

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen. China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

Test Report

Report No.: CQASZ20190500014EX-10

Applicant: Speedata Group Ltd

Address of Applicant: Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian district,

Beijing, China

Manufacturer: Speedata Group Ltd

Address of Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian district,

Manufacturer: Beijing, China

Equipment Under Test (EUT):
Product: PDA
Test Model No.: SD60

All Model No.: SD60, SD35, T35, PG35, SD55, T55, SD55LG, SD55MD, SD55UHF, SD55PTT,

T55UHF, T55PPT, PG55, T60, SD60LG, SD60RT, SD60PRT, T60RT, Bio60,

SD50, SN50, SD50RT, T50, PG50

Brand Name: N/A

FCC ID: 2AJO5SD60

Standards: 47 CFR Part 2

47 CFR Part 27

Date of Test: Mar. 26, 2019 to Aug. 07, 2019

Date of Issue: Aug. 07, 2019

Test Result : PASS*

Tested By:

(Daisy Qin)

Reviewed By:

(Aaron Ma)

Approved By: (Jack Ai)

^{*} In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20190500014EX-10

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190500014EX-10	Rev.01	Initial report	Aug. 07, 2019

Report No.: CQASZ20190500014EX-10

Contents

1	٧	/ERSION	2
2	s	SUMMARY	4
	2.1	TEST STANDARDS	4
	2.2	TEST DESCRIPTION	4
	2.3	TEST LOCATION	4
	2.4	TEST FACILITY	5
	2.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	5
	2.6	TEST EQUIPMENT	6
3	G	GENERAL INFORMATION	7
	3.1	CLIENT INFORMATION	7
	3.2	ENVIRONMENTAL CONDITIONS	
	3.3	GENERAL DESCRIPTION OF EUT	7
	3.4	TECHNICAL SPECIFICATION	8
	3.5	TEST MODE	8
4	Т	EST CONDITIONS AND RESULTS	9
	4.1	OUTPUT POWER	9
	4.2	PEAK-TO-AVERAGE RATIO (PAR)	13
	4.3	OCCUPIED BANDWIDTH AND EMISSION BANDWIDTH	16
	4.4	EMISSION MASK	
	4.5	OUT OF BAND EMISSION, SPURIOUS EMISSION	
	4.6	FREQUENCY STABILITY UNDER TEMPERATURE & VOLTAGE VARIATIONS	
5	Т	EST SETUP PHOTOS OF THE EUT	37
6	Р	PHOTOS OF THE EUT	38

Report No.: CQASZ20190500014EX-10

2 SUMMARY

2.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

EIA/TIA-603-E: Land Mobile FM or PM Communications Equipment Measurement and Performance

Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND

REG-ULATIONS

KDB971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL

TRANSMITTERS

2.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50	Pass
Peak-to-Average Ratio	Part 27.50	Pass
2007 0 00 10 0 1 10 10 1 111	Part 2.1049	Davis
99% & -26 dB Occupied Bandwidth	Part 27.53	Pass
Field Strength of Spurious Radiation	Part 2.1053	Pass
Field Strength of Spurious Radiation	Part 27.53(m)	Fa55
Out of band emission, Emission Mask	Part 2.1051	Pass
Out of band emission, Emission wask	Part 27.53(m)(4)	Fass
Frequency stability	Part 2.1055 Part 27.54	Pass

Note: N/A means this test item is not applicable.

2.3 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report No.: CQASZ20190500014EX-10

2.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

2.5 Statement of the measurement uncertainty

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10-8	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CQASZ20190500014EX-10

2.6 Test Equipment

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
		AFS4-			
		00010300-18-		2018/9/26	2019/9/25
Preamplifier	MITEQ	10P-4	CQA-035		
		AMF-6D-			
		02001800-29-		2018/11/2	2019/11/1
Preamplifier	MITEQ	20P	CQA-036		
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above					
1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below					
1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Spectrum analyzer	Agilent	E4440A	CQA-103	2018/10/28	2019/10/27
Universal Radio					
Communication Tester	Rohde & Schwarz	CMW500	CQA-022	2018/9/26	2019/9/25
		PWD-2533-			
Power divider	MIDWEST	02-SMA-79	CQA-067	2018/9/26	2019/9/25
H & T Chamber	Auchno	OJN-9606	CQA-CB2	2018/9/26	2019/9/25

Report No.: CQASZ20190500014EX-10

3 GENERAL INFORMATION

3.1 Client Information

Applicant:	Speedata Group Ltd
Address of Applicant:	1F Zhiyuan Building, NO.28, ShangDi 6th Street HaiDian District, Beijing, China
Manufacturer:	Speedata Group Ltd
Address of Manufacturer:	1F Zhiyuan Building, NO.28, ShangDi 6th Street HaiDian District, Beijing, China

3.2 Environmental conditions

Environment Parameter	Selected Values During Tests		
Relative Humidity	52%		
Atmospheric Pressure:	1001mbar		
Temperature	TN 25 °C		
	VL	3.5V	
Voltage :	VN	4.2V	
	VH	4.5V	

