

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cga-cert.com

ert.com Report Template Revision Date: Mar.1st, 2017

Report Template Version: V03

Test Report

Report No.: CQASZ20190500014EX-08

Applicant: Speedata Group Ltd

Address of Applicant: Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian district,

Beijing, China

Manufacturer: Speedata Group Ltd

Address of Room 2-308, building No. 25, No. 9 Anningzhuang Road West, Haidian district,

Manufacturer: Beijing, China

Equipment Under Test (EUT):
Product: PDA
Test Model No.: SD60

All Model No.: SD60, SD35, T35, PG35, SD55, T55, SD55LG, SD55MD, SD55UHF, SD55PTT,

T55UHF, T55PPT, PG55, T60, SD60LG, SD60RT, SD60PRT, T60RT, Bio60,

SD50, SN50, SD50RT, T50, PG50

Brand Name: N/A

FCC ID: 2AJO5SD60

Standards: 47 CFR Part 2

47 CFR Part 22 subpart H

Date of Test: Mar. 26, 2019 to Jun. 12, 2019

Date of Issue: Jun. 13, 2019

Test Result : PASS*

Tested By:

(Daisy Qin)

Reviewed By:

(Aaron Ma)

Approved By: (Jack Ai)

^{*} In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20190500014EX-08

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190500014EX-08	Rev.01	Initial report	Jun. 13, 2019

Report No.: CQASZ20190500014EX-08

Contents

1	V	/ERSION	2
2		SUMMARY	
_			
	2.1	TEST STANDARDS	
	2.2	TEST DESCRIPTION	
	2.3	TEST LOCATION	
	2.4	TEST FACILITY	
	2.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	2.6	TEST EQUIPMENT	6
3	G	SENERAL INFORMATION	7
	3.1	CLIENT INFORMATION	7
	3.2	ENVIRONMENTAL CONDITIONS	
	3.3	GENERAL DESCRIPTION OF EUT	
	3.4	TECHNICAL SPECIFICATION	
	3.5	TEST MODE	
4	Т	EST CONDITIONS AND RESULTS	9
	4.1	OUTPUT POWER	9
	4.2	PEAK-TO-AVERAGE RATIO (PAR)	
	4.3	OCCUPIED BANDWIDTH AND EMISSION BANDWIDTH	
	4.4	BAND EDGE COMPLIANCE	31
	4.5	Spurious Emission	36
	4.6	FREQUENCY STABILITY UNDER TEMPERATURE & VOLTAGE VARIATIONS	
5	Т	EST SETUP PHOTOS OF THE EUT	63
6	п	DUOTOS OF THE FUT	(1)

Report No.: CQASZ20190500014EX-08

2 SUMMARY

2.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

EIA/TIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and

Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND

REG-ULATIONS

KDB971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL

TRANSMITTERS

2.2 Test Description

Test Item	Section in CFR 47	Result
	Part 2.1046	Davis
RF Output Power	Part 22.913(a)	Pass
Peak-to-Average Ratio	N/A	Pass
200/ 8 OC dB Occurried Boundwidth	Part 2.1049	Dana
99% & -26 dB Occupied Bandwidth	Part 22.917(b)	Pass
	Part 2.1051	Dana
Spurious Emissions at Antenna Terminal	Part 22.917(b)	Pass
Field Carenath of Courieus Dediction	Part 2.1053	Dana
Field Strength of Spurious Radiation	Part 22.917(b)	Pass
Out of band amission, Band Edge	Part 2.1051	Door
Out of band emission, Band Edge	Part 22.917(b)	Pass
	Part 2.1055	D
Frequency stability	22.917	Pass

2.3 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report No.: CQASZ20190500014EX-08

2.4 Test Facility

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

2.5 Statement of the measurement uncertainty

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10-8	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CQASZ20190500014EX-08

2.6 Test Equipment

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
		AFS4-			
		00010300-18-		2018/9/26	2019/9/25
Preamplifier	MITEQ	10P-4	CQA-035		
		AMF-6D-			
		02001800-29-		2018/11/2	2019/11/1
Preamplifier	MITEQ	20P	CQA-036		
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above					
1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below					
1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Spectrum analyzer	Agilent	E4440A	CQA-103	2018/10/28	2019/10/27
Universal Radio					
Communication Tester	Rohde & Schwarz	CMW500	CQA-022	2018/9/26	2019/9/25
		PWD-2533-			
Power divider	MIDWEST	02-SMA-79	CQA-067	2018/9/26	2019/9/25
H & T Chamber	Auchno	OJN-9606	CQA-CB2	2018/9/26	2019/9/25

Report No.: CQASZ20190500014EX-08

3 GENERAL INFORMATION

3.1 Client Information

Applicant:	Speedata Group Ltd
Address of Applicant:	1F Zhiyuan Building, NO.28, ShangDi 6th Street HaiDian District, Beijing, China
Manufacturer:	Speedata Group Ltd
Address of Manufacturer:	1F Zhiyuan Building, NO.28, ShangDi 6th Street HaiDian District, Beijing, China

3.2 Environmental conditions

Environment Parameter	Selected Values During Tests		
Relative Humidity	52%		
Atmospheric Pressure:	1001mbar		
Temperature	TN 25 °C		
	VL	3.5V	
Voltage :	VN	4.2V	
	VH	4.5V	

NOTE: VL= lower extreme test voltage

VN= nominal voltage

VH= upper extreme test voltage TN= normal temperature

3.3 General Description of EUT

Product Name:	PDA	
All Model No.:	SD60, SD35, T35, PG35, SD55, T55, SD55LG, SD55MD, SD55UHF, SD55PTT, T55UHF, T55PPT, PG55, T60, SD60LG, SD60RT, SD60PRT, T60RT, Bio60, SD50, SN50, SD50RT, T50, PG50	
Test Model No.:	SD60	
Trade Mark:	N/A	
Hardware Version:	8.1.0	
Software Version:	V.SD60.2.1.20.2019041909	
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location	
Antenna Type:	Monopole antenna	
Antenna Gain:	-3.8dBi.	
EUT Power Supply:	DC 3.8V from Battery	
Adapter Information:	Model: A138A-120150U-US2 Input: 100-240V-50/60Hz, 0.5A	
	Output: 5V 2.5A/ 9V 2A/ 12V 1.5A	

Report No.: CQASZ20190500014EX-08

Note: 1. This report is only for FDD-LTE Band5.

- 2. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 3. There are many products, Only the model SD60 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

3.4 Technical Specification

Characteristics	Description		
Radio System Type	☐ GSM ☐ UMTS ☒ LTE		
Supported Frequency Range	LTE BAND5	Uplink: 824 to 849 MHz	
Supported Frequency Range	LIE BANDO	Downlink: 869 to 894 MHz	
Power Class	Class 3		
Supported Channel Bandwidth	LTE BAND5		
Designation of Emissions (Note: the necessary bandwidth of which is the worst value from the measured occupied bandwidths for each type of channel bandwidth configuration.)	LTE BAND5:	1.4M QPSK modulation 1.4MHz 16QAM modulation 3M QPSK modulation 3MHz 16QAM modulation 5M QPSK modulation 5MHz 16QAM modulation 10M QPSK modulation 10MHz 16QAM modulation	

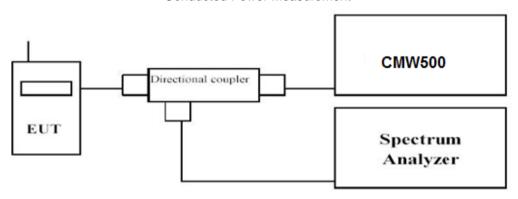
3.5 Test Mode

Test Mode	Test Modes Description	
FDD-LTE	FDD-LTE system, QPSK modulation	
FDD-LTE	FDD-LTE system, 16QAM modulation	

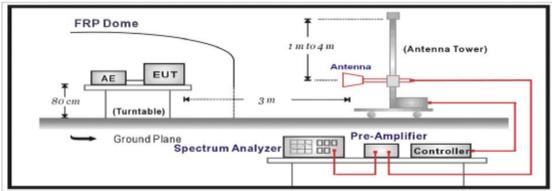
NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Report No.: CQASZ20190500014EX-08

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

LIMIT


According to § 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603E

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500 then selects a channel for testing.

Report No.: CQASZ20190500014EX-08

d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- I) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- g) Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Conducted Measurement:

LTE FDD Band 5					
TX Channel	DD 0:/0#	Frequency		Average Power [dBm]	
Bandwidth	RB Size/Offset	(MHz)	QPSK	16QAM	
		824.7	21.97	21.20	
	1 RB low	836.5	22.85	22.12	
		848.3	23.03	22.28	
		824.7	23.42	22.62	
1.4 MHz	1 RB high	836.5	23.05	22.61	
		848.3	22.87	22.41	
		824.7	22.95	22.43	
	50% RB mid	836.5	23.00	22.58	

		1		
		848.3	23.00	22.52
		824.7	23.12	22.73
	100% RB	836.5	22.51	21.67
		848.3	23.02	22.43
		825.5	21.64	20.87
	1 RB low	836.5	21.73	20.88
		847.5	22.23	21.46
		825.5	22.28	21.87
	1 RB high	836.5	21.72	21.08
0.841		847.5	21.68	21.20
3 MHz		825.5	22.47	21.95
	50% RB mid	836.5	22.27	21.71
		847.5	21.86	21.15
		825.5	22.40	21.68
	100% RB	836.5	21.90	21.24
		847.5	23.09	22.66
		826.5	21.78	20.95
	1 RB low	836.5	22.87	22.28
		846.5	22.91	22.50
		826.5	21.81	21.09
	1 RB high	836.5	22.97	22.15
E NALL		846.5	22.06	21.47
5 MHz		826.5	23.01	22.47
	50% RB mid	836.5	22.67	21.87
		846.5	23.28	22.84
		826.5	21.66	21.06
	100% RB	836.5	22.72	22.15
		846.5	22.17	21.36
		829.0	22.72	22.31
	1 RB low	836.5	22.12	21.56
		844.0	23.27	22.90
10 MHz		829.0	21.91	21.52
	1 RB high	836.5	21.72	21.19
		844.0	21.50	20.67
	50% RB mid	829.0	21.59	21.21

