)

Certificate No: ER3-2424\_Mar21

## CALIBRATION CERTIFICATE

Object ER3DV6- SN:2424

Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v7  
Calibration procedure for E-field probes optimized for close near field evaluations in air

Calibration date: March 4, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).  
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)      | Scheduled Calibration |
|----------------------------|------------------|---------------------------------|-----------------------|
| Power meter NRP            | SN: 104778       | 01-Apr-20 (No. 217-03100/03101) | Apr-21                |
| Power sensor NRP-291       | SN: 103244       | 01-Apr-20 (No. 217-03100)       | Apr-21                |
| Power sensor NRP-291       | SN: 103245       | 01-Apr-20 (No. 217-03101)       | Apr-21                |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106)       | Apr-21                |
| DAE4                       | SN: 789          | 23-Dec-20 (No. DAE4-789 Dec20)  | Dec-21                |
| Reference Probe ER3DV6     | SN: 2328         | 05-Oct-20 (No. ER3-2328 Oct20)  | Oct-21                |

| Secondary Standards     | ID               | Check Date (in house)             | Scheduled Check        |
|-------------------------|------------------|-----------------------------------|------------------------|
| Power meter E4419B      | SN: GB41293674   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A     | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A     | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C   | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 |

| Calibrated by: | Name          | Function              | Signature |
|----------------|---------------|-----------------------|-----------|
|                | Michael Weber | Laboratory Technician |           |
| Approved by:   | Katja Pokovic | Technical Manager     |           |

Issued: March 4, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2424\_Mar21

Page 1 of 9

**Calibration Laboratory of**  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**S** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

**Glossary:**

|                          |                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| NORM <sub>x,y,z</sub>    | sensitivity in free space                                                                                                                            |
| DCP                      | diode compression point                                                                                                                              |
| CF                       | crest factor (1/duty_cycle) of the RF signal                                                                                                         |
| A, B, C, D               | modulation dependent linearization parameters                                                                                                        |
| En                       | incident E-field orientation normal to probe axis                                                                                                    |
| Ep                       | incident E-field orientation parallel to probe axis                                                                                                  |
| Polarization $\varphi$   | $\varphi$ rotation around probe axis                                                                                                                 |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |
| Connector Angle          | information used in DASY system to align probe sensor X to the robot coordinate system                                                               |

**Calibration is Performed According to the Following Standards:**

- IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017

**Methods Applied and Interpretation of Parameters:**

- $NORM_{x,y,z}$ : Assessed for E-field polarization  $\vartheta = 0$  for XY sensors and  $\vartheta = 90$  for Z sensor ( $f \leq 900$  MHz in: TEM-cell;  $f > 1800$  MHz: R22 waveguide).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency\_response$  (see Frequency Response Chart).
- $DCP_{x,y,z}$ : DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}$ :  $A, B, C, D$  are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy)**: in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle**: The angle is assessed using the information gained by determining the  $NORM_x$  (no uncertainty required).

**DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424****Basic Calibration Parameters**

|                                              | Sensor X | Sensor Y | Sensor Z | Unc (k=2)    |
|----------------------------------------------|----------|----------|----------|--------------|
| Norm ( $\mu\text{V}/(\text{V}/\text{m})^2$ ) | 1.53     | 1.55     | 1.83     | $\pm 10.1\%$ |
| DCP (mV) <sup>B</sup>                        | 99.3     | 99.8     | 101.3    |              |

**Calibration results for Frequency Response (30 MHz – 3 GHz)**

| Frequency<br>MHz | Target E-Field<br>V/m | Measured<br>E-field (En)<br>V/m | Deviation<br>E-normal<br>in % | Measured<br>E-field (Ep)<br>V/m | Deviation<br>E-normal<br>in % | Unc (k=2)<br>% |
|------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|----------------|
| 30               | 77.1                  | 76.6                            | -0.7%                         | 77.4                            | 0.4%                          | $\pm 5.1\%$    |
| 100              | 77.2                  | 78.5                            | 1.8%                          | 77.9                            | 0.9%                          | $\pm 5.1\%$    |
| 450              | 77.2                  | 78.6                            | 1.9%                          | 77.8                            | 0.8%                          | $\pm 5.1\%$    |
| 600              | 77.0                  | 78.2                            | 1.5%                          | 77.5                            | 0.6%                          | $\pm 5.1\%$    |
| 750              | 77.0                  | 78.1                            | 1.5%                          | 77.5                            | 0.7%                          | $\pm 5.1\%$    |
| 1800             | 143.0                 | 141.7                           | -0.9%                         | 141.1                           | -1.3%                         | $\pm 5.1\%$    |
| 2000             | 135.1                 | 134.4                           | -0.5%                         | 133.5                           | -1.2%                         | $\pm 5.1\%$    |
| 2200             | 127.7                 | 126.2                           | -1.2%                         | 127.5                           | -0.1%                         | $\pm 5.1\%$    |
| 2500             | 125.5                 | 126.0                           | 0.4%                          | 126.8                           | 1.1%                          | $\pm 5.1\%$    |
| 3000             | 79.4                  | 78.2                            | -1.6%                         | 81.3                            | 2.4%                          | $\pm 5.1\%$    |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>C</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