NOTE: VL= lower extreme test voltage

VN= nominal voltage

VH= upper extreme test voltage TN= normal temperature

3.3 General Description of EUT

Product Name:	PDA	
All Model No.:	SD60, SD35, T35, PG35, SD55, T55, SD55LG, SD55MD, SD55UHF, SD55PTT, T55UHF, T55PPT, PG55, T60, SD60LG, SD60RT, SD60PRT, T60RT, Bio60, SD50, SN50, SD50RT, T50, PG50	
Test Model No.:	SD60	
Trade Mark:	N/A	
Hardware Version:	8.1.0	
Software Version:	V.SD60.2.1.20.2019041909	
Product Type:		
Antenna Type:	Monopole antenna	
Antenna Gain:	-4.1dBi.	
EUT Power Supply:	DC 3.8V from Battery	
Adapter Information:	Model: A138A-120150U-US2 Input: 100-240V-50/60Hz, 0.5A	
-	Output: 5V 2.5A/ 9V 2A/ 12V 1.5A	

Report No.: CQASZ20190500014EX-10

Note: 1. This report is only for TDD-LTE Band 41.

- 2. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 3. There are many products, Only the model SD60 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

3.4 Technical Specification

Characteristics	Description		
Radio System Type	☐ GSM ☐ UMTS ⊠ LTE		
Supported Frequency Range	LTE BAND41	Uplink: 2593 MHz	
Supported Frequency Range	LIE BANDTI	Downlink: 2593 MHz	
Power Class	Class 3		
Supported Channel Bandwidth	LTE BAND41 ⊠5MHz⊠10MHz⊠15 MHz		
Designation of Emissions (Note: the necessary bandwidth of which is the worst value from the measured occupied bandwidths for each type of channel bandwidth configuration.)	LTE BAND41	5M QPSK modulation 5MHz 16QAM modulation 10M QPSK modulation 10MHz 16QAM modulation 15M QPSK modulation 15MHz 16QAM modulation	

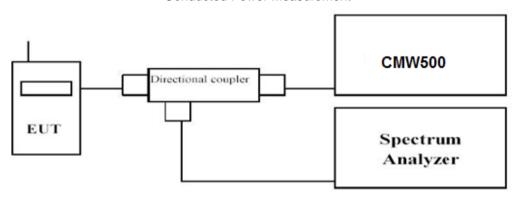
3.5 Test Mode

Test Mode	Test Modes Description	
TDD-LTE	TDD-LTE system, QPSK modulation	
	TDD-LTE system, 16QAM modulation	

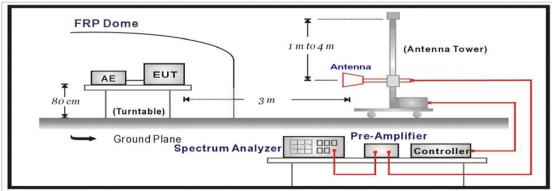
NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Report No.: CQASZ20190500014EX-10

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

LIMIT


According to §27.50 (h) (2): Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603E

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500 then selects a channel for testing.

Report No.: CQASZ20190500014EX-10

d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- I) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- g) Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Conducted Measurement:

LTE FDD Band 41					
TX Channel	DD 0' - /0'()	Frequency	Average Power [dBm]		
Bandwidth	RB Size/Offset	(MHz)	QPSK	16QAM	
5 MHz	1 RB low	2593.0	23.70	22.66	
	1 RB high	2593.0	23.91	22.91	
	50% RB mid	2593.0	22.87	22.01	
	100% RB	2593.0	22.78	21.74	

Report No.: CQASZ20190500014EX-10

	1 RB low	2593.0	23.70	22.65
	1 RB high	2593.0	23.66	22.86
10 MHz	50% RB mid	2593.0	23.56	21.76
	100% RB	2593.0	22.64	21.19
15 MHz	1 RB low	2593.0	23.55	22.57
	1 RB high	2593.0	22.92	21.91
	50% RB mid	2593.0	22.69	21.69
	100% RB	2593.0	22.60	21.69

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$

LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2593.0	-17.98	3.71	11.10	34.44	23.85	33.01	9.16	Н
2593.0	-19.23	3.71	11.10	34.44	22.6	33.01	10.41	V

LTE FDD Band 41_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2593.0	-17.89	3.71	11.10	34.44	23.94	33.01	9.07	Н
2593.0	-19.18	3.71	11.10	34.44	22.65	33.01	10.36	V

Report No.: CQASZ20190500014EX-10

LTE FDD Band 41_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2593.0	-17.72	3.71	11.10	34.44	24.11	33.01	8.90	Н
2593.0	-18.46	3.71	11.10	34.44	23.37	33.01	9.64	V

LTE FDD Band 41_Channel Bandwidth 5MHz_16QAM

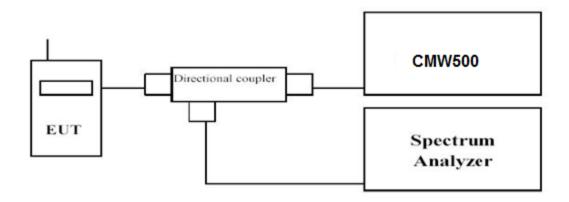
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2593.0	-19.22	3.71	11.10	34.44	22.61	33.01	10.40	Н
2593.0	-20.49	3.71	11.10	34.44	21.34	33.01	11.67	V

