

FCC - TEST REPORT

Report Number : **60.792.21.008.01R01** Date of Issue : September 3, 2021Model : [AOLD-2059A](#)Product Type : **Weather Station**Applicant : AOK ELECTRONIC LIMITEDAddress : Tianxin Industrial District, Dahou Village, Xiegang Town,
Dongguan City, Guangdong Province, ChinaProduction Facility : AOLD ELECTRONIC LIMITEDAddress : Tianxin Industrial District, Dahou Village, Xiegang Town 523599
Dongguan City, Guangdong Province PEOPLE'S REPUBLIC OF CHINATest Result : **Positive** **Negative**Total pages including Appendices : 24

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents.....	2
2 Description of Equipment Under Test	3
3 Summary of Test Standards	4
4 Details about the Test Laboratory	5
4.1 Test Equipment Site List	6
4.2 Measurement System Uncertainty	7
5 Summary of Test Results.....	8
6 General Remarks	9
7 Test Setups.....	10
7.1 Radiated test setups 9kHz-30MHz.....	10
7.2 Radiated test setups Below 1GHz.....	10
7.3 Radiated test setups Above 1GHz	10
7.4 AC Power Line Conducted Emission test setups	11
7.5 Conducted RF test setups.....	11
8 Emission Test Results	12
8.1 Spurious Radiated Emission.....	12
8.2 20dB Bandwidth.....	16
8.3 Transmission Time.....	17
9 Test setup procedure	19
10 Appendix A - General Product Information	23

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product: Weather Station
Model no.: AOLD-2059A
FCC ID: 2AJOATX2059A
Rating: 3 VDC (2 x 1.5V AA battery)
Frequency: 433.865MHz
Antenna gain: 0 dBi
Number of operated channel: 1
Modulation: ASK

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
--	--	--	--

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition
Federal Communications Commission, PART 15 — Radio Frequency Devices,
Subpart C — Unintentional Radiators

4 Details about the Test Laboratory

Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
 Building 12&13 Zhiheng Wisdomland Business Park,
 Nantou Checkpoint Road 2,
 Shenzhen 518052, P.R.China
 FCC Registration Number: 514049

Emission Tests	
Test Item	Test Site
FCC Part 15 Subpart C	
FCC Title 47 Part 15.205, 15.209 & 15.231(e) Radiated Emission	Site1
FCC Title 47 Part 15.207 Conduct Emission	NIL
FCC Title 47 Part 15.231(c) 20dB Bandwidth	Site 1
FCC Title 47 Part 15.231(e) Transmission Time	Site 1

4.1 Test Equipment Site List

Radiated emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	2022-6-4
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	2022-2-2
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	2022-5-24
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	2021-10-25
Pre-amplifier	Rohde & Schwarz	SCU 08F2	68-4-29-19-004	08400018	2021-10-25
Sideband Horn Antenna	Q-PAR	QWH-SL-18-40-K-SG	68-4-80-14-008	12827	2021-8-5
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	2021-7-30
3m Semi-anechoic chamber	TDK	9X6X6	68-4-90-19-006	----	2022-12-29
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006-A01	Version10.35.0 2	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	2022-6-4
LISN	Rohde & Schwarz	ENV4200	68-4-87-14-001	100249	2022-6-5
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	2022-6-5
LISN	Rohde & Schwarz	ENV216	68-4-87-14-002	100326	2022-6-5
ISN	Rohde & Schwarz	ENY81	68-4-87-14-003	100177	2022-6-5
ISN	Rohde & Schwarz	ENY81-CA6	68-4-87-14-004	101664	2022-6-5
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	68-4-27-14-001	9420-584	2022-6-5
RF Current Probe	Rohde & Schwarz	EZ-17	68-4-27-14-002	100816	2022-6-5
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	2022-6-3
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003-A10	Version9.15.00	N/A
Shielding Room	TDK	CSR #1	68-4-90-19-004	----	2022-11-07

20dB Bandwidth, Transmission Time – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2022-6-3

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty	
Items	Extended Uncertainty
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.63dB; Vertical: 4.61dB;
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 4.65dB; Vertical: 4.64dB;
Uncertainty for Conducted Emission 150kHz-30MHz	3.21dB
Uncertainty for Conducted RF test	2.13dB
Uncertainty for Frequency RF test	0.6×10 ⁻⁷