Report No.: CQASZ20190500014EX-08

	836.5	22.27	21.56
	844.0	23.28	22.77
	829.0	23.37	22.52
100% RB	836.5	22.84	22.11
	844.0	22.57	21.92

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5; recorded worst case for each Channel Bandwidth of LTE FDD Band 5.
- 2. $ERP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBd)$

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.7	-19.45	2.42	6.3	36.82	21.25	38.45	17.20	V
836.5	-18.51	2.46	6.3	36.82	22.15	38.45	16.30	V
848.3	-19.05	2.53	6.21	36.82	21.45	38.45	17.00	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.5	-18.56	2.42	6.3	36.82	22.14	38.45	16.31	V
836.5	-18.77	2.46	6.3	36.82	21.89	38.45	16.56	V
847.5	-18.57	2.53	6.21	36.82	21.93	38.45	16.52	V

Report No.: CQASZ20190500014EX-08

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.5	-19.04	2.42	6.3	36.82	21.66	38.45	16.79	V
836.5	-18.88	2.46	6.3	36.82	21.78	38.45	16.67	V
846.5	-18.78	2.53	6.21	36.82	21.72	38.45	16.73	V

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.0	-19.05	2.42	6.3	36.82	21.65	38.45	16.80	V
836.5	-18.77	2.46	6.3	36.82	21.89	38.45	16.56	V
844.0	-18.81	2.53	6.21	36.82	21.69	38.45	16.76	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM

	ETET DD Band G_Gridinion Bandwall 11 mm iz_10 Q mm									
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
824.7	-19.83	2.42	6.3	36.82	20.87	38.45	17.58	V		
836.5	-19.88	2.46	6.3	36.82	20.78	38.45	17.67	V		
848.3	-19.87	2.53	6.21	36.82	20.63	38.45	17.82	V		

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.5	-20.07	2.42	6.3	36.82	20.63	38.45	17.82	V
836.5	-19.92	2.46	6.3	36.82	20.74	38.45	17.71	V
847.5	-19.89	2.53	6.21	36.82	20.61	38.45	17.84	V

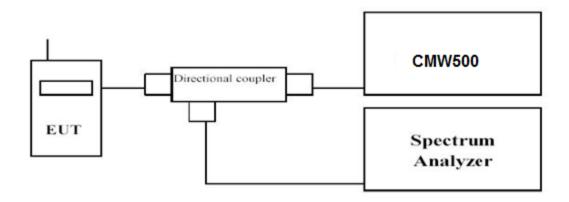
Report No.: CQASZ20190500014EX-08

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.5	-20.15	2.42	6.3	36.82	20.55	38.45	17.90	V
836.5	-20.08	2.46	6.3	36.82	20.58	38.45	17.87	V
846.5	-19.77	2.53	6.21	36.82	20.73	38.45	17.72	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBd)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.0	-19.85	2.42	6.3	36.82	20.85	38.45	17.60	V
836.5	-20.00	2.46	6.3	36.82	20.66	38.45	17.79	V
844.0	-19.69	2.53	6.21	36.82	20.81	38.45	17.64	V


Report No.: CQASZ20190500014EX-08

4.2 Peak-to-Average Ratio (PAR)

LIMIT

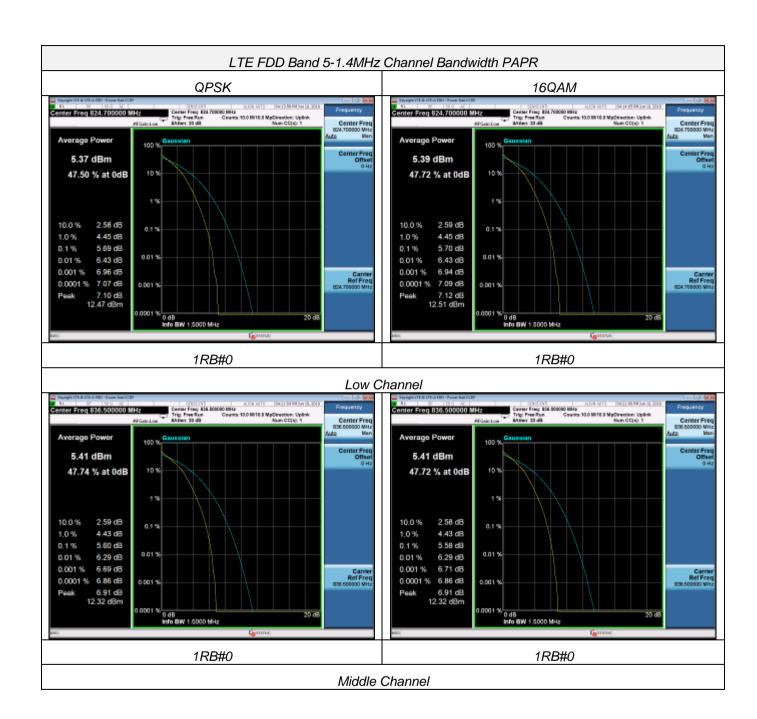
The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

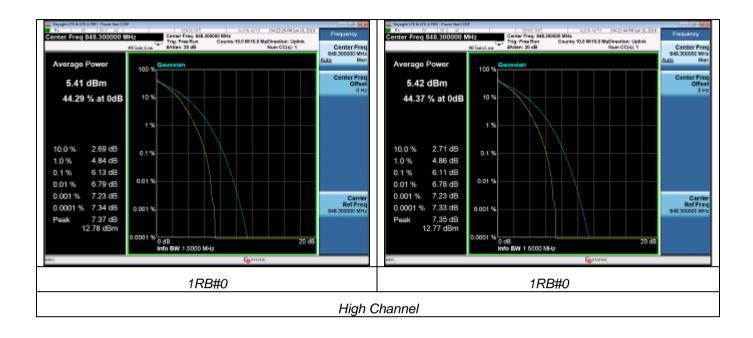
TEST PROCEDURE

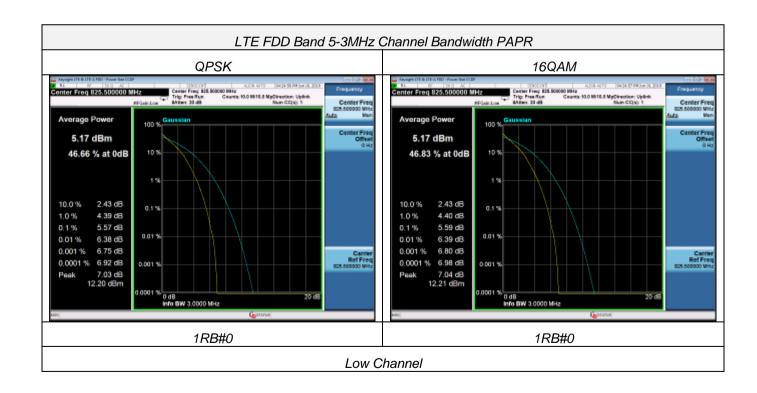
- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