## Calibration Results for Modulation Response

| UID       | Communication System Name                      |   | A<br>dB | B<br>dB $\sqrt{\mu V}$ | C    | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----------|------------------------------------------------|---|---------|------------------------|------|---------|----------|-------------|---------------------------|
| 0         | CW                                             | X | 0.0     | 0.0                    | 1.0  | 0.00    | 207.1    | $\pm 3.5\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 0.0     | 0.0                    | 1.0  |         | 194.8    |             |                           |
|           |                                                | Z | 0.0     | 0.0                    | 1.0  |         | 208.5    |             |                           |
| 10021-DAC | GSM-FDD (TDMA, GMSK)                           | X | 13.38   | 91.7                   | 25.7 | 9.39    | 127.8    | $\pm 3.0\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 20.31   | 99.9                   | 28.1 |         | 115.1    |             |                           |
|           |                                                | Z | 25.39   | 99.9                   | 28.1 |         | 145.9    |             |                           |
| 10061-CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)      | X | 4.95    | 75.3                   | 21.8 | 3.60    | 114.8    | $\pm 2.2\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 4.11    | 72.3                   | 20.5 |         | 106.0    |             |                           |
|           |                                                | Z | 5.66    | 76.6                   | 21.8 |         | 117.0    |             |                           |
| 10077-CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | X | 12.21   | 74.8                   | 27.6 | 11.00   | 104.9    | $\pm 2.2\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 13.33   | 78.3                   | 29.7 |         | 144.6    |             |                           |
|           |                                                | Z | 12.02   | 73.8                   | 26.5 |         | 107.7    |             |                           |
| 10172-CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)          | X | 10.38   | 84.9                   | 32.0 | 9.21    | 140.1    | $\pm 2.5\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 8.50    | 78.8                   | 28.9 |         | 126.9    |             |                           |
|           |                                                | Z | 11.14   | 85.0                   | 31.1 |         | 148.0    |             |                           |
| 10173-CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)        | X | 10.60   | 84.6                   | 31.9 | 9.48    | 139.5    | $\pm 2.5\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 9.11    | 80.2                   | 29.6 |         | 127.0    |             |                           |
|           |                                                | Z | 12.00   | 86.6                   | 31.9 |         | 148.3    |             |                           |
| 10295-AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr.          | X | 16.51   | 99.7                   | 40.5 | 12.49   | 113.2    | $\pm 3.5\%$ | $\pm 4.7\%$               |
|           |                                                | Y | 15.91   | 100.0                  | 40.9 |         | 101.3    |             |                           |
|           |                                                | Z | 18.42   | 100.0                  | 39.2 |         | 126.2    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.



ER3DV6 – SN:2424

March 4, 2021

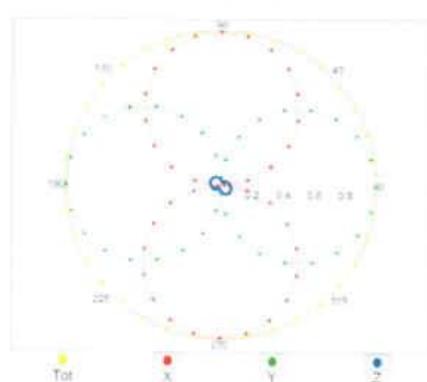
**DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424****Sensor Frequency Model Parameters**

|                      | Sensor X | Sensor Y | Sensor Z |
|----------------------|----------|----------|----------|
| Frequency Corr. (LF) | -1.78    | -1.32    | 0.22     |
| Frequency Corr. (HF) | 0.00     | 0.00     | 0.00     |

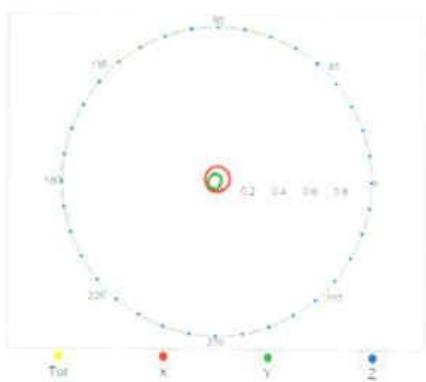
**Other Probe Parameters**

|                                         |             |
|-----------------------------------------|-------------|
| Sensor Arrangement                      | Rectangular |
| Connector Angle (")                     | 165.5       |
| Mechanical Surface Detection Mode       | enabled     |
| Optical Surface Detection Mode          | disabled    |
| Probe Overall Length                    | 337 mm      |
| Probe Body Diameter                     | 10 mm       |
| Tip Length                              | 10 mm       |
| Tip Diameter                            | 8 mm        |
| Probe Tip to Sensor X Calibration Point | 2.5 mm      |
| Probe Tip to Sensor Y Calibration Point | 2.5 mm      |
| Probe Tip to Sensor Z Calibration Point | 2.5 mm      |