LTE FDD Band 41_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2593.0	-19.04	3.71	11.10	34.44	22.79	33.01	10.22	Н
2593.0	-21.62	3.71	11.10	34.44	20.21	33.01	12.8	V

LTE FDD Band 41_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2593.0	-18.82	3.71	11.10	34.44	23.01	33.01	10.00	Н
2593.0	-19.94	3.71	11.10	34.44	21.89	33.01	11.12	V


Report No.: CQASZ20190500014EX-10

4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

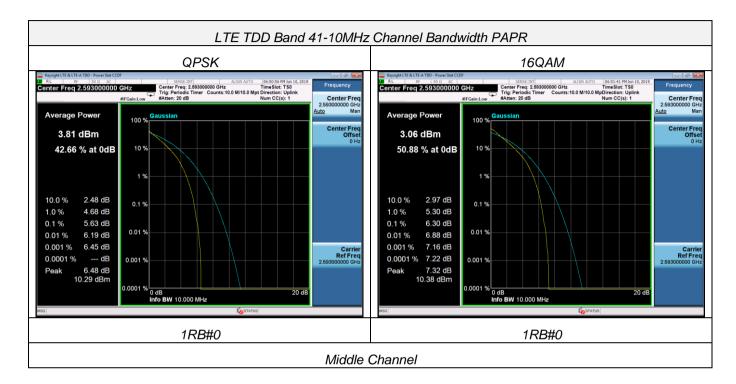
TEST CONFIGURATION

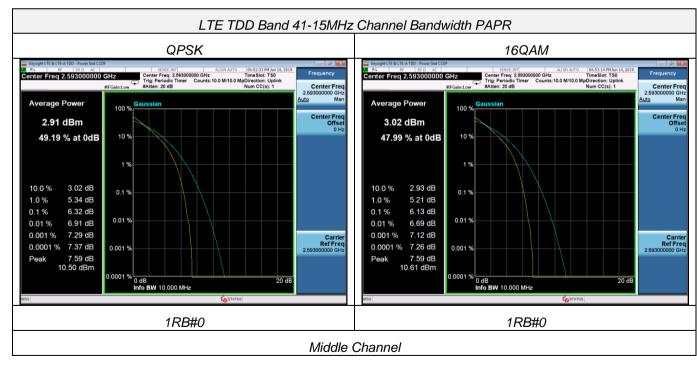
TEST PROCEDURE

According to KDB971168 D01 Power Meas License Digital Systems v02r02: Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from: PAPR (dBm) - P_{Avg} (dBm).

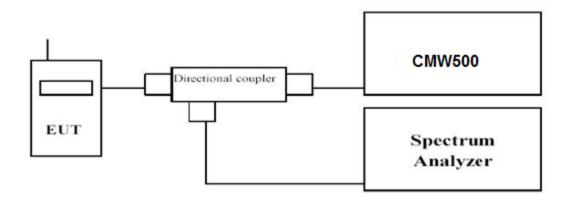

TEST RESULTS

Remark:


We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.



	LTE TDD Band 41											
TX Channel	Frequency	DD C:/Offeet	PAPR (dB)									
Bandwidth	(MHz)	RB Size/Offset	QPSK	16QAM								
5 MHz	2593.0	1RB#0	6.92	8.12								
10 MHz	2593.0	1RB#0	5.63	6.30								
15 MHz	2593.0	1RB#0	6.32	6.13								