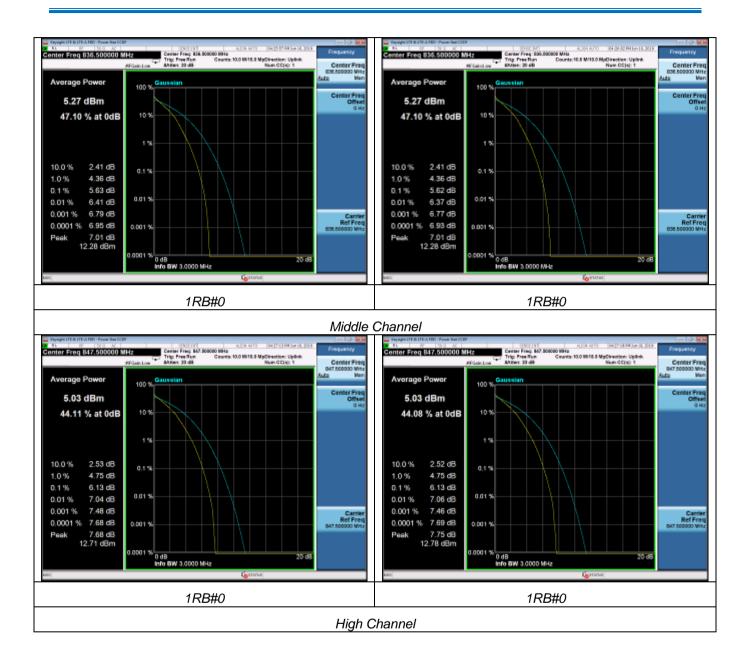
Report No.: CQASZ20190500014EX-08

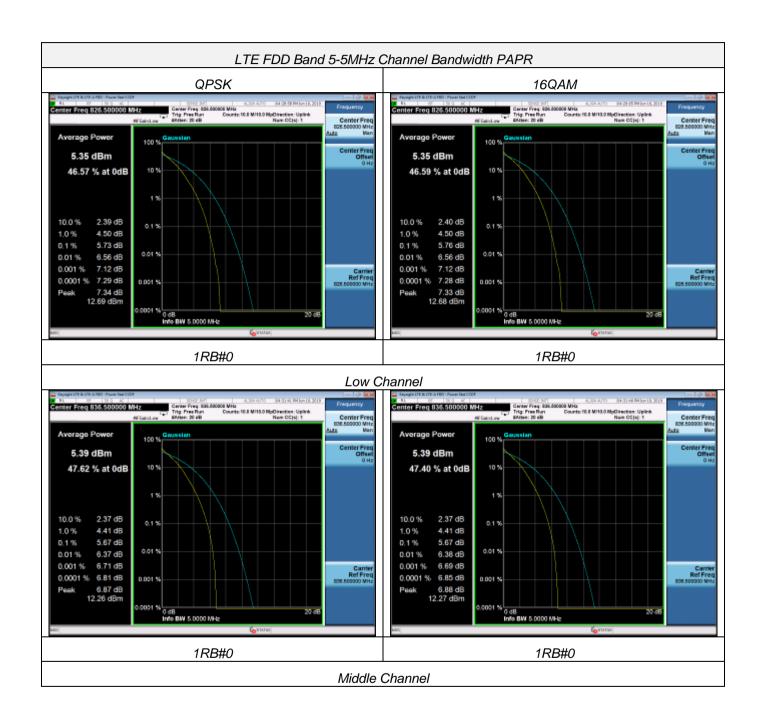

TEST RESULTS

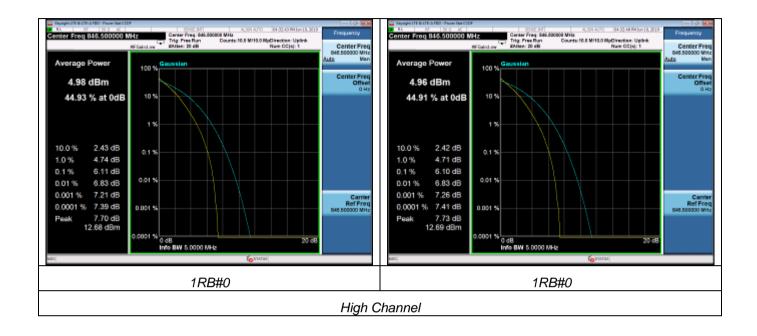
Remark:

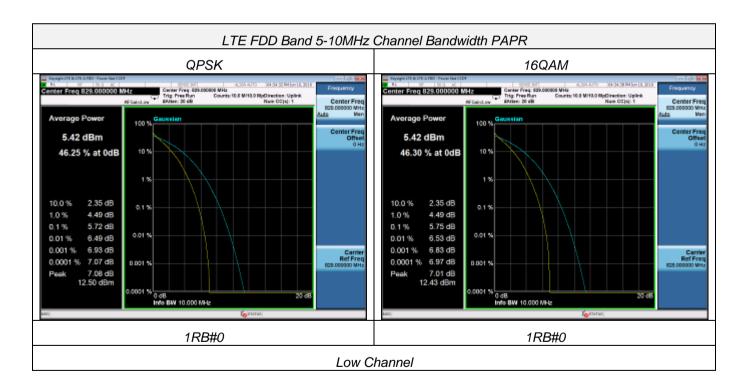

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5; recorded worst case for each Channel Bandwidth of LTE FDD Band 5.

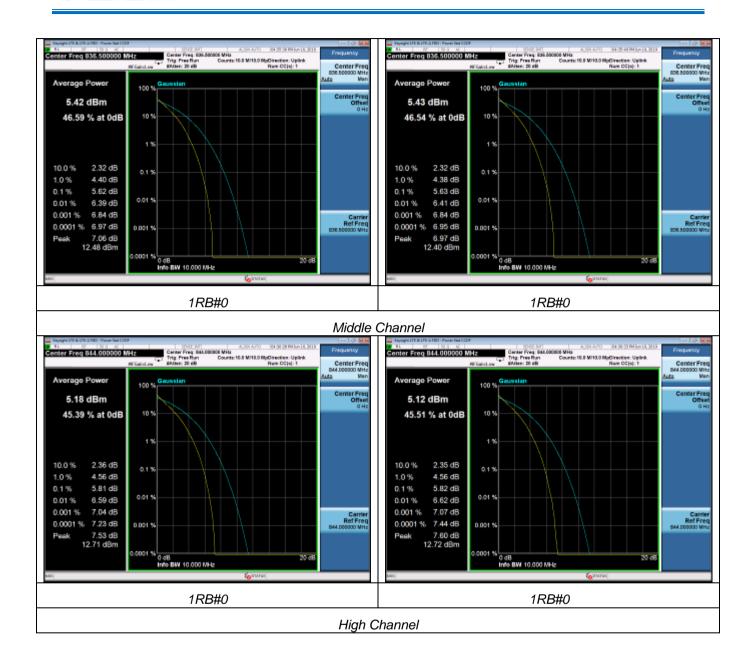

band 3, recorded worst case for each channel bandwidth of ETET DD band 3.									
	T	LTE FDD Band 5	1						
TX Channel	Frequency	RB Size/Offset	PAPR (dB)						
Bandwidth	(MHz)	ND Size/Offset	QPSK	16QAM					
	824.7		5.69	5.70					
1.4 MHz	836.5	1RB#0	5.60	5.58					
	848.3		6.13	6.11					
	825.5		5.57	5.59					
3 MHz	836.5	1RB#0	5.63	5.62					
	847.5		6.13	6.13					
	826.5		5.73	5.76					
5 MHz	836.5	1RB#0	5.67	5.67					
	846.5		6.11	6.10					
	829.0		5.72	5.75					
10 MHz	836.5	1RB#0	5.62	5.63					
	844.0		5.81	5.82					

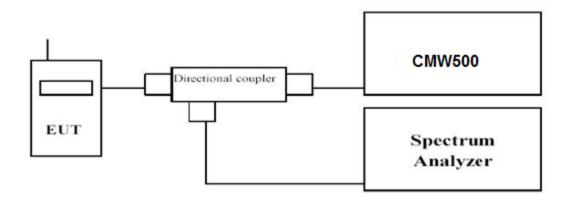











Report No.: CQASZ20190500014EX-08

4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

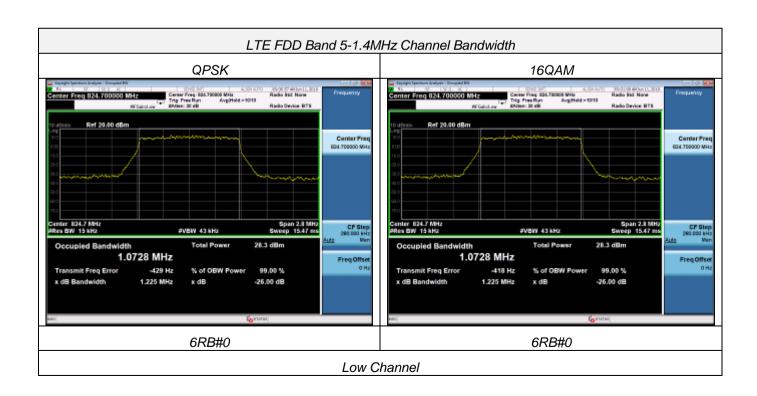
N/A

TEST CONFIGURATION

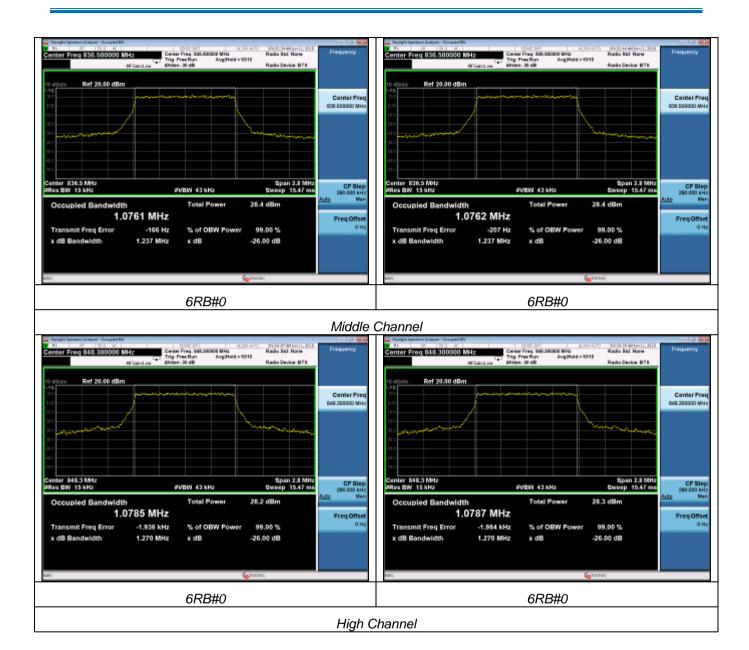
TEST PROCEDURE

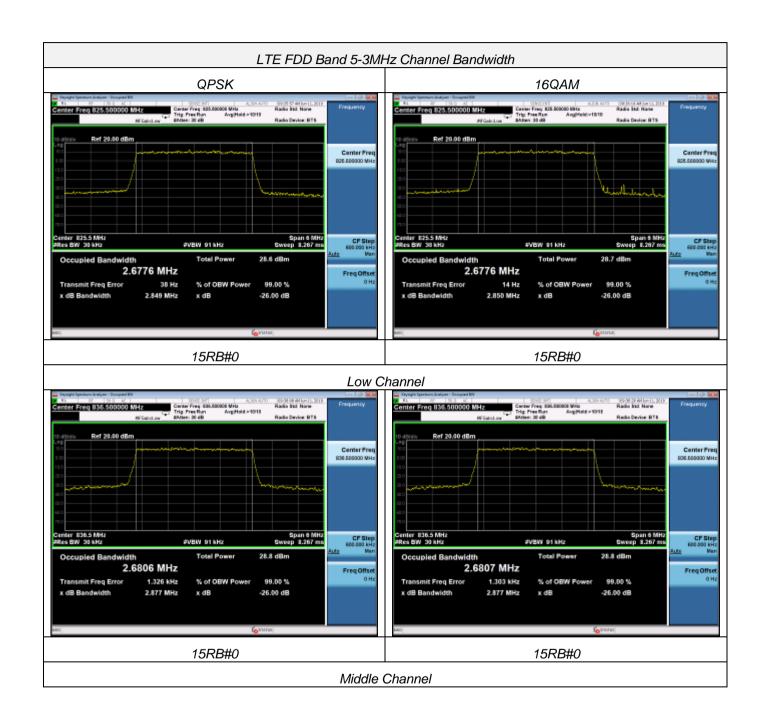
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