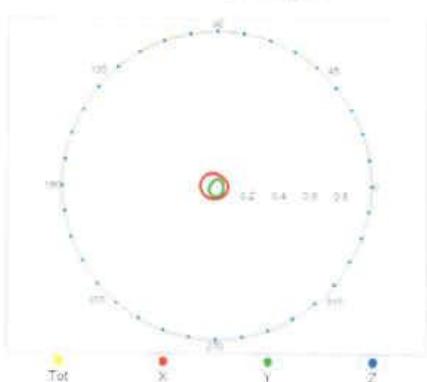
ER3DV6 – SN:2424


March 4, 2021

**Receiving Pattern ( $\phi$ ),  $\theta = 0^\circ$** 

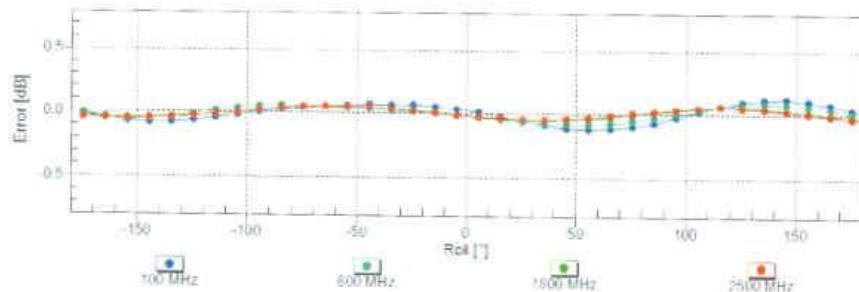
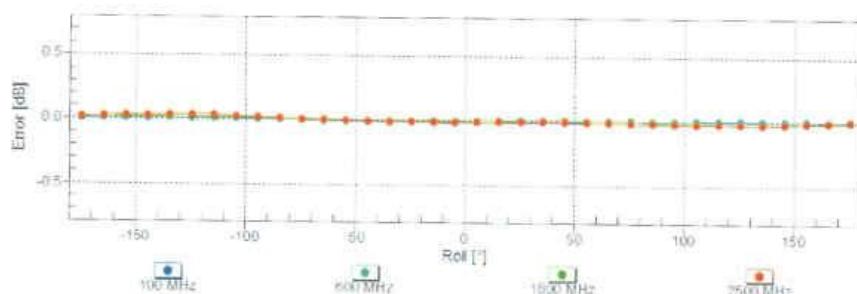

f=600 MHz, TEM, 0°




f=2500 MHz, R22, 0°

**Receiving Pattern ( $\phi$ ),  $\theta = 90^\circ$** 

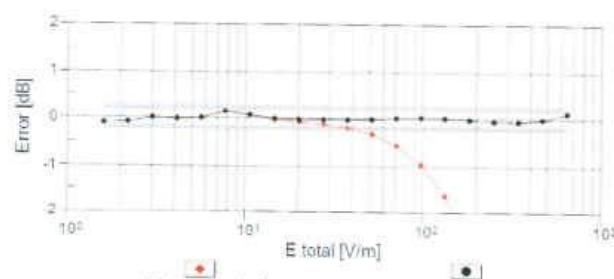
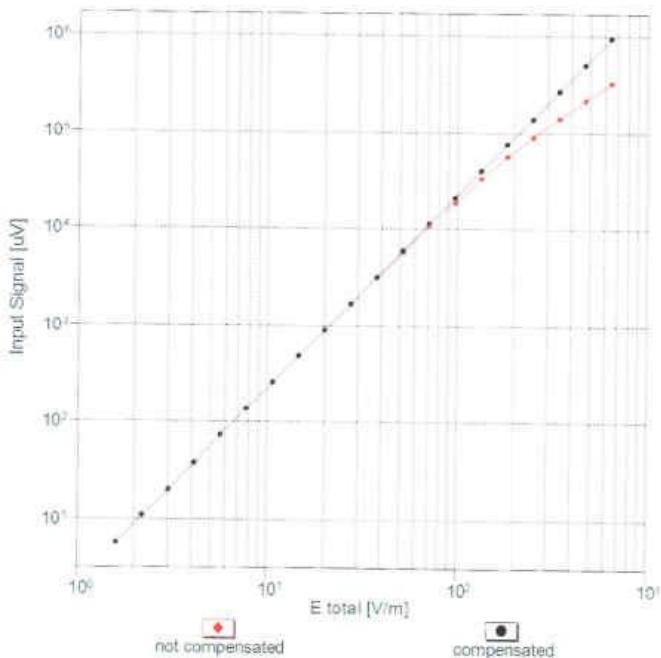
f=600 MHz, TEM, 90°


f=2500 MHz, R22, 90°



ER3DV6 – SN:2424

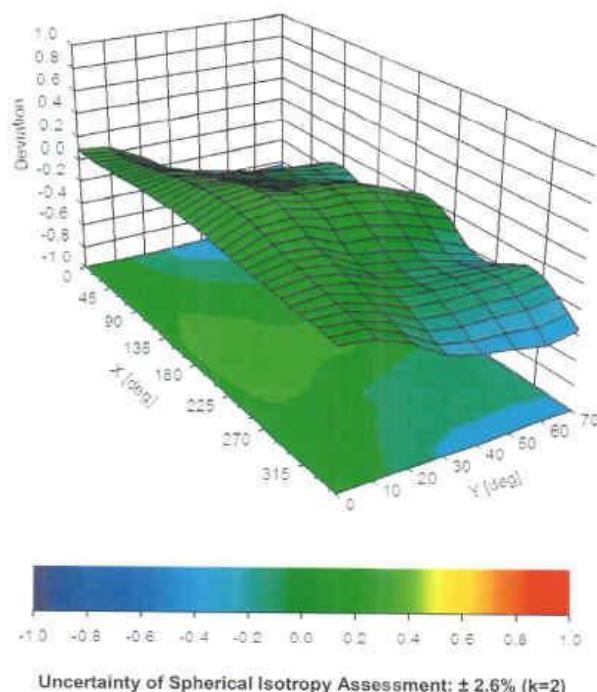


March 4, 2021

**Receiving Pattern ( $\phi$ ),  $\theta = 0^\circ$** Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  ( $k=2$ )**Receiving Pattern ( $\phi$ ),  $\theta = 90^\circ$** Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  ( $k=2$ )