5 Summary of Test Results

Emission Tests					
FCC Part 15 Subpart C	Test Condition	Pages	Test Result		
			Pass	Fail	N/A
FCC Title 47 Part 15.205, 15.209 & 15.231(e) Radiated Emission	12-15		<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
FCC Title 47 Part 15.207 Conduct Emission (1)	NIL		<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
FCC Title 47 Part 15.231(c) 20dB Bandwidth	16		<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
FCC Title 47 Part 15.231(e) Transmission Time	17-18		<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Remark:

- 1) Conducted Emission testing is not applicable for battery operated device.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for **FCC ID: 2AJOATX2059A**, complies with Section 15.205, 15.207, 15.209, 15.231 of the FCC Part 15, Subpart C rules.

The TX frequency is 433.865MHz.

SUMMARY:

- All tests according to the regulations cited on page 8 were
 - Performed
 - **Not** Performed
- The Equipment Under Test
 - **Fulfills** the general approval requirements.
 - **Does not** fulfill the general approval requirements.

Sample Received Date: July 21, 2021

Testing Start Date: August 2, 2021

Testing End Date: September 2, 2021

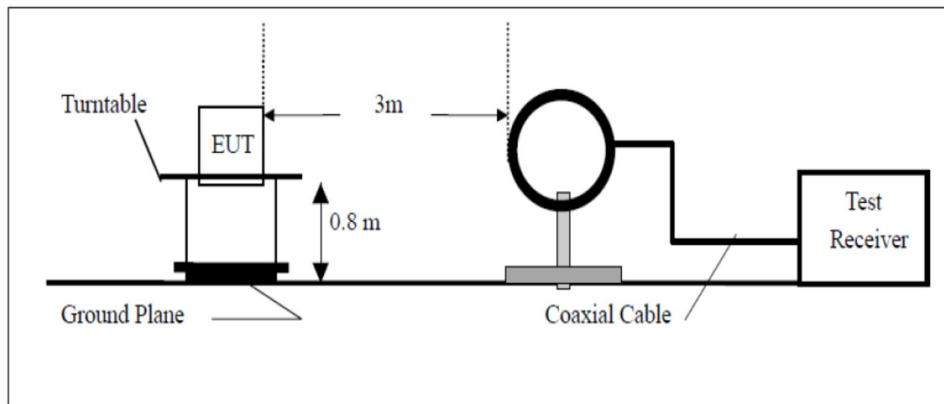
TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

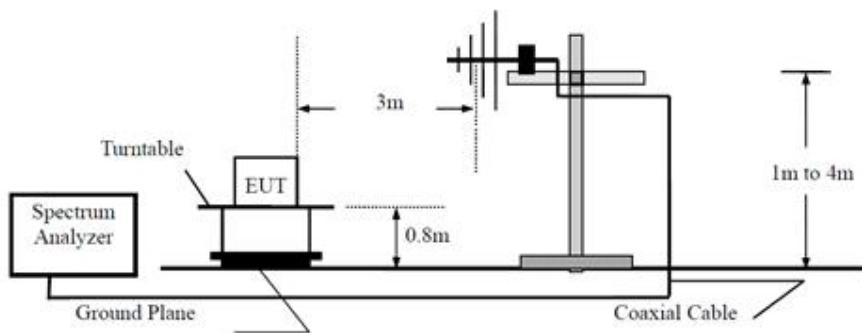
Reviewed by:


Eric LI
EMC Project Manager

Prepared by:

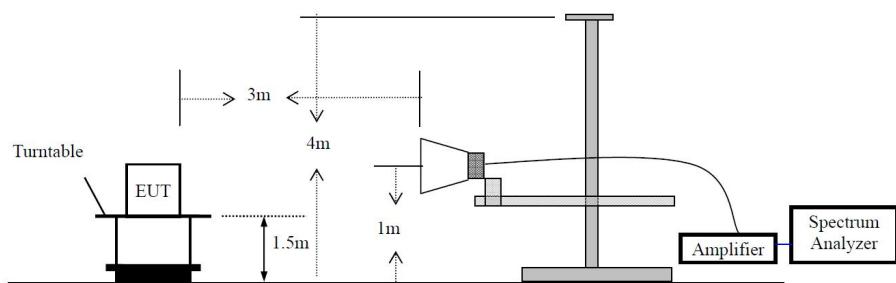
Hosea CHAN
EMC Project Engineer

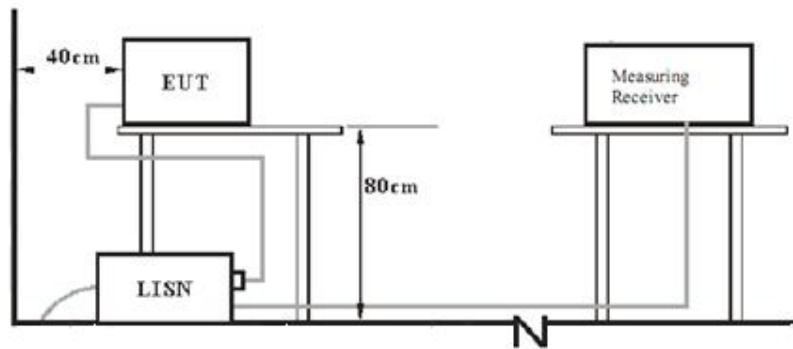

Tested by:

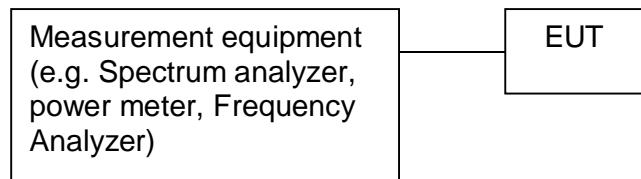


Louise Liu
EMC Test Engineer

7 Test Setups


7.1 Radiated test setups 9kHz-30MHz


7.2 Radiated test setups Below 1GHz


7.3 Radiated test setups Above 1GHz

7.4 AC Power Line Conducted Emission test setups

7.5 Conducted RF test setups

8 Emission Test Results

8.1 Spurious Radiated Emission

EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.205, 15.209 & 15.231(e) Antenna: Horizontal
 Comment: 3 VDC
 Remark: 9kHz to 5GHz

Test Result
 Passed
 Not Passed

Frequency MHz	Result dB μ V/m	Limit dB μ V/m	Margin dB	Detector PK/QP/AV	Corr. (dB)	RSE. or Fund.
433.865	66.12	92.86	26.74	Peak	18.45	Fund
867.84	47.67	72.86	25.19	Peak	25.07	RSE
1301.76	59.01	74.00	14.99	Peak	-8.55	RSE
1735.68	52.71	74.00	21.29	Peak	-5.51	RSE
2169.60	47.54	74.00	26.46	Peak	-2.83	RSE
2603.52	46.98	74.00	27.02	Peak	-1.38	RSE

Frequency MHz	PK Result @3m dB μ V/m	Duty Cycle Factor dB	AV Result @3m dB μ V/m	Limit dB μ V/m	Margin dB
433.865	66.12	-12.02	54.10	72.86	18.76
867.84	47.67	-12.02	35.65	52.86	17.21
1301.76	59.01	-12.02	46.99	54.00	7.01
1735.68	52.71	-12.02	40.69	54.00	13.31
2169.60	47.54	-12.02	35.52	54.00	18.48
2603.52	46.98	-12.02	34.96	54.00	19.04

Average value = Peak value + Duty cycle factor

Spurious Radiated Emission

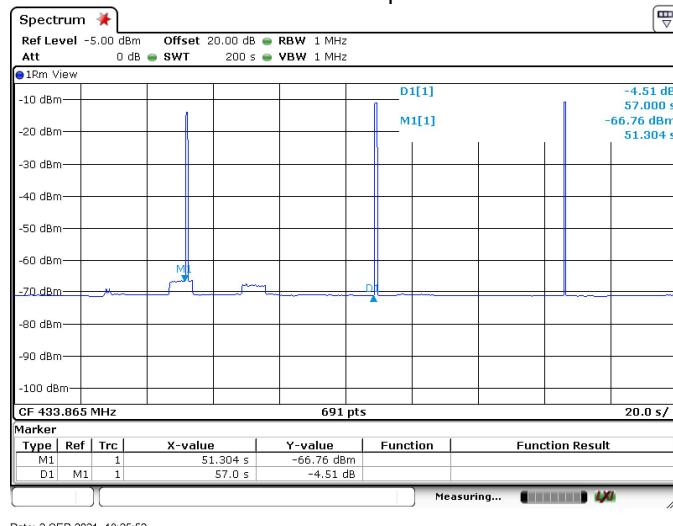
EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.205, 15.209 & 15.231(e) Antenna: Vertical
 Comment: 3 VDC
 Remark: 9kHz to 5GHz