Report No.: CQASZ20190500014EX-10

4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

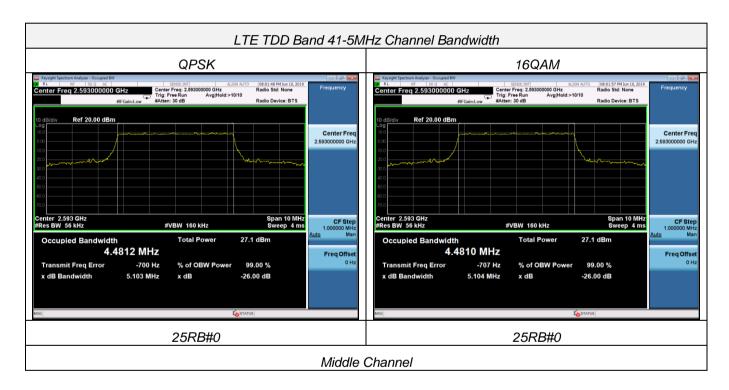
N/A

TEST CONFIGURATION

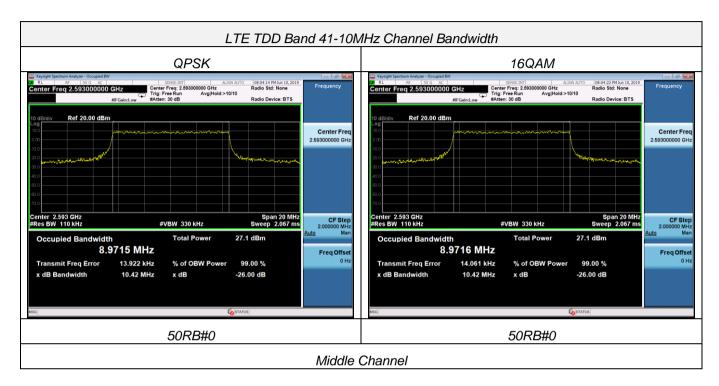
TEST PROCEDURE

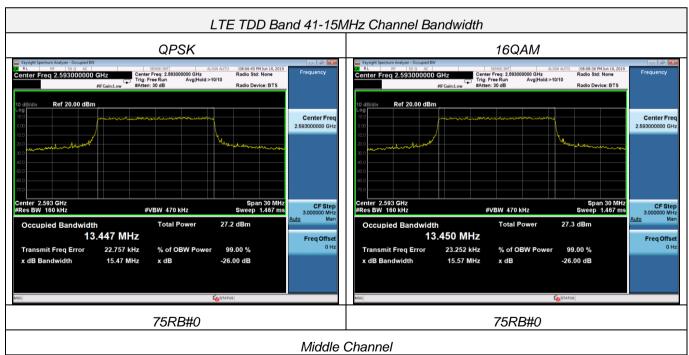
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

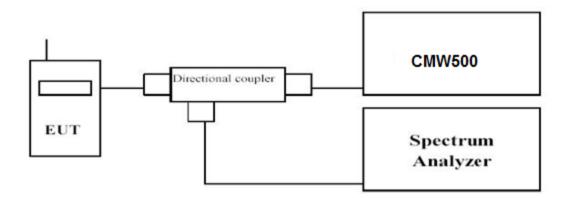

TEST RESULTS

Remark:


We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.



	LTE TDD Band 41											
TX Channel	RB Size/Offset	Frequency	-26dBc E bandwid	Emission th (MHz)	·	ed bandwidth Hz)						
Bandwidth		(MHz)	QPSK	16QAM	QPSK	16QAM						
5 MHz	25RB#0	2593.0	5.103	5.104	4.4812	4.4810						
10 MHz	50RB#0	2593.0	10.420	10.420	8.9715	8.9716						
15 MHz	75RB#0	2593.0	15.470	15.570	13.447	13.450						


Report No.: CQASZ20190500014EX-10

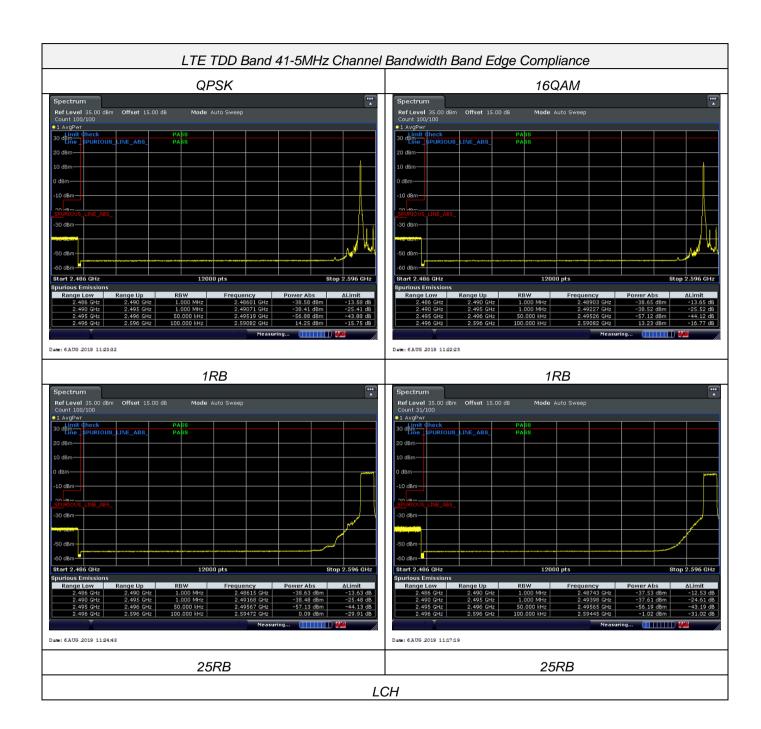
4.4 Emission Mask

LIMIT

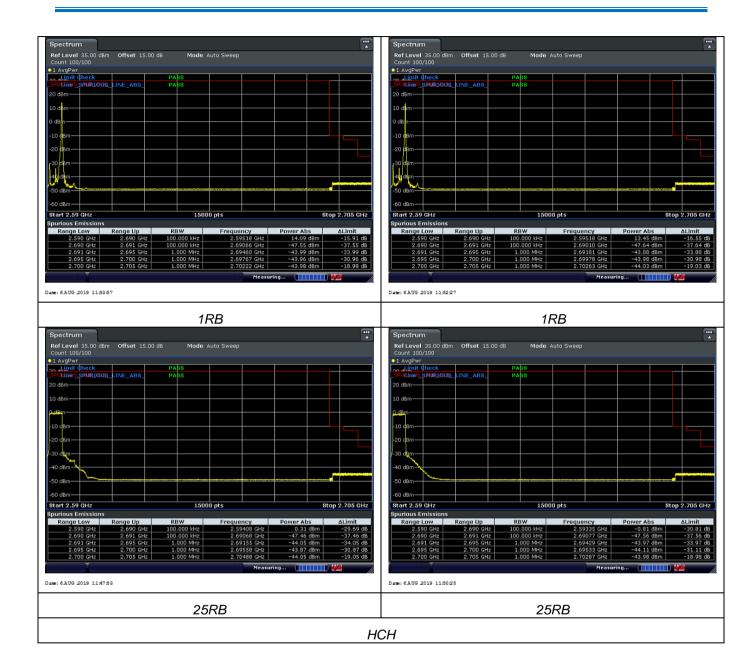
According to §27.53 (m) (4): For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST CONFIGURATION