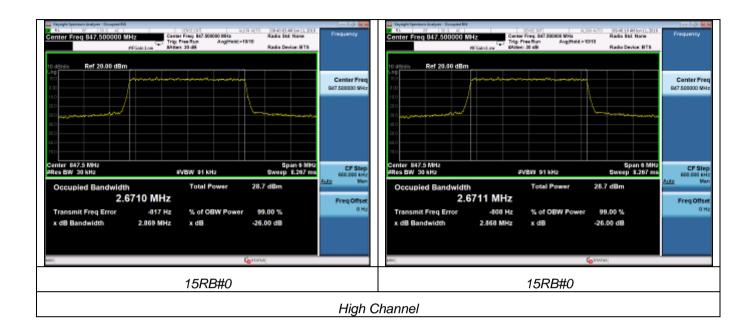
-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

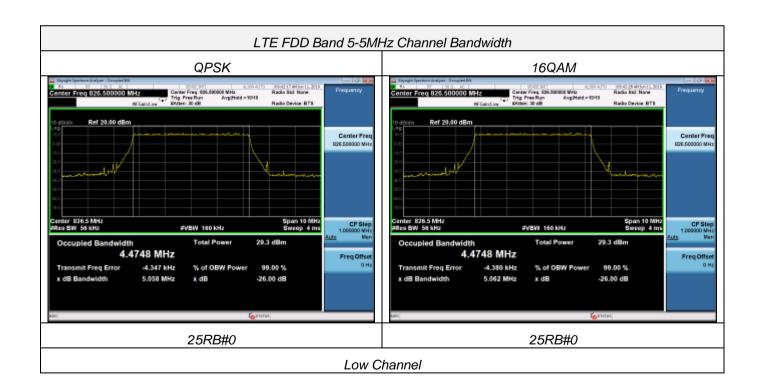

TEST RESULTS

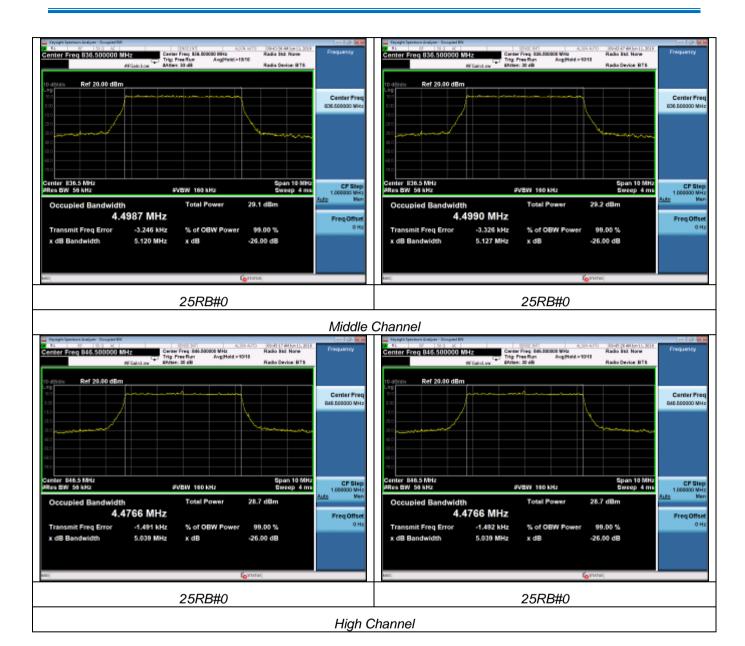
Remark:

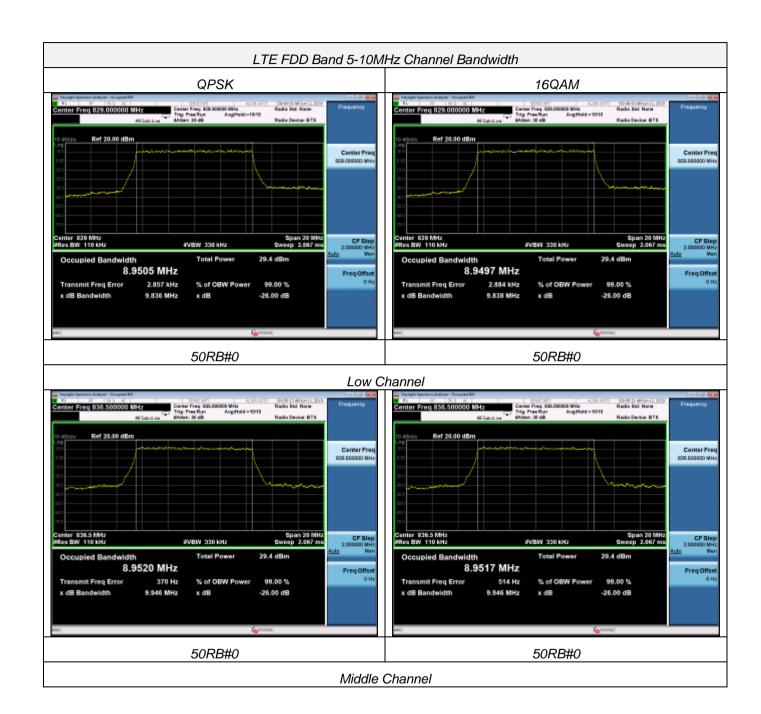

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5.recorded worst case for each Channel Bandwidth of LTE FDD Band 5.

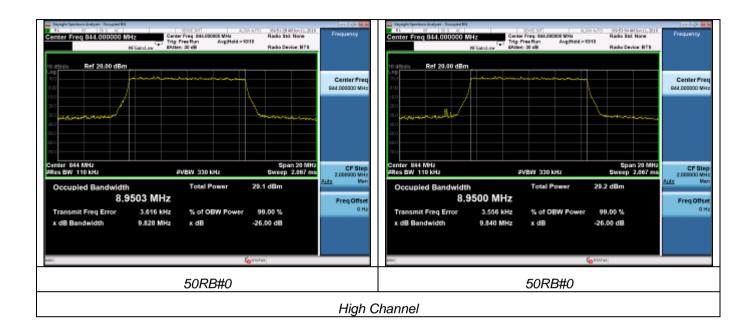

	LTE FDD Band 5									
TX Channel	RB Size/Offset	Frequency	-26dBc	Emission th (MHz)	99% Occupied bandwidth (MHz)					
Bandwidth		(MHz)	QPSK	16QAM	QPSK	16QAM				
		824.7	1.225	1.225	1.0728	1.0728				
1.4 MHz	6RB#0	836.5	1.237	1.237	1.0761	1.0762				
		848.3	1.270	1.270	1.0785	1.0787				
		825.5	2.849	2.850	2.6776	2.6776				
3 MHz	15RB#0	836.5	2.877	2.877	2.6806	2.6807				
		847.5	2.869	2.868	2.6710	2.6711				
		826.5	5.058	5.062	4.4748	4.4748				
5 MHz	25RB#0	836.5	5.120	5.127	4.4987	4.4990				
		846.5	5.039	5.039	4.4766	4.4766				
		829.0	9.836	9.838	8.9505	8.9497				
10 MHz	50RB#0	836.5	9.946	9.946	8.9520	8.9517				
		844.0	9.828	9.840	8.9503	8.9500				