Test Result
 Passed
 Not Passed

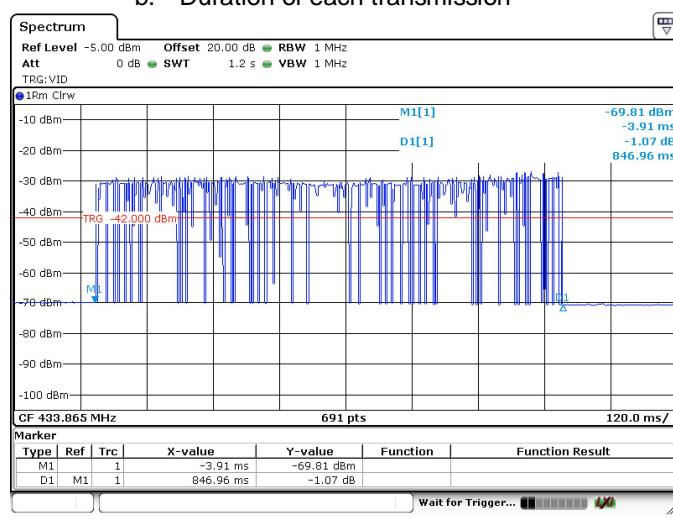
Frequency MHz	Result dB μ V/m	Limit dB μ V/m	Margin dB	Detector PK/QP/AV	Corr. (dB)	RSE. or Fund.
433.865	73.32	92.86	19.54	Peak	18.45	Fund
867.84	47.00	72.86	25.86	Peak	25.07	RSE
1301.76	54.51	74.00	19.49	Peak	-8.55	RSE
1735.68	59.85	74.00	14.15	Peak	-5.51	RSE
2169.60	55.98	74.00	18.02	Peak	-2.83	RSE
2603.52	47.86	74.00	26.14	Peak	-1.38	RSE

Frequency MHz	PK Result @3m dB μ V/m	Duty Cycle Factor dB	AV Result @3m dB μ V/m	Limit dB μ V/m	Margin dB
433.865	73.32	-12.02	61.30	72.86	11.56
867.84	47.00	-12.02	34.98	52.86	17.88
1301.76	54.51	-12.02	42.49	54.00	11.51
1735.68	59.85	-12.02	47.83	54.00	6.17
2169.60	55.98	-12.02	43.96	54.00	10.04
2603.52	47.86	-12.02	35.84	54.00	18.16

Average value = Peak value + Duty cycle factor


Spurious Radiated Emission

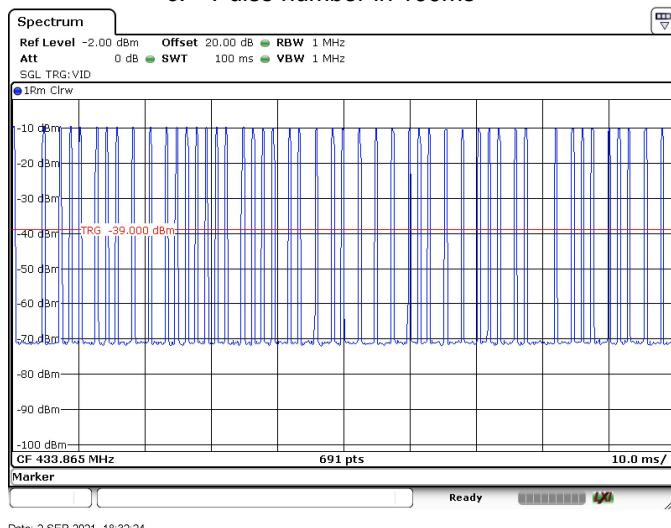
EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.205, 15.209 & 15.231(e)
 Comment: 3 VDC
 Remark: Duct Cycle Factor Calculation