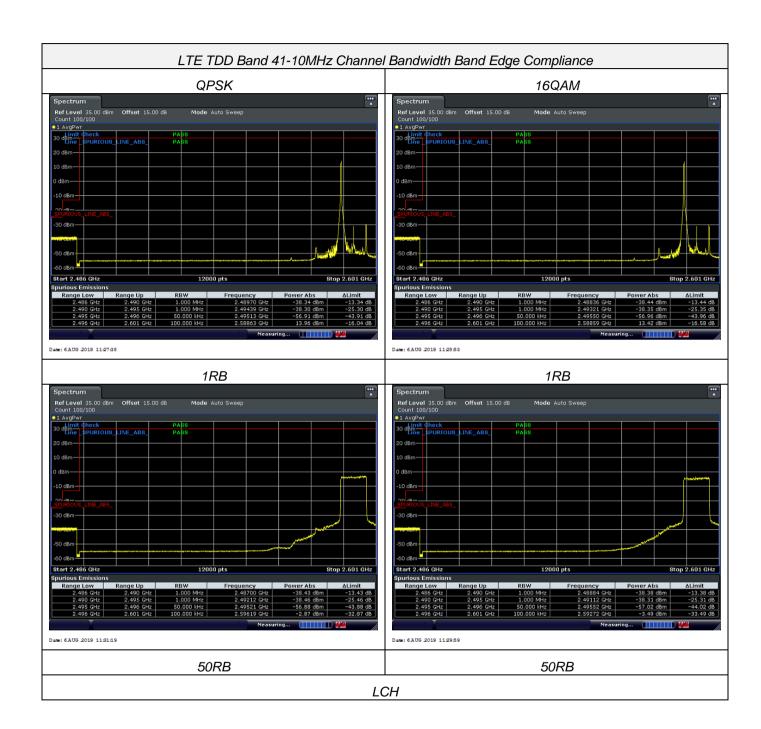
TEST PROCEDURE

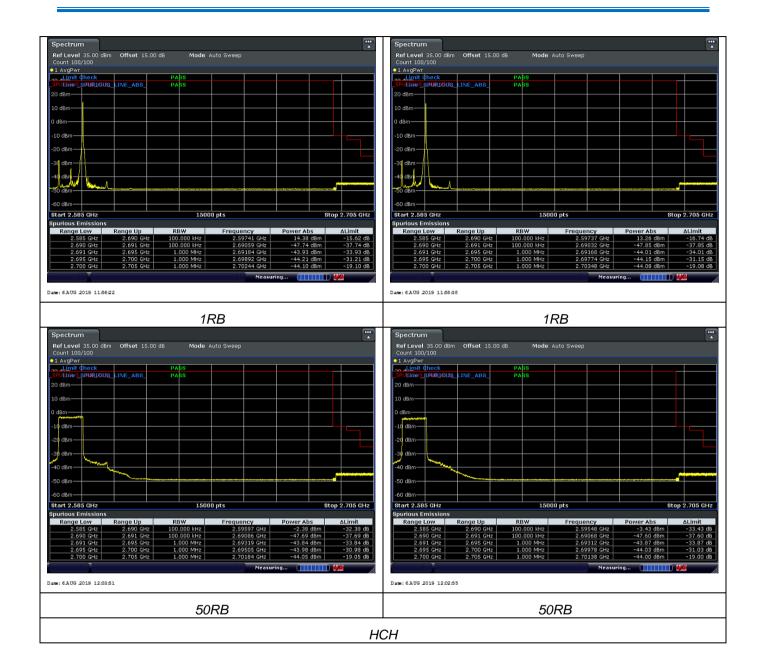

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

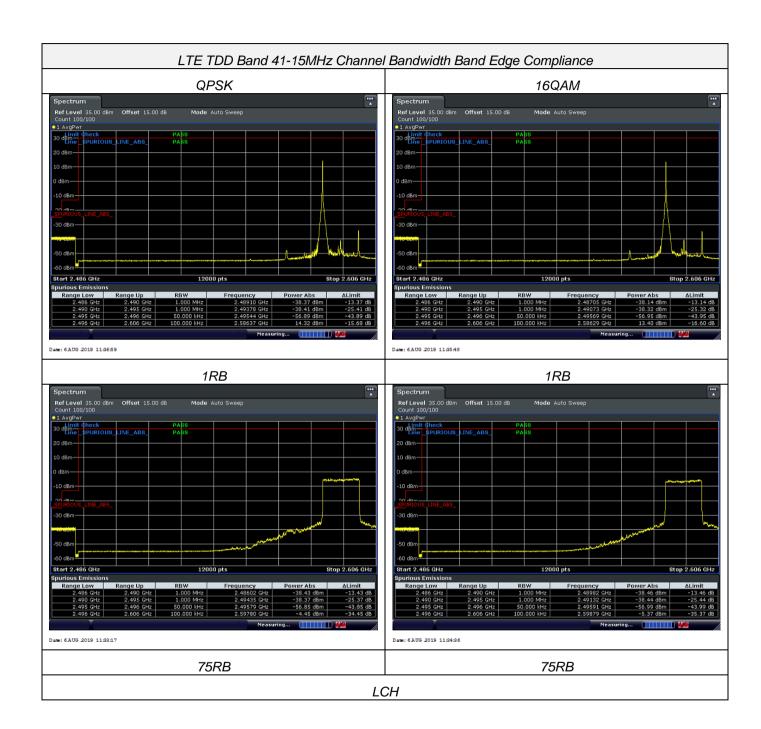
TEST RESULTS

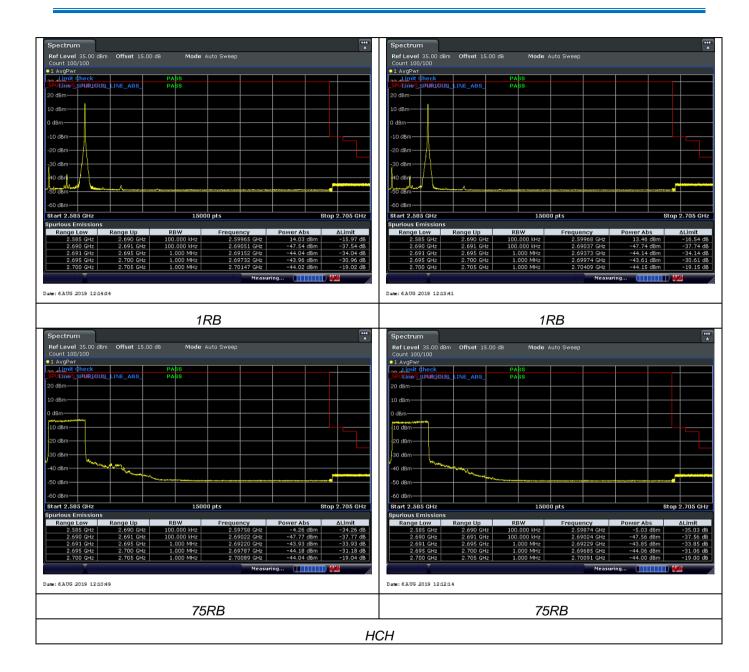

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.



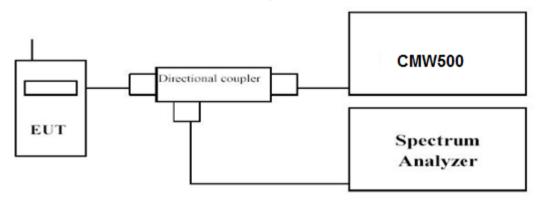




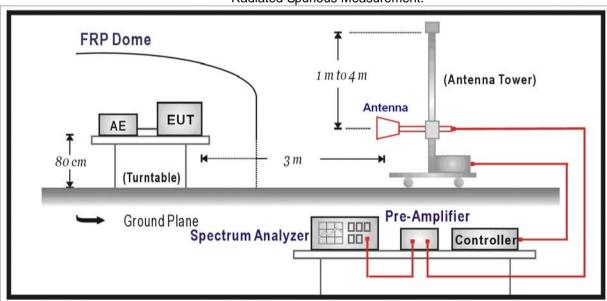


Report No.: CQASZ20190500014EX-10