ER3DV6 – SN:2424

March 4, 2021

### Dynamic Range f(E-field) (TEM cell, f = 900 MHz)


Uncertainty of Linearity Assessment:  $\pm 0.6\%$  ( $k=2$ )

ER3DV6 – SN:2424

March 4, 2021

### Deviation from Isotropy in Air

Error ( $\phi, \theta$ ),  $f = 900$  MHz





No.I22N00821-HAC RF

## ANNEX D: DAE Calibration Certificate

DAE4-SN: 1527 (2020)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: ctll@chinattl.com Http://www.chinattl.cn



中国认可  
国际互认  
校准  
CALIBRATION  
CNAS L0570

Client :

CTTL(South Branch)

Certificate No: Z20-60433

### CALIBRATION CERTIFICATE

| Object                                                                                                                                                                                                                                                                    | DAE4 - SN: 1527                                                                       |                                          |                       |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|-----------------------|--|--|--|
| Calibration Procedure(s)                                                                                                                                                                                                                                                  | FF-Z11-002-01<br>Calibration Procedure for the Data Acquisition Electronics<br>(DAEx) |                                          |                       |  |  |  |
| Calibration date:                                                                                                                                                                                                                                                         | November 06, 2020                                                                     |                                          |                       |  |  |  |
| This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. |                                                                                       |                                          |                       |  |  |  |
| All calibrations have been conducted in the closed laboratory facility: environment temperature( $22\pm3$ )°C and humidity<70%.                                                                                                                                           |                                                                                       |                                          |                       |  |  |  |
| Calibration Equipment used (M&TE critical for calibration)                                                                                                                                                                                                                |                                                                                       |                                          |                       |  |  |  |
| Primary Standards                                                                                                                                                                                                                                                         | ID #                                                                                  | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |  |  |  |
| Process Calibrator 753                                                                                                                                                                                                                                                    | 1971018                                                                               | 16-Jun-20 (CTTL, No.J20X04342)           | Jun-21                |  |  |  |
| Calibrated by:                                                                                                                                                                                                                                                            | Name                                                                                  | Function                                 | Signature             |  |  |  |
|                                                                                                                                                                                                                                                                           | Yu Zongying                                                                           | SAR Test Engineer                        |                       |  |  |  |
| Reviewed by:                                                                                                                                                                                                                                                              | Name                                                                                  | Function                                 |                       |  |  |  |
|                                                                                                                                                                                                                                                                           | Lin Hao                                                                               | SAR Test Engineer                        |                       |  |  |  |
| Approved by:                                                                                                                                                                                                                                                              | Name                                                                                  | Function                                 |                       |  |  |  |
|                                                                                                                                                                                                                                                                           | Qi Dianyuan                                                                           | SAR Project Leader                       |                       |  |  |  |
| Issued: November 08, 2020                                                                                                                                                                                                                                                 |                                                                                       |                                          |                       |  |  |  |
| This calibration certificate shall not be reproduced except in full without written approval of the laboratory.                                                                                                                                                           |                                                                                       |                                          |                       |  |  |  |

Certificate No: Z20-60433

Page 1 of 3



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [ctl@chinattl.com](mailto:ctl@chinattl.com) Http://www.chinattl.cn

**Glossary:**

|                 |                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------|
| DAE             | data acquisition electronics                                                            |
| Connector angle | information used in DASY system to align probe sensor X to the robot coordinate system. |

**Methods Applied and Interpretation of Parameters:**

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.



No.I22N00821-HAC RF



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinattl.com](mailto:cttl@chinattl.com) [Http://www.chinattl.cn](http://www.chinattl.cn)

#### DC Voltage Measurement

A/D - Converter Resolution nominal

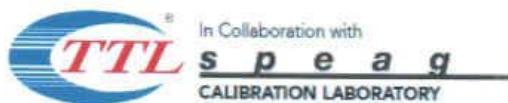
High Range: 1LSB =  $6.1\mu V$ , full range = -100...+300 mV  
Low Range: 1LSB =  $61nV$ , full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                          | Y                          | Z                          |
|---------------------|----------------------------|----------------------------|----------------------------|
| High Range          | $403.863 \pm 0.15\% (k=2)$ | $403.582 \pm 0.15\% (k=2)$ | $403.801 \pm 0.15\% (k=2)$ |
| Low Range           | $3.95875 \pm 0.7\% (k=2)$  | $3.98892 \pm 0.7\% (k=2)$  | $3.96720 \pm 0.7\% (k=2)$  |

#### Connector Angle

|                                           |                           |
|-------------------------------------------|---------------------------|
| Connector Angle to be used in DASY system | $223.5^\circ \pm 1^\circ$ |
|-------------------------------------------|---------------------------|


Certificate No: Z20-60433

Page 3 of 3



No.I22N00821-HAC RF

DAE4-SN: 786 (2021)



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: cttl@chinattl.com <http://www.chinattl.cn>



中国认可  
国际互认  
校准  
CALIBRATION  
CNAS L0570

Client : CTTL(South Branch)

Certificate No: Z21-60093

## CALIBRATION CERTIFICATE

Object DAE4 - SN: 786

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics  
(DAEx)