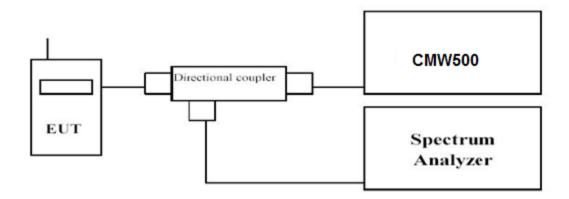








Report No.: CQASZ20190500014EX-08


4.4 Band Edge compliance

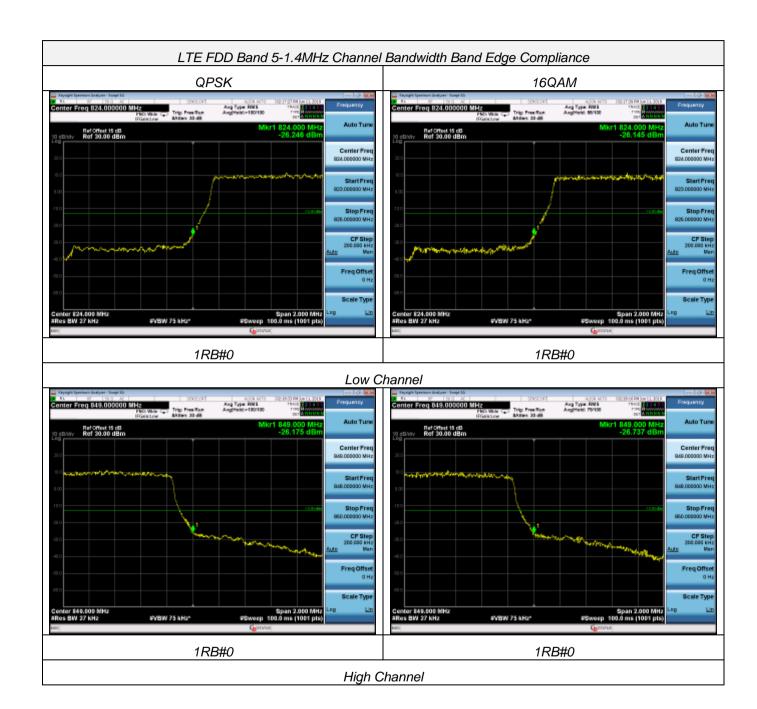
LIMIT

According to Part §22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

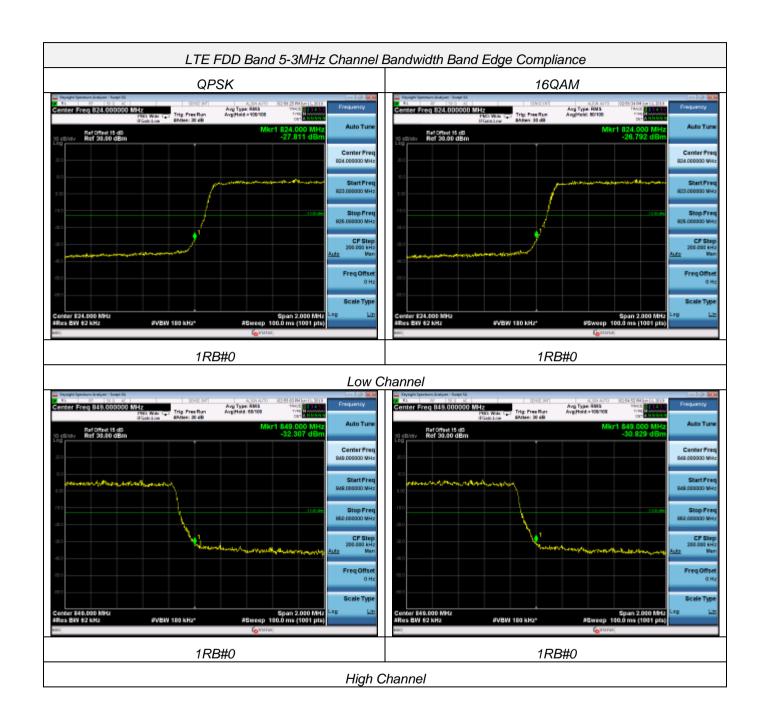
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

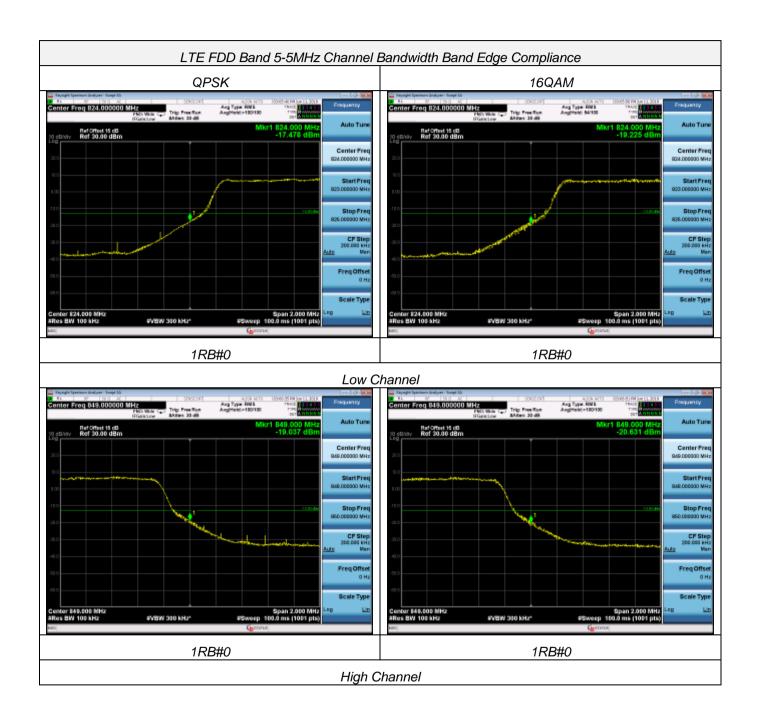
TEST PROCEDURE

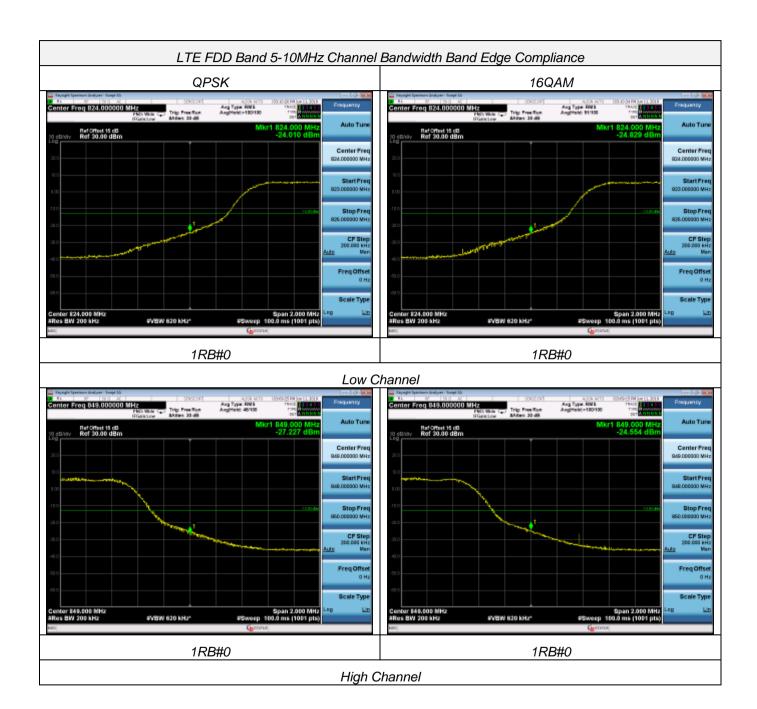

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS


Remark:

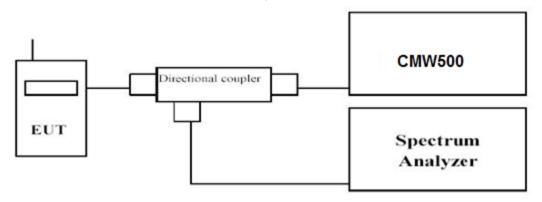
We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5. recorded worst case for each Channel Bandwidth of LTE FDD Band 5.





Report No.: CQASZ20190500014EX-08

4.5 Spurious Emission


LIMIT

According to Part §22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

Conducted Spurious Measurement:

Report No.: CQASZ20190500014EX-08

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603E

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500 then selects a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

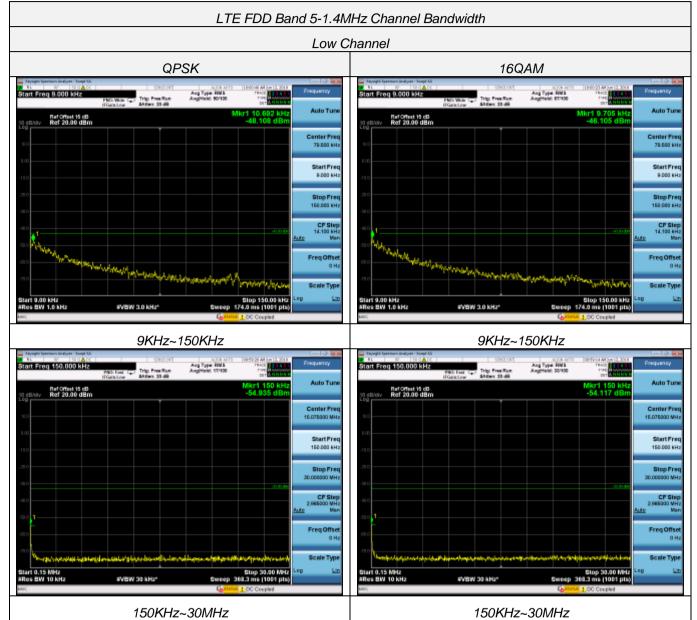
Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360°in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.