4.5 Out of band emission, Spurious Emission


LIMIT

27.53 (m)


At least 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603E

Report No.: CQASZ20190500014EX-10

Conducted Spurious Measurement:

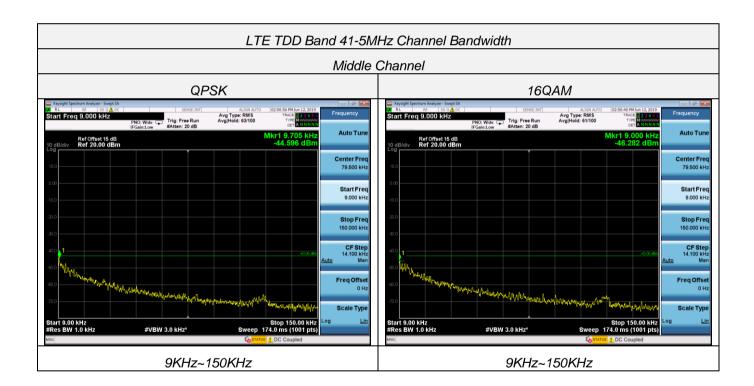
- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
	0.000009~0.000015	1KHz	3KHz	Auto
LTE TDD Band 41	0.000015~0.03	10KHz	30KHz	Auto
	0.03~27.0*	1 MHz	3 MHz	Auto