Calibration date: April 09, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature( $22\pm3$ )°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards      | ID #    | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|------------------------|---------|------------------------------------------|-----------------------|
| Process Calibrator 753 | 1971018 | 16-Jun-20 (CTTL, No.J20X04342)           | Jun-21                |

|                |                   |                              |            |
|----------------|-------------------|------------------------------|------------|
| Calibrated by: | Name: Yu Zongying | Function: SAR Test Engineer  | Signature: |
| Reviewed by:   | Name: Lin Hao     | Function: SAR Test Engineer  | Signature: |
| Approved by:   | Name: Qi Dianyuan | Function: SAR Project Leader | Signature: |

Issued: April 11, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60093

Page 1 of 3



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinattl.com](mailto:cttl@chinattl.com) [Http://www.chinattl.cn](http://www.chinattl.cn)

**Glossary:**

- DAE data acquisition electronics  
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

**Methods Applied and Interpretation of Parameters:**

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.



No.I22N00821-HAC RF



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinattl.com](mailto:cttl@chinattl.com) Http: [www.chinattl.cn](http://www.chinattl.cn)

#### DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 $\mu$ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                          | Y                          | Z                          |
|---------------------|----------------------------|----------------------------|----------------------------|
| High Range          | $404.112 \pm 0.15\%$ (k=2) | $404.269 \pm 0.15\%$ (k=2) | $404.666 \pm 0.15\%$ (k=2) |
| Low Range           | $3.97192 \pm 0.7\%$ (k=2)  | $3.97396 \pm 0.7\%$ (k=2)  | $3.95762 \pm 0.7\%$ (k=2)  |

#### Connector Angle

|                                           |                         |
|-------------------------------------------|-------------------------|
| Connector Angle to be used in DASY system | $229^\circ \pm 1^\circ$ |
|-------------------------------------------|-------------------------|



No.I22N00821-HAC RF

DAE4-SN: 1527 (2022)



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinattl.com](mailto:cttl@chinattl.com) [Http://www.chinattl.cn](http://www.chinattl.cn)



CAICT

中国认可  
国际互认  
校准  
CALIBRATION  
CNAS L0570

Client : SAICT

Certificate No: Z22-60003

## CALIBRATION CERTIFICATE

Object DAE4 - SN: 1527

Calibration Procedure(s) FF-Z11-002-01  
Calibration Procedure for the Data Acquisition Electronics (DAEx)

Calibration date: January 12, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature( $22\pm3$ )°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards      | ID #    | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|------------------------|---------|------------------------------------------|-----------------------|
| Process Calibrator 753 | 1971018 | 15-Jun-21 (CTTL, No.J21X04465)           | Jun-22                |

| Calibrated by: | Name        | Function           | Signature |
|----------------|-------------|--------------------|-----------|
|                | Yu Zongying | SAR Test Engineer  |           |
| Reviewed by:   | Lin Hao     | SAR Test Engineer  |           |
| Approved by:   | Qi Dianyuan | SAR Project Leader |           |

Issued: January 14, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60003

Page 1 of 3



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [cttl@chinattl.com](mailto:cttl@chinattl.com) [Http://www.chinattl.cn](http://www.chinattl.cn)



**Glossary:**

- DAE data acquisition electronics  
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

**Methods Applied and Interpretation of Parameters:**

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.



No.I22N00821-HAC RF



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China  
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504  
E-mail: [ctl@chinattl.com](mailto:ctl@chinattl.com) Http://www.chinattl.cn

#### DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =  $6.1\mu V$ , full range =  $-100...+300\text{ mV}$

Low Range: 1LSB =  $61\text{nV}$ , full range =  $-1...+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                                  | Y                                  | Z                                  |
|---------------------|------------------------------------|------------------------------------|------------------------------------|
| High Range          | $403.864 \pm 0.15\% \text{ (k=2)}$ | $403.585 \pm 0.15\% \text{ (k=2)}$ | $403.806 \pm 0.15\% \text{ (k=2)}$ |
| Low Range           | $3.95854 \pm 0.7\% \text{ (k=2)}$  | $3.98858 \pm 0.7\% \text{ (k=2)}$  | $3.96746 \pm 0.7\% \text{ (k=2)}$  |

#### Connector Angle

|                                           |                         |
|-------------------------------------------|-------------------------|
| Connector Angle to be used in DASY system | $224^\circ \pm 1^\circ$ |
|-------------------------------------------|-------------------------|

## ANNEX E: Dipole Calibration Certificate

### Dipole 835MHz (2018)

**Calibration Laboratory of**  
 Schmid & Partner  
 Engineering AG  
 Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalementage  
**S** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **CTTL (Auden)**

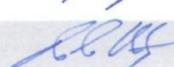
Certificate No: **CD835V3-1165\_Jul18**

#### CALIBRATION CERTIFICATE

Object **CD835V3 - SN: 1165**

Calibration procedure(s) **QA CAL-20.v6**  
 Calibration procedure for dipoles in air