Test Result
 Passed
 Not Passed

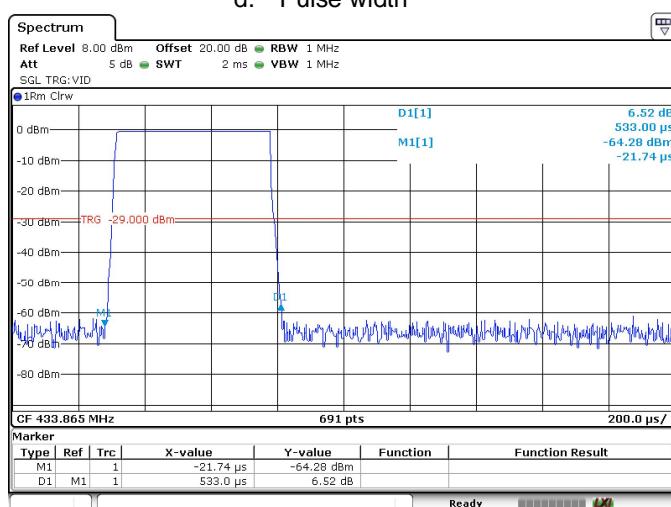
Duct Cycle Factor Calculation

a. Transmission period

b. Duration of each transmission



Spurious Radiated Emission


EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.205, 15.209 & 15.231(e)
 Comment: 3 VDC
 Remark: Duct Cycle Factor Calculation

Test Result
 Passed
 Not Passed

c. Pulse number in 100ms

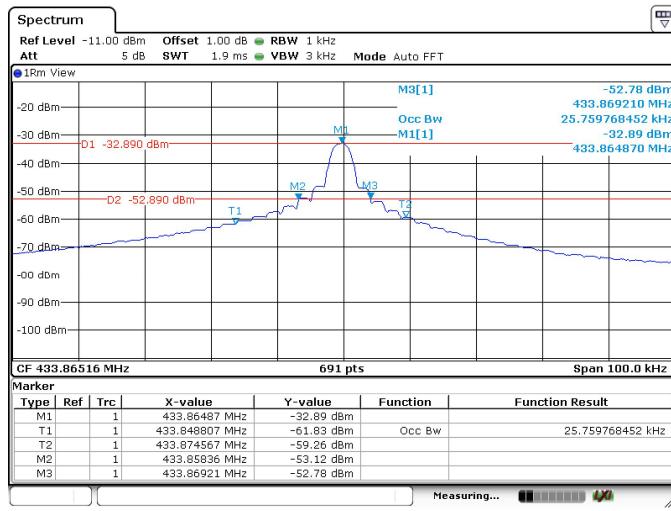
d. Pulse width

Calculation:

$T_p = 100\text{ms}$ (Max. allowed T_p for calculation)

Number of pulse in $T_p = 47$,

Pulse width = 0.533ms


$T_{on} = \text{Pulse width} * \text{Number of pulses in } T_p$
 $= 25.05 \text{ ms}$

Duty cycle factor = $20 * \log(T_{on}/T_p) = -12.02\text{dB}$

8.2 20dB Bandwidth

EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.231(c) 20dB Bandwidth
 Comment: 3 VDC

Test Result
 Passed
 Not Passed

Bandwidth	Measured Value	Limit
20dB bandwidth	10.85 kHz	<= 1084.7 kHz
Limit=0.25%*Center Frequency=0.25%*433.865MHz=1084.7kHz		