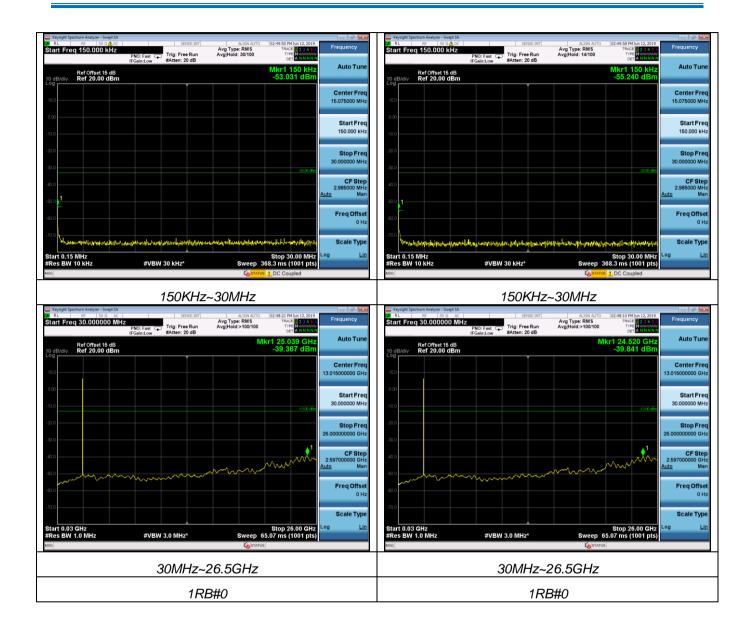
Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360°in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

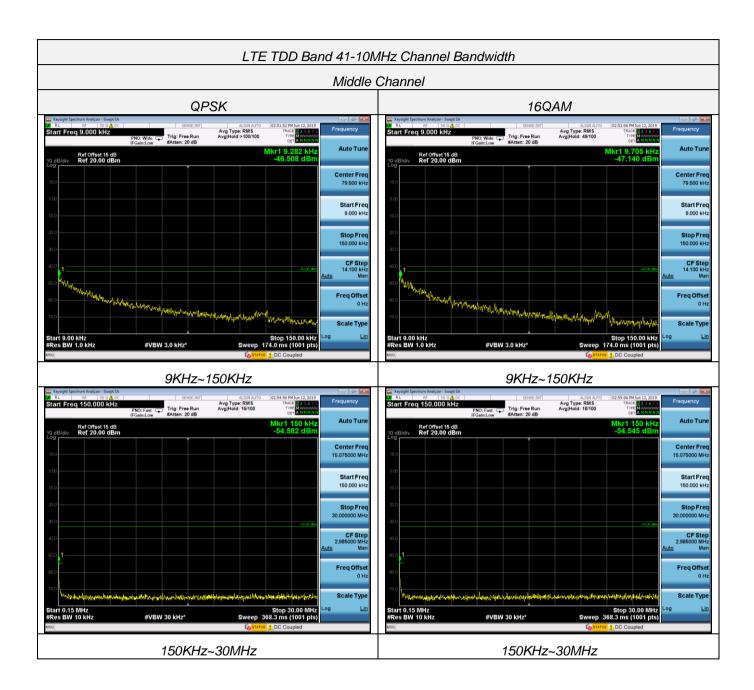
Report No.: CQASZ20190500014EX-10

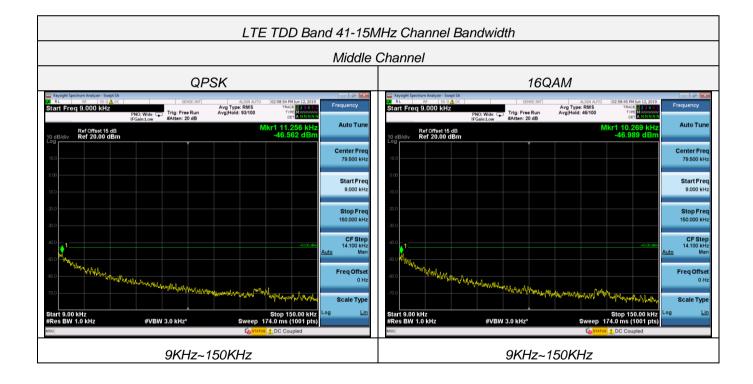

- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

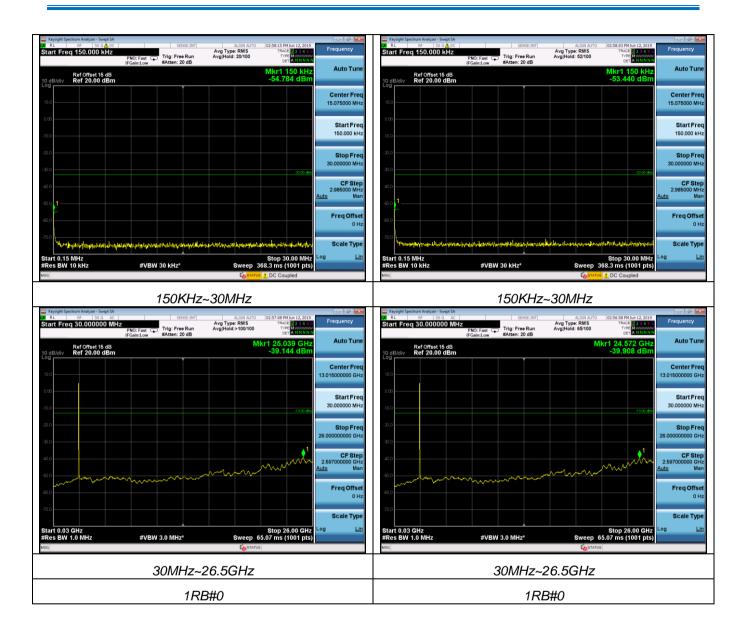
TEST RESULTS


Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.
- 2. We tested from 9KHz to 27GHz and recorded 9KHz at 26.5GHz as the emission values from 26.5GHz to 27GHz to lower.