Calibration date: **July 19, 2018**


This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).  
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)      | Scheduled Calibration |
|-----------------------------|--------------------|---------------------------------|-----------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-18 (No. 217-02672/02673) | Apr-19                |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-18 (No. 217-02672)       | Apr-19                |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-18 (No. 217-02673)       | Apr-19                |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)       | Apr-19                |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)       | Apr-19                |
| Probe EF3DV3                | SN: 4013           | 05-Mar-18 (No. EF3-4013_Mar18)  | Mar-19                |
| Probe H3DV6                 | SN: 6065           | 30-Dec-17 (No. H3-6065 Dec17)   | Dec-18                |
| DAE4                        | SN: 781            | 17-Jan-18 (No. DAE4-781_Jan18)  | Jan-19                |

| Secondary Standards             | ID #           | Check Date (in house)             | Scheduled Check        |
|---------------------------------|----------------|-----------------------------------|------------------------|
| Power meter Agilent 4419B       | SN: GB42420191 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 |
| Power sensor HP E4412A          | SN: US38485102 | 05-Jan-10 (in house check Oct-17) | In house check: Oct-20 |
| Power sensor HP 8482A           | SN: US37295597 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 832283/011 | 27-Aug-12 (in house check Oct-17) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 |

| Calibrated by: | Name          | Function              | Signature                                                                             |
|----------------|---------------|-----------------------|---------------------------------------------------------------------------------------|
|                | Leif Klysner  | Laboratory Technician |  |
| Approved by:   | Katja Pokovic | Technical Manager     |  |

Issued: July 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

**Calibration Laboratory of**  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**S** Servizio svizzero di taratura  
Swiss Calibration Service

Accreditation No.: **SCS 0108**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

#### References

- [1] ANSI-C63.19-2011  
American National Standard, Methods of Measurement of Compatibility between Wireless Communications  
Devices and Hearing Aids.

#### Methods Applied and Interpretation of Parameters:

- *Coordinate System:* y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- *Antenna Positioning:* The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- *Feed Point Impedance and Return Loss:* These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E-field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor  $k=2$ , which for a normal distribution corresponds to a coverage probability of approximately 95%.

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                       | DASY5               | V52.10.1 |
|------------------------------------|---------------------|----------|
| Phantom                            | HAC Test Arch       |          |
| Distance Dipole Top - Probe Center | 15 mm               |          |
| Scan resolution                    | dx, dy = 5 mm       |          |
| Frequency                          | 835 MHz $\pm$ 1 MHz |          |
| Input power drift                  | < 0.05 dB           |          |

### Maximum Field values at 835 MHz

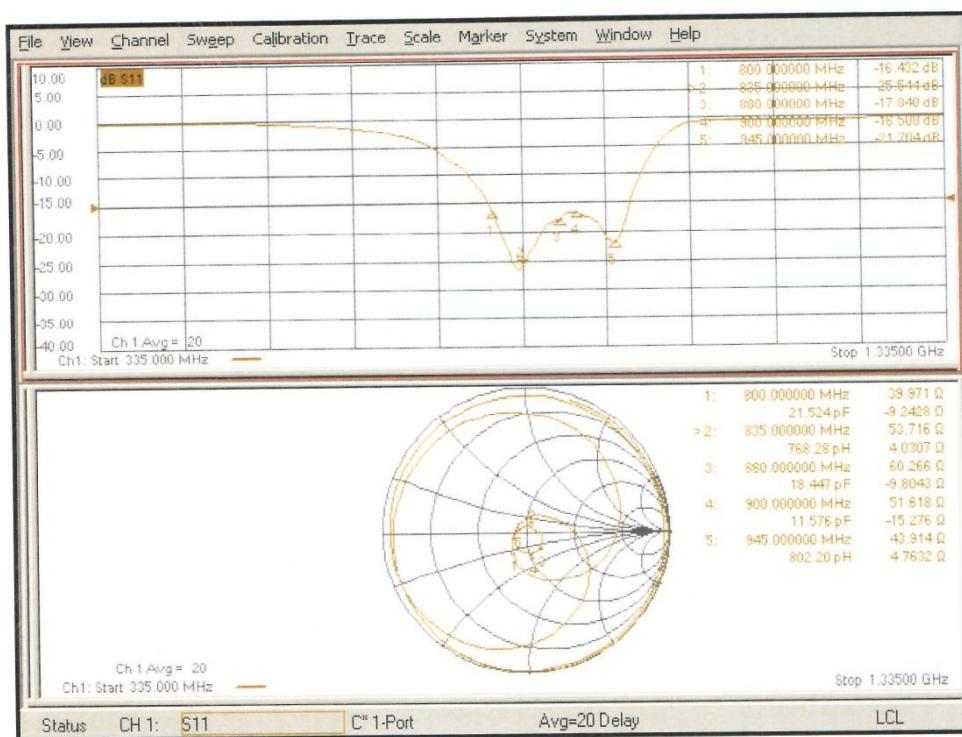
| E-field 15 mm above dipole surface | condition          | Interpolated maximum         |
|------------------------------------|--------------------|------------------------------|
| Maximum measured above high end    | 100 mW input power | 108.7 V/m = 40.72 dBV/m      |
| Maximum measured above low end     | 100 mW input power | 108.6 V/m = 40.72 dBV/m      |
| Averaged maximum above arm         | 100 mW input power | 108.7 V/m $\pm$ 12.8 % (k=2) |

### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters

| Frequency | Return Loss | Impedance                      |
|-----------|-------------|--------------------------------|
| 800 MHz   | 16.4 dB     | 40.0 $\Omega$ - 9.2 $j\Omega$  |
| 835 MHz   | 25.5 dB     | 53.7 $\Omega$ + 4.0 $j\Omega$  |
| 880 MHz   | 17.8 dB     | 60.3 $\Omega$ - 9.8 $j\Omega$  |
| 900 MHz   | 16.5 dB     | 51.6 $\Omega$ - 15.3 $j\Omega$ |
| 945 MHz   | 21.7 dB     | 43.9 $\Omega$ + 4.8 $j\Omega$  |