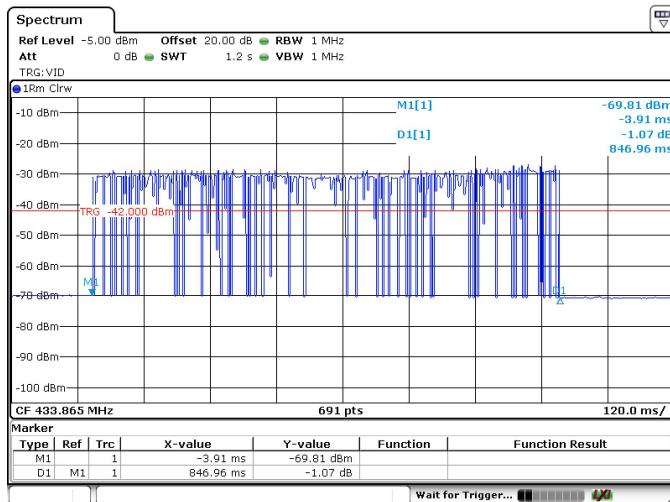
8.3 Transmission Time

EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.231(e)
 Comment: 3 VDC

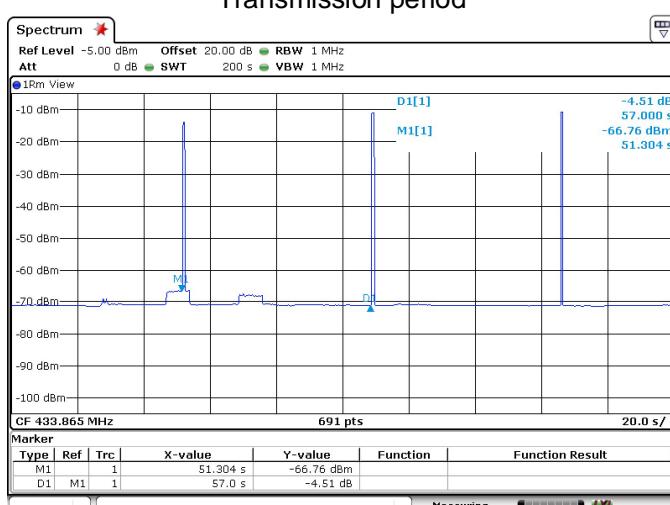
Test Result
 Passed
 Not Passed

Frequency	Duration of each transmission	Limit	Silent period	Limit
433.865MHz	846.96ms	< 1s	56.15s	≥ 25.41s

Silent period should be at least 30 times the duration of the transmission but in no case less than 10 Seconds


$$\begin{aligned}
 \text{Silent period} &= \text{Transmission period} - \text{Duration of each transmission} \\
 &= 57 - 0.84696\text{s} \\
 &\approx 56.15\text{s}
 \end{aligned}$$

Transmission Time


EUT: AOLD-2059A
 Op Condition: Operated, TX Mode (433.865MHz)
 Test Specification: FCC15.231(e)
 Comment: 3 VDC

Test Result
 Passed
 Not Passed

Duration of each transmission

Transmission period

9 Test setup procedure

9.1 Field strength of emissions and Restricted bands

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 1MHz, VBW \geq 3RBW, Sweep = auto, Detector function = peak and average,
Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 120KHz, VBW \geq 3RBW, Sweep = auto, Detector function = QP,
Trace = max hold.

Field strength of emissions and Restricted bands

Limits

According to §15.231 (e), Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following::

Fundamental frequency (MHz)	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,5001	50 to 1501
174-260	1,500	150
260-470	1,500 to 5,0001	150 to 5001
Above 470	5,000	500

9.2 Conducted Emission at AC Power line

Test Method

1. The EUT was placed on a table, which is 0.8m above ground plane
2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
3. Maximum procedure was performed to ensure EUT compliance
4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency MHz	QP Limit dB μ V	AV Limit dB μ V
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreasing linearly with logarithm of the frequency.

9.3 20dB & 99% Bandwidth

Test Method

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to spectrum analyser. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

Limits:

According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for **FCC ID: 2AJOATX2059A**

According to FCC CFR 47 part1 1.1310, As specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

MPE calculation method:

$$Pd = (P^*G) / (4^*Pi^* R^2), \text{ where}$$

Pd = power density in mW/cm²

P = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R= calculation distance in cm

>> The limit of Power density 433.865MHz is 433.865/1500=0.29mW/cm²

>> The antenna gain is 0dBi (=1 in linear scale).

Manufacturer specified the separation distance is: 20cm

The max. power (calculated power + tune up tolerance) of EUT at 433.865MHz is: 0.007mW

>> The Pd calculated of 433.865MHz is 0.000001mW/cm²

Which is smaller than the threshold of the limit.

Therefore, the device is exempt from stand-alone SAR test requirements.

Power calculation (According to C63.10 chapter 9.5)

	433.865	MHz
Field Strength Measured (E)	73.32	dB μ V/m
Measurement Distance (D)	3	m
Equivalent Isotropically Radiated Power (E.I.R.P in dBm)	-21.84	dBm
Equivalent Isotropically Radiated Power (E.I.R.P in mW)	0.007	mW

Remark: EIRP = E + 20log(D) -104.7

(EIRP is in dBm, E is in dB μ V/m, D is in metres)

Reviewed by:

A handwritten signature in black ink, appearing to read "Eric Li".

Eric LI
EMC Project Manager

Prepared by:

A handwritten signature in black ink, appearing to read "Hosea Chan".

Hosea CHAN
EMC Project Engineer