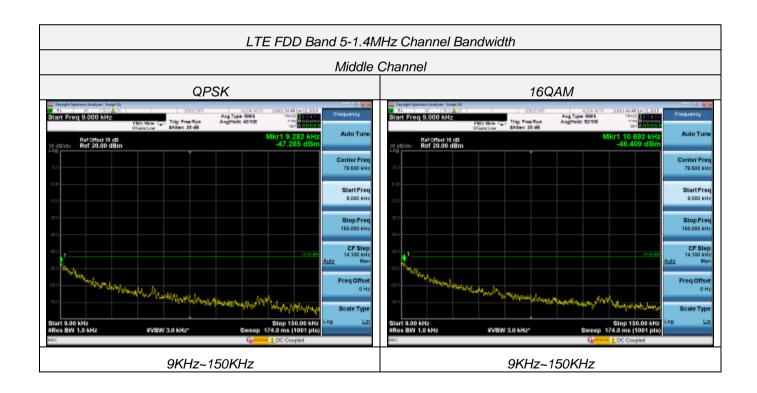
Report No.: CQASZ20190500014EX-08

- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

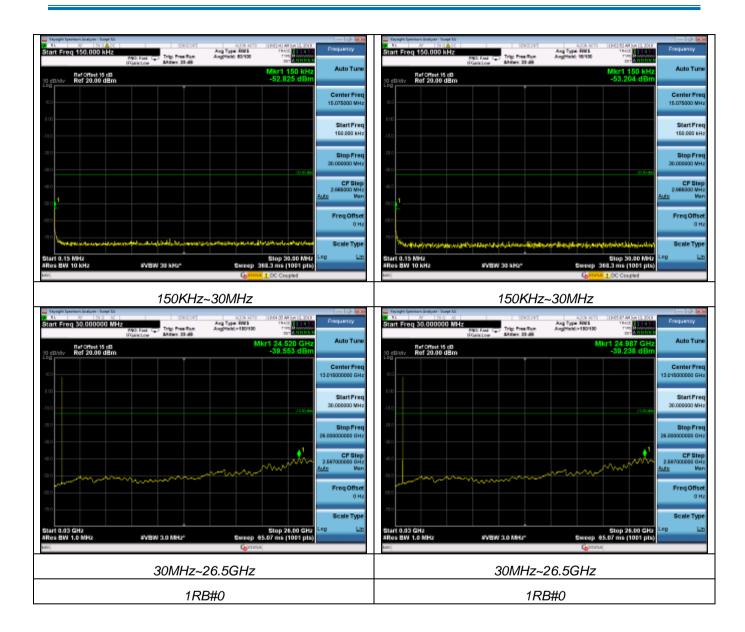
TEST RESULTS

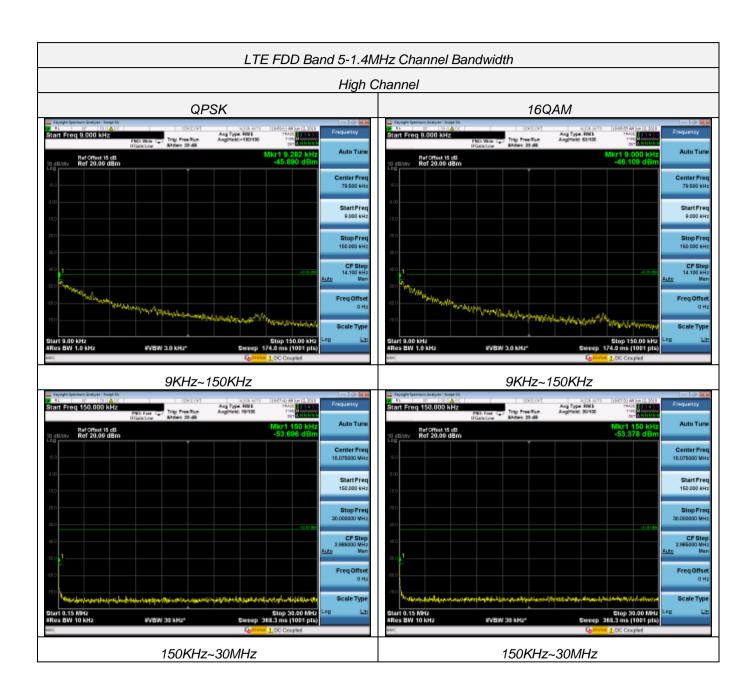

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5. recorded worst case for each Channel Bandwidth of LTE FDD Band 5.

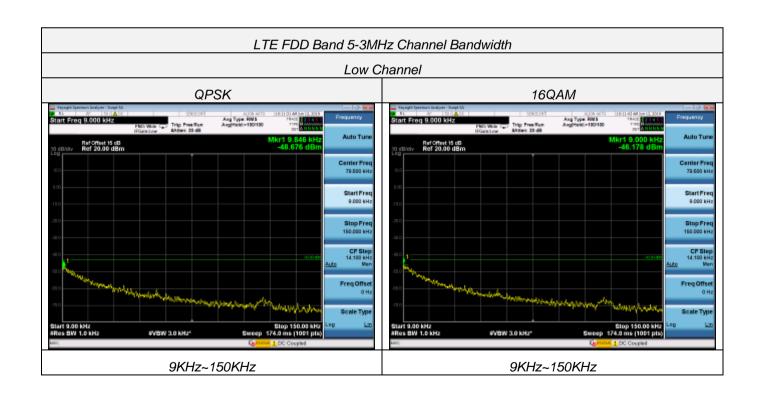

Report No.: CQASZ20190500014EX-08

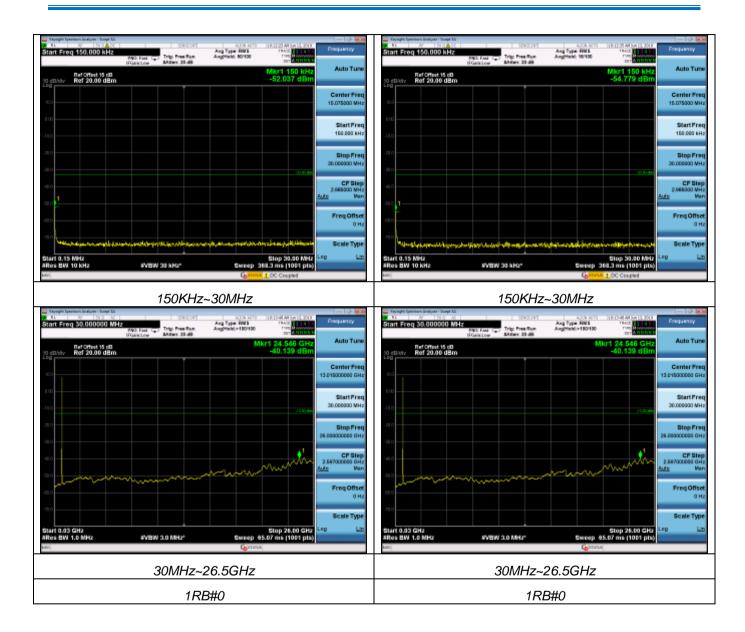
Conducted Measurement:

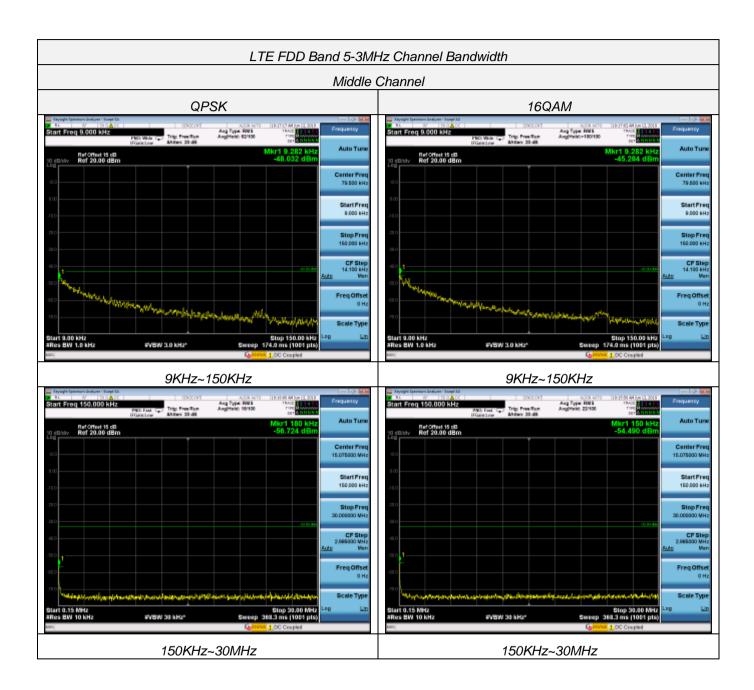


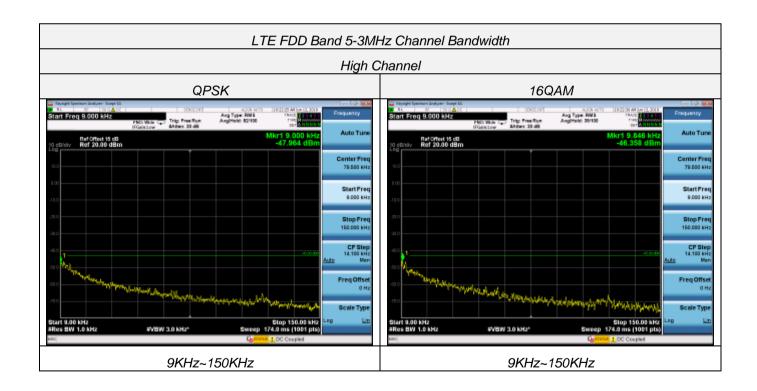


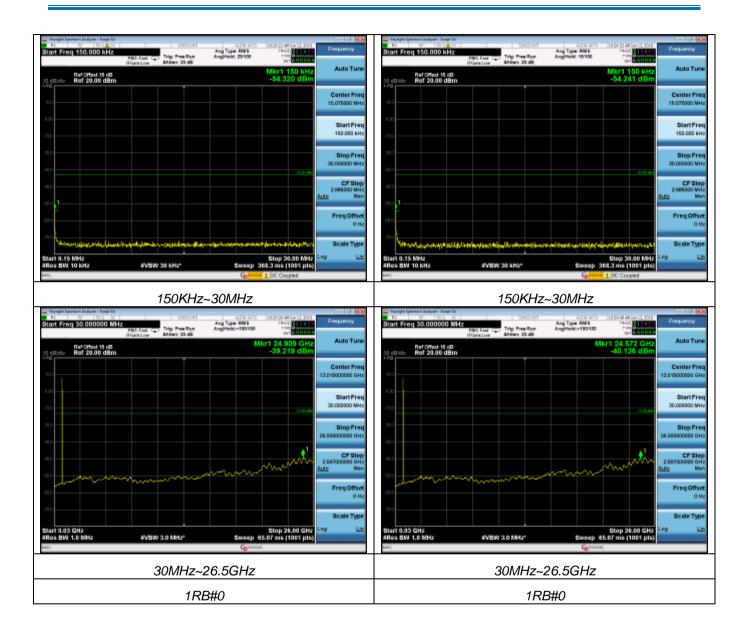


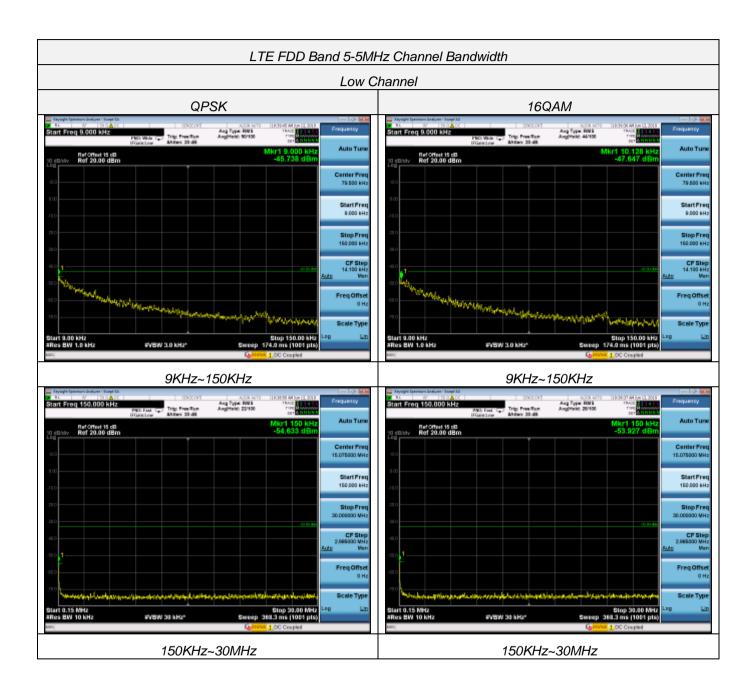


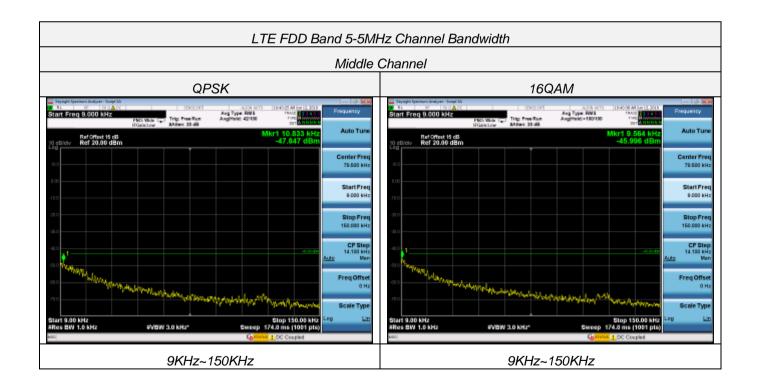


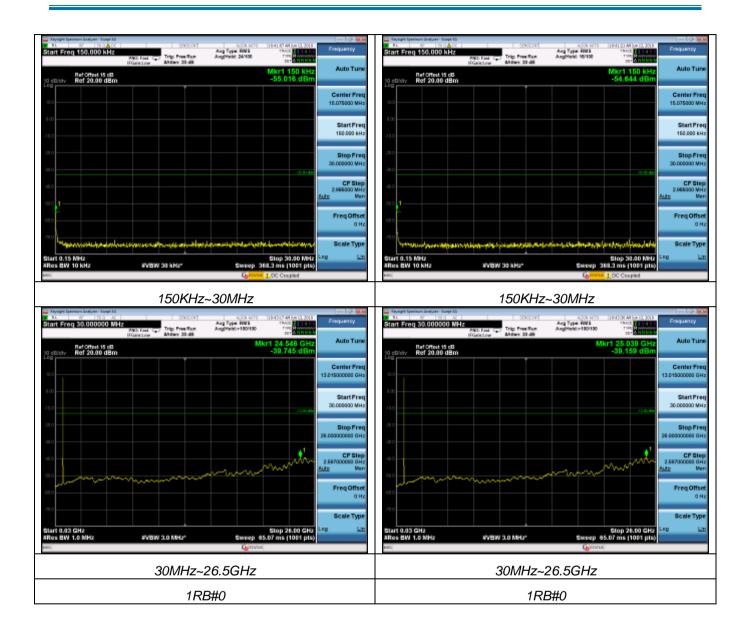


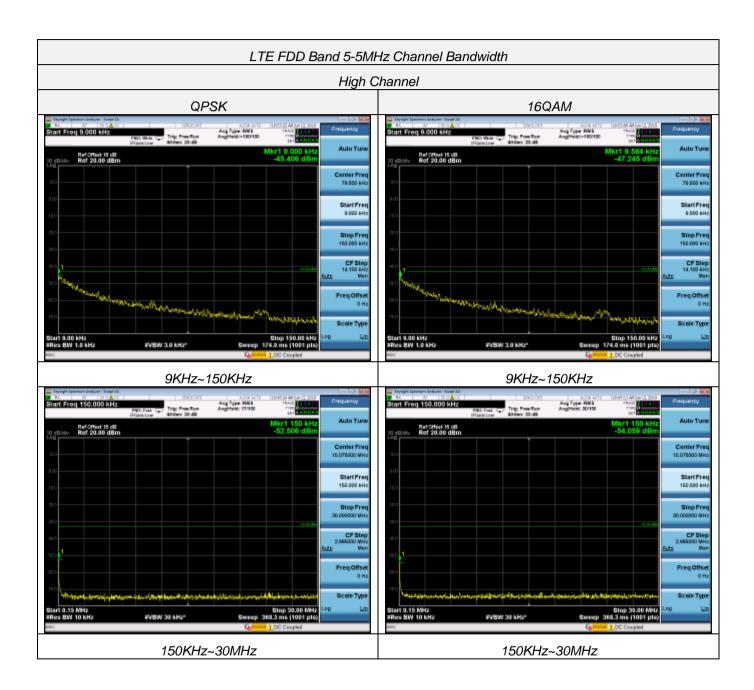




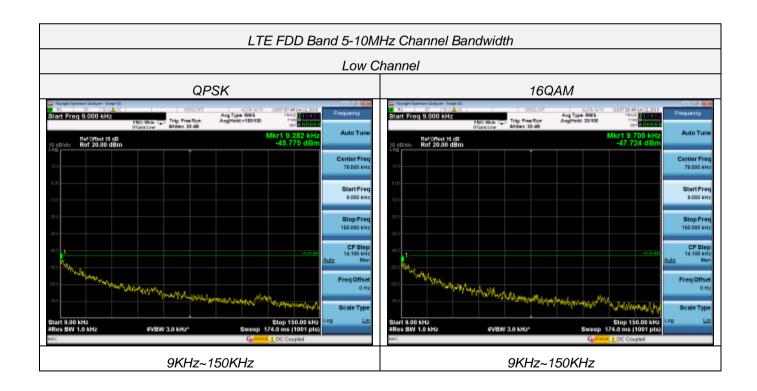


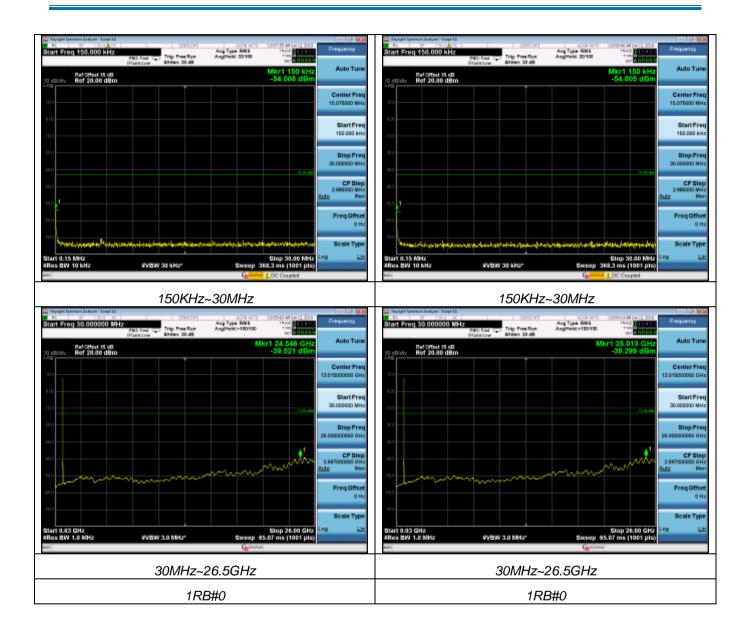


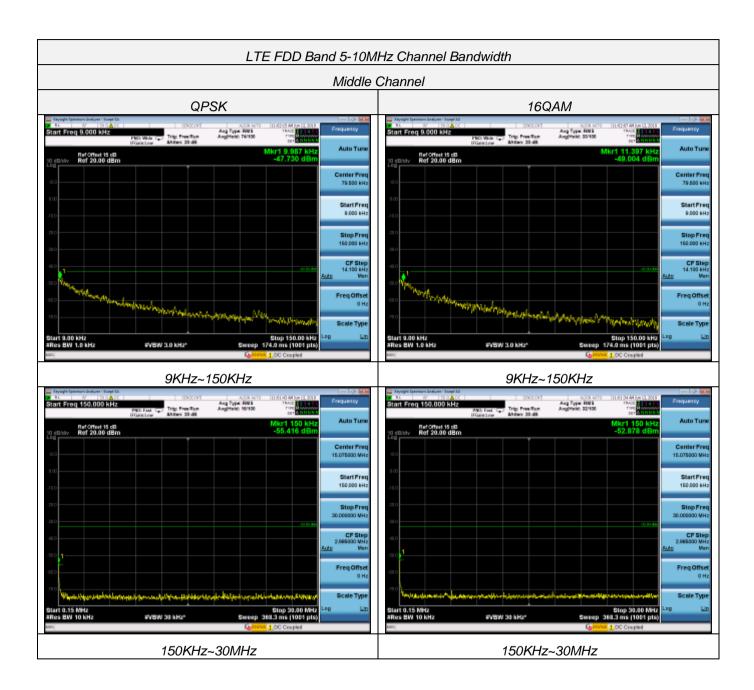




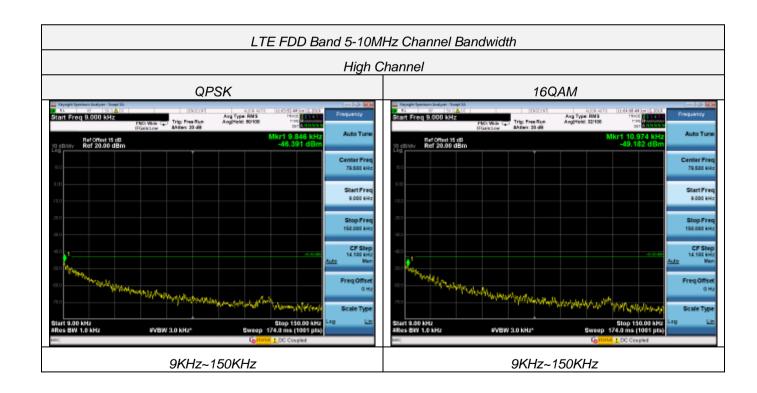


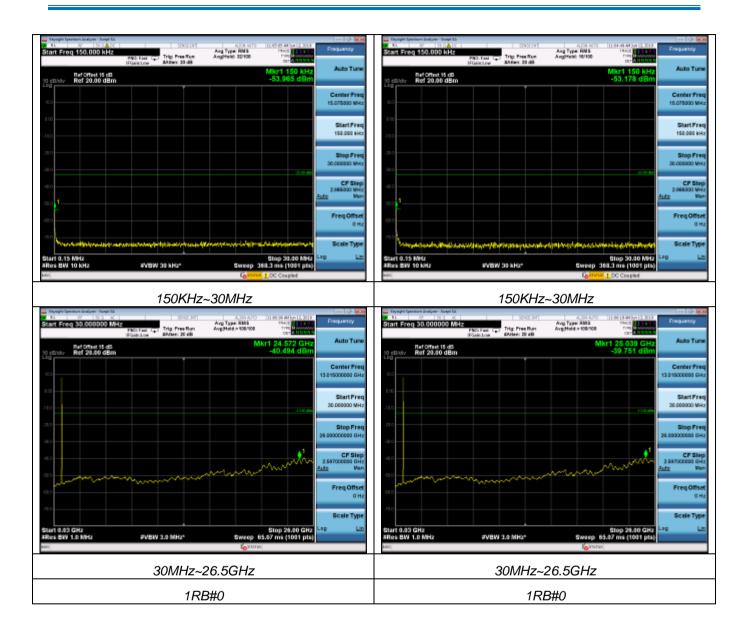












Report No.: CQASZ20190500014EX-08

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band
- 5; recorded worst case for each Channel Bandwidth of LTE FDD Band 5 @ QPSK
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = Limit EIRP

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1649.4	-44.63	3.00	3.00	9.58	-34.25	-13.00	21.25	Н
2474.1	-47.39	3.03	3.00	10.72	-38.14	-13.00	25.14	Н
1649.4	-43.96	3.00	3.00	9.68	-33.61	-13.00	20.61	V
2474.1	-46.98	3.03	3.00	10.72	-37.28	-13.00	24.28	V

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.0	-44.63	3.00	3.00	9.61	-35.36	-13.00	22.36	Н
2509.5	-47.39	3.03	3.00	10.77	-39.25	-13.00	26.25	Н
1673.0	-43.96	3.00	3.00	9.61	-34.45	-13.00	21.45	V
2509.5	-46.98	3.03	3.00	10.77	-38.51	-13.00	25.51	V

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1696.6	-44.63	3.00	3.00	9.77	-34.25	-13.00	21.25	Н
2544.9	-47.39	3.03	3.00	10.89	-38.69	-13.00	25.69	Н
1696.6	-43.96	3.00	3.00	9.77	-33.87	-13.00	20.87	V
2544.9	-46.98	3.03	3.00	10.89	-37.51	-13.00	24.51	V

Report No.: CQASZ20190500014EX-08

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1651.0	-44.63	3.00	3.00	9.58	-35.05	-13.00	22.05	Н
2476.5	-47.39	3.03	3.00	10.72	-39.24	-13.00	26.24	Н
1651.0	-43.96	3.00	3.00	9.68	-33.41	-13.00	20.41	V
2476.5	-46.98	3.03	3.00	10.72	-37.59	-13.00	24.59	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.0	-44.63	3.00	3.00	9.61	-34.22	-13.00	21.22	Н
2509.5	-47.39	3.03	3.00	10.77	-38.37	-13.00	25.37	Н
1673.0	-43.96	3.00	3.00	9.61	-33.54	-13.00	20.54	V
2509.5	-46.98	3.03	3.00	10.77	-37.98	-13.00	24.98	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1695.0	-44.63	3.00	3.00	9.77	-35.50	-13.00	22.50	Н
2542.5	-47.39	3.03	3.00	10.89	-38.75	-13.00	25.75	Н
1695.0	-43.96	3.00	3.00	9.77	-33.69	-13.00	20.69	V
2542.5	-46.98	3.03	3.00	10.89	-37.51	-13.00	24.51	V

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1653.0	-44.63	3.00	3.00	9.58	-34.33	-13.00	21.33	Н
2479.5	-47.39	3.03	3.00	10.72	-38.27	-13.00	25.27	Н
1653.0	-43.96	3.00	3.00	9.68	-33.69	-13.00	20.69	V
2479.5	-46.98	3.03	3.00	10.72	-37.54	-13.00	24.54	V

Report No.: CQASZ20190500014EX-08

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.0	-44.63	3.00	3.00	9.61	-34.68	-13.00	21.68	Н
2509.5	-47.39	3.03	3.00	10.77	-38.47	-13.00	25.47	Н
1673.0	-43.96	3.00	3.00	9.61	-33.66	-13.00	20.66	V
2509.5	-46.98	3.03	3.00	10.77	-37.31	-13.00	24.31	V

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1693.0	-44.63	3.00	3.00	9.77	-34.45	-13.00	21.45	Н
2539.5	-47.39	3.03	3.00	10.89	-38.69	-13.00	25.69	Н