#### 3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

## Impedance Measurement Plot



**DASY5 E-field Result**

Date: 19.07.2018

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1165

Communication System: UID 0 - CW ; Frequency: 835 MHz  
Medium parameters used:  $\sigma = 0 \text{ S/m}$ ,  $\epsilon_r = 1$ ;  $\rho = 0 \text{ kg/m}^3$ Phantom section: RF Section  
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

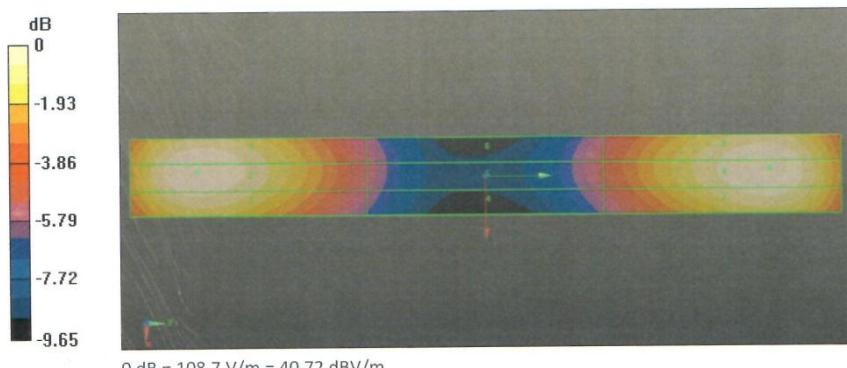
- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

**Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):**

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 130.9 V/m; Power Drift = 0.02 dB


Applied MIF = 0.00 dB

RF audio interference level = 40.73 dBV/m

Emission category: M3

MIF scaled E-field

| Grid 1 M3   | Grid 2 M3   | Grid 3 M3   |
|-------------|-------------|-------------|
| 40.28 dBV/m | 40.72 dBV/m | 40.67 dBV/m |
| Grid 4 M4   | Grid 5 M4   | Grid 6 M4   |
| 35.61 dBV/m | 35.96 dBV/m | 35.94 dBV/m |
| Grid 7 M3   | Grid 8 M3   | Grid 9 M3   |
| 40.41 dBV/m | 40.73 dBV/m | 40.67 dBV/m |



## Dipole 835MHz (2021)

Calibration Laboratory of  
 Schmid & Partner  
 Engineering AG  
 Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
 C Service suisse d'étalonnage  
 S Servizio svizzero di taratura  
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
 The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client TMC-SZ (Auden)

Certificate No: CD835V3-1165\_May21

## CALIBRATION CERTIFICATE

Object CD835V3 - SN: 1165

 Calibration procedure(s) QA CAL-20.v7  
 Calibration Procedure for Validation Sources in air

Calibration date: May 18, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

Calibration Equipment used (M&amp;TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)      | Scheduled Calibration |
|-----------------------------|--------------------|---------------------------------|-----------------------|
| Power meter NRP             | SN: 104779         | 09-Apr-21 (No. 217-03291/03292) | Apr-22                |
| Power sensor NRP-Z91        | SN: 102244         | 09-Apr-21 (No. 217-03291)       | Apr-22                |
| Power sensor NRP-Z91        | SN: 102245         | 09-Apr-21 (No. 217-03292)       | Apr-22                |
| Reference 20 dB Attenuator  | SN: B14/594 (20k)  | 09-Apr-21 (No. 217-03343)       | Apr-22                |
| Type-N mismatch combination | SN: 316982 / 00327 | 09-Apr-21 (No. 217-03344)       | Apr-22                |
| Probe EF3DV3                | SN: 4013           | 28-Dec-20 (No. EF3-4013_Dec20)  | Dec-21                |
| DAE4                        | SN: 781            | 23-Dec-20 (No. DAE4-781_Dec20)  | Dec-21                |

| Secondary Standards             | ID #           | Check Date (in house)             | Scheduled Check        |
|---------------------------------|----------------|-----------------------------------|------------------------|
| Power meter Agilent 4419B       | SN: GB42420191 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 |
| Power sensor HP E4412A          | SN: US38485102 | 05-Jan-10 (in house check Oct-20) | In house check: Oct-23 |
| Power sensor HP 8482A           | SN: US37295597 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 |
| RF generator R&S SMT-06         | SN: 837633/005 | 10-Jan-19 (in house check Oct-20) | In house check: Oct-23 |
| Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 |

| Calibrated by: | Name          | Function              | Signature                                                                             |
|----------------|---------------|-----------------------|---------------------------------------------------------------------------------------|
|                | Leif Klyssner | Laboratory Technician |  |
| Approved by:   | Katja Pökvic  | Technical Manager     |  |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: May 18, 2021

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
S Servizio svizzero di taratura  
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### References

- [1] ANSI-C63.19-2011  
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

#### Methods Applied and Interpretation of Parameters:

- **Coordinate System:** y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- **Measurement Conditions:** Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- **Antenna Positioning:** The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- **Feed Point Impedance and Return Loss:** These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminated by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- **E-field distribution:** E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

**Measurement Conditions**

DASY system configuration, as far as not given on page 1.