Conducted Measurement:





Report No.: CQASZ20190500014EX-10

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE TDD Band 41; recorded worst case for each Channel Bandwidth of LTE TDD Band 41.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = Limit EIRP

LTE TDD Band 41_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-32.30	6.70	3.00	13.21	-25.79	-25	0.79	Н
7779.0	-34.94	7.28	3.00	12.10	-30.12	-25	5.12	Н
5186.0	-40.97	6.70	3.00	13.21	-34.46	-25	9.46	V
7779.0	-44.79	7.28	3.00	12.10	-39.97	-25	14.97	V

LTE TDD Band 41_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-33.68	6.70	3.00	13.21	-27.17	-25	2.17	Н
7779.0	-37.15	7.28	3.00	12.10	-32.33	-25	7.33	Н
5186.0	-42.46	6.70	3.00	13.21	-35.95	-25	10.95	V
7779.0	-44.90	7.28	3.00	12.10	-40.08	-25	15.08	V

LTE TDD Band 41 Channel Bandwidth 15MHz QPSK Middle Channel

	T			1 01 _ 111100				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-35.40	6.70	3.00	13.21	-28.89	-25	3.89	Н
7779.0	-40.47	7.28	3.00	12.10	-35.65	-25	10.65	Н
5186.0	-42.68	6.70	3.00	13.21	-36.17	-25	11.17	V
7779.0	-46.06	7.28	3.00	12.10	-41.24	-25	16.24	V

Report No.: CQASZ20190500014EX-10

LTE TDD Band 41_Channel Bandwidth 5MHz_16QAM _ Middle Channel

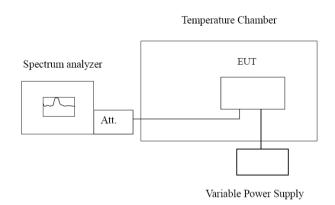
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-33.12	6.70	3.00	13.21	-26.61	-25	1.61	Н
7779.0	-38.09	7.28	3.00	12.10	-33.27	-25	8.27	Н
5186.0	-42.01	6.70	3.00	13.21	-35.50	-25	10.5	V
7779.0	-44.59	7.28	3.00	12.10	-39.77	-25	14.77	V

LTE TDD Band 41_Channel Bandwidth 10MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-34.17	6.70	3.00	13.21	-27.66	-25	2.66	Н
7779.0	-36.82	7.28	3.00	12.10	-32.00	-25	7	Н
5186.0	-42.00	6.70	3.00	13.21	-35.49	-25	10.49	V
7779.0	-45.98	7.28	3.00	12.10	-41.16	-25	16.16	V

LTE TDD Band 41_Channel Bandwidth 15MHz_16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-34.76	6.70	3.00	13.21	-28.25	-25	3.25	Н
7779.0	-41.74	7.28	3.00	12.10	-36.92	-25	11.92	Н
5186.0	-44.63	6.70	3.00	13.21	-38.12	-25	13.12	V
7779.0	-45.48	7.28	3.00	12.10	-40.66	-25	15.66	V


Report No.: CQASZ20190500014EX-10

4.6 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.50(a), §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603E

Frequency Stability under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -20℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 2, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10°C increments from -20°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from
 minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each
 voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before
 continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

Report No.: CQASZ20190500014EX-10

- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -20 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

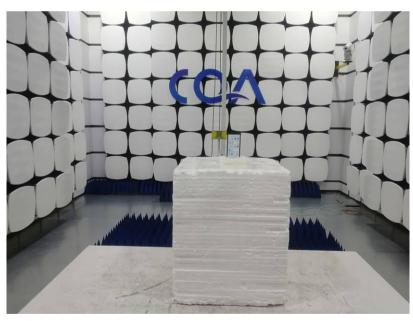
Remark:

We tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 41; recorded worst case LTE Band 41, 5MHz bandwidth (worst case of all bandwidths)

Frequency Error vs Voltage

Voltage	Frequency	error (Hz)	Frequency	Limit	
(V)	QPSK	16QAM	QPSK	16QAM	(ppm)
3.5	-8.00	-9.20	0.003	0.004	2.50
4.2	0.10	-4.00	0.000	0.002	2.50
4.5	3.30	-1.70	0.001	0.001	2.50

Frequency Error vs Temperature


Temperature	Frequency	error (Hz)	Frequency	Limit	
(℃)	QPSK	16QAM	QPSK	16QAM	(ppm)
-20°	-9.40	-5.90	0.004	0.002	2.50
-10°	0.60	3.10	0.000	0.001	2.50
0°	-10.60	-3.00	0.004	0.001	2.50
10°	0.90	-10.90	0.000	0.004	2.50
20°	-9.90	1.50	0.004	0.001	2.50
30°	-2.90	-9.40	0.001	0.004	2.50
40°	2.10	-0.40	0.001	0.000	2.50
50°	-5.80	-12.70	0.002	0.005	2.50

Report No.: CQASZ20190500014EX-10

5 Test Setup Photos of the EUT

30MHz~1GHz

Above 1GHz

Report No.: CQASZ20190500014EX-10

6 Photos of the EUT

Please refer to the report No: CQASZ20190500014EX	K-01