1693.0	-43.96	3.00	3.00	9.77	-33.42	-13.00	20.42	V
2539.5	-46.98	3.03	3.00	10.89	-37.78	-13.00	24.78	V

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1658.0	-44.63	3.00	3.00	9.58	-34.32	-13.00	21.32	Н
2487.0	-47.39	3.03	3.00	10.72	-38.48	-13.00	25.48	Н
1658.0	-43.96	3.00	3.00	9.68	-33.56	-13.00	20.56	V
2487.0	-46.98	3.03	3.00	10.72	-37.37	-13.00	24.37	V

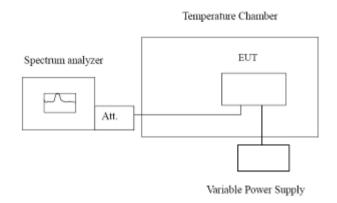
LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.0	-44.63	3.00	3.00	9.61	-34.50	-13.00	21.50	Н
2509.5	-47.39	3.03	3.00	10.77	-38.21	-13.00	25.21	Н
1673.0	-43.96	3.00	3.00	9.61	-33.78	-13.00	20.78	V
2509.5	-46.98	3.03	3.00	10.77	-37.62	-13.00	24.62	٧

Report No.: CQASZ20190500014EX-08

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.0	-44.63	3.00	3.00	9.77	-34.48	-13.00	21.48	Н
2532.0	-47.39	3.03	3.00	10.89	-39.25	-13.00	26.25	Н
1688.0	-43.96	3.00	3.00	9.77	-33.98	-13.00	20.98	V
2532.0	-46.98	3.03	3.00	10.89	-38.11	-13.00	25.11	V


Report No.: CQASZ20190500014EX-08

4.6 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §22.917, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603E

Frequency Stability under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -20℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 2, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10℃ increments from -20℃ to +50℃. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from
 minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each
 voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before
 continuing.
- Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 ℃ increments from +50℃ to -20℃. Allow at least 1.5 hours at each temperature, unpowered, before making measurements

Report No.: CQASZ20190500014EX-08

9. At all temperature levels hold the temperature to +/- 0.5℃ during the measurement procedure.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

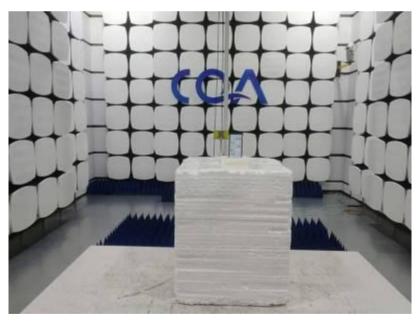
Remark:

We tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5; recorded worst case LTE Band 5, 1.4MHz bandwidth (worst case of all bandwidths)

Frequency Error vs Voltage

Voltage	Frequency error (Hz)		Frequency error (ppm)		Limit
(V)	QPSK	16QAM	QPSK	16QAM	(ppm)
3.5V	-6.74	-1.48	-0.00806	-0.00177	2.50
4.2V	6.98	-7.21	0.00834	-0.00862	2.50
4.5V	5.55	7.84	0.00663	0.00937	2.50

Frequency Error vs Temperature


	requesty = re-						
Temperature	Frequency error (Hz)		Frequency error (ppm)		Limit		
(℃)	QPSK	16QAM	QPSK	16QAM	(ppm)		
-20°	3.57	-7.03	0.00427	-0.00840	2.50		
-10°	4.15	6.09	0.00496	0.00728	2.50		
0°	-4.32	3.30	-0.00516	0.00395	2.50		
10°	9.31	7.81	0.01113	0.00934	2.50		
20°	3.85	-9.76	0.00460	-0.01167	2.50		
30°	8.95	1.94	0.01070	0.00232	2.50		
40°	1.97	-7.49	0.00236	-0.00895	2.50		
50°	-6.68	2.89	-0.00799	0.00345	2.50		

Report No.: CQASZ20190500014EX-08

5 Test Setup Photos of the EUT

30MHz~1GHz

Above 1GHz

Report No.: CQASZ20190500014EX-08

6 Photos of the EUT

******* End of Report	******
Please refer to the report No: CQAS	SZ20190500014EX-01