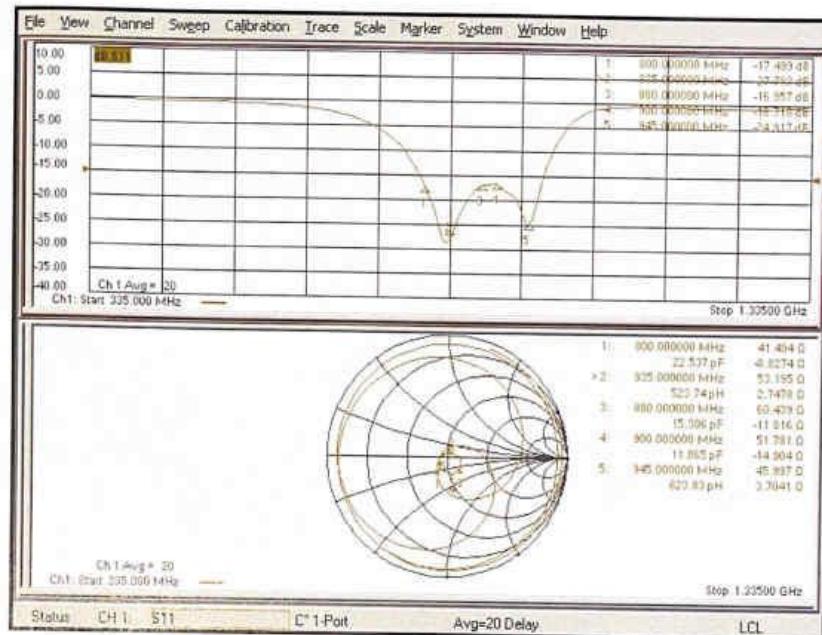
| DASY Version                       | DASY5                               | V52.10.4 |
|------------------------------------|-------------------------------------|----------|
| Phantom                            | HAC Test Arch                       |          |
| Distance Dipole Top - Probe Center | 15 mm                               |          |
| Scan resolution                    | $dx, dy = 5 \text{ mm}$             |          |
| Frequency                          | $835 \text{ MHz} \pm 1 \text{ MHz}$ |          |
| Input power drift                  | < 0.05 dB                           |          |

**Maximum Field values at 835 MHz**

| E-field 15 mm above dipole surface | condition          | Interpolated maximum                          |
|------------------------------------|--------------------|-----------------------------------------------|
| Maximum measured above high end    | 100 mW input power | $114.1 \text{ V/m} = 41.15 \text{ dBV/m}$     |
| Maximum measured above low end     | 100 mW input power | $108.4 \text{ V/m} = 40.70 \text{ dBV/m}$     |
| Averaged maximum above arm         | 100 mW input power | $111.3 \text{ V/m} \pm 12.8 \% \text{ (k=2)}$ |

**Appendix (Additional assessments outside the scope of SCS 0108)****Antenna Parameters**

| Frequency | Return Loss | Impedance                            |
|-----------|-------------|--------------------------------------|
| 800 MHz   | 17.5 dB     | $41.5 \Omega - 8.8 \text{ j}\Omega$  |
| 835 MHz   | 27.8 dB     | $53.2 \Omega + 2.7 \text{ j}\Omega$  |
| 880 MHz   | 17.0 dB     | $60.4 \Omega - 11.8 \text{ j}\Omega$ |
| 900 MHz   | 16.7 dB     | $51.8 \Omega - 14.9 \text{ j}\Omega$ |
| 945 MHz   | 24.9 dB     | $46.0 \Omega + 3.7 \text{ j}\Omega$  |


**3.2 Antenna Design and Handling**

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

**Impedance Measurement Plot**

**DASY5 E-field Result**

Date: 18.05.2021

Test Laboratory: SPEAG Lab2

**DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1165**

Communication System: UID 0 - CW ; Frequency: 835 MHz

Medium parameters used:  $\sigma = 0 \text{ S/m}$ ;  $\epsilon_r = 1$ ;  $\rho = 0 \text{ kg/m}^3$ 

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

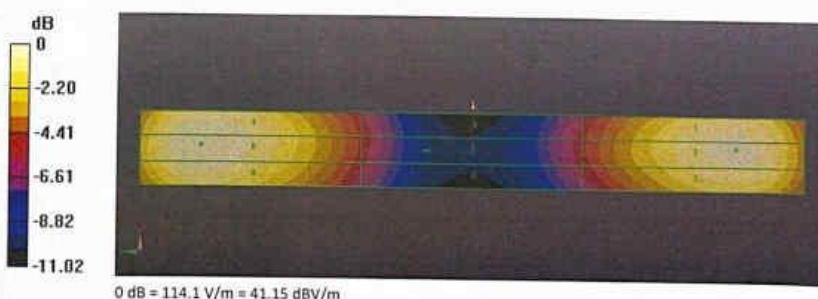
- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

**Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):**

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 135.0 V/m; Power Drift = 0.01 dB


Applied MIF = 0.00 dB

RF audio interference level = 41.15 dBV/m

Emission category: M3

MIF scaled E-field

| Grid 1 M3   | Grid 2 M3   | Grid 3 M3   |
|-------------|-------------|-------------|
| 40.65 dBV/m | 40.7 dBV/m  | 40.35 dBV/m |
| Grid 4 M4   | Grid 5 M4   | Grid 6 M4   |
| 35.83 dBV/m | 35.86 dBV/m | 35.57 dBV/m |
| Grid 7 M3   | Grid 8 M3   | Grid 9 M3   |
| 41.07 dBV/m | 41.15 dBV/m | 40.84 dBV/m |

