

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093
IEEE Std 1528-2013

For
Airway Clearance System

FCC ID: 2AJKO-PMACS1WI
Product Name: PMACS1WI

Report Number: 4787592605-S1V1
Issue Date: 12/14/2016

Prepared for
Hill-Rom Services Private Limited
1 Yishun Avenue 7, 768923, Singapore

Prepared by
UL Korea, Ltd. Suwon Laboratory
218 Maeyeong-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 443-823, Korea
TEL: (031) 337-9902
FAX: (031) 213-5433

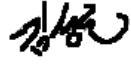
Revision History

Rev.	Date	Revisions	Revised By
V1	12/14/2016	Initial Issue	Sunghoon Kim

Table of Contents

1. Attestation of Test Results.....	5
2. Test Specification, Methods and Procedures.....	6
3. Facilities and Accreditation.....	6
4. SAR Measurement System & Test Equipment	7
4.1. <i>SAR Measurement System</i>	7
4.2. <i>SAR Scan Procedures.....</i>	8
4.3. <i>Test Equipment</i>	10
5. Measurement Uncertainty	10
6. Device Under Test (DUT) Information	11
6.1. <i>DUT Description</i>	11
6.2. <i>Wireless Technologies</i>	11
6.3. <i>Nominal and Maximum Output Power from Tune-up Procedure.....</i>	12
7. RF Exposure Conditions (Test Configurations).....	13
7.1. <i>Standalone SAR Test Exclusion Considerations.....</i>	13
7.2. <i>Required Test Configurations</i>	13
8. Dielectric Property Measurements & System Check.....	14
8.1. <i>Dielectric Property Measurements.....</i>	14
8.2. <i>System Check.....</i>	15
9. Conducted Output Power Measurements.....	16
9.1. <i>Wi-Fi 2.4GHz (DTS Band)</i>	16
9.2. <i>Wi-Fi 5GHz (U-NII Bands)</i>	16
9.3. <i>Bluetooth</i>	16
10. Measured and Reported (Scaled) SAR Results.....	17
10.1. <i>Wi-Fi (DTS Band).....</i>	18
11. SAR Measurement Variability	18
12. Simultaneous Transmission SAR Analysis	19
12.1. <i>Sum of the SAR for Wi-Fi & BT.....</i>	20
Appendices.....	21
4787592605-S1V1 FCC Report SAR_App A_Photos & Ant. Locations.....	21
4787592605-S1V1 FCC Report SAR_App B_Highest SAR Test Plots.....	21
4787592605-S1V1 FCC Report SAR_App C_System Check Plots.....	21
4787592605-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients	21

4787592605-S1V1 FCC Report SAR_App E_Probe Cal. Certificates 21


4787592605-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates 21

1. Attestation of Test Results

Applicant Name	Hill-Rom Services Private Limited			
FCC ID	2AJKO-PMACS1WI			
Product Name	PMACS1WI			
Applicable Standards	FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013			
Exposure Category	SAR Limits (W/Kg) Peak spatial-average(1g of tissue)			
General population / Uncontrolled exposure	1.6			
RF Exposure Conditions	Equipment Class - Highest Reported SAR (W/kg)			
	Licensed	DTS	U-NII	DSS (BT)
Standalone	N/A	0.101	N/A	N/A
Simultaneous TX	N/A	0.141	N/A	N/A
Date Tested	12/5/2016			
Test Results	Pass			

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
Justin Park Senior Engineer UL Korea, Ltd. Suwon Laboratory	Sunghoon Kim Laboratory Engineer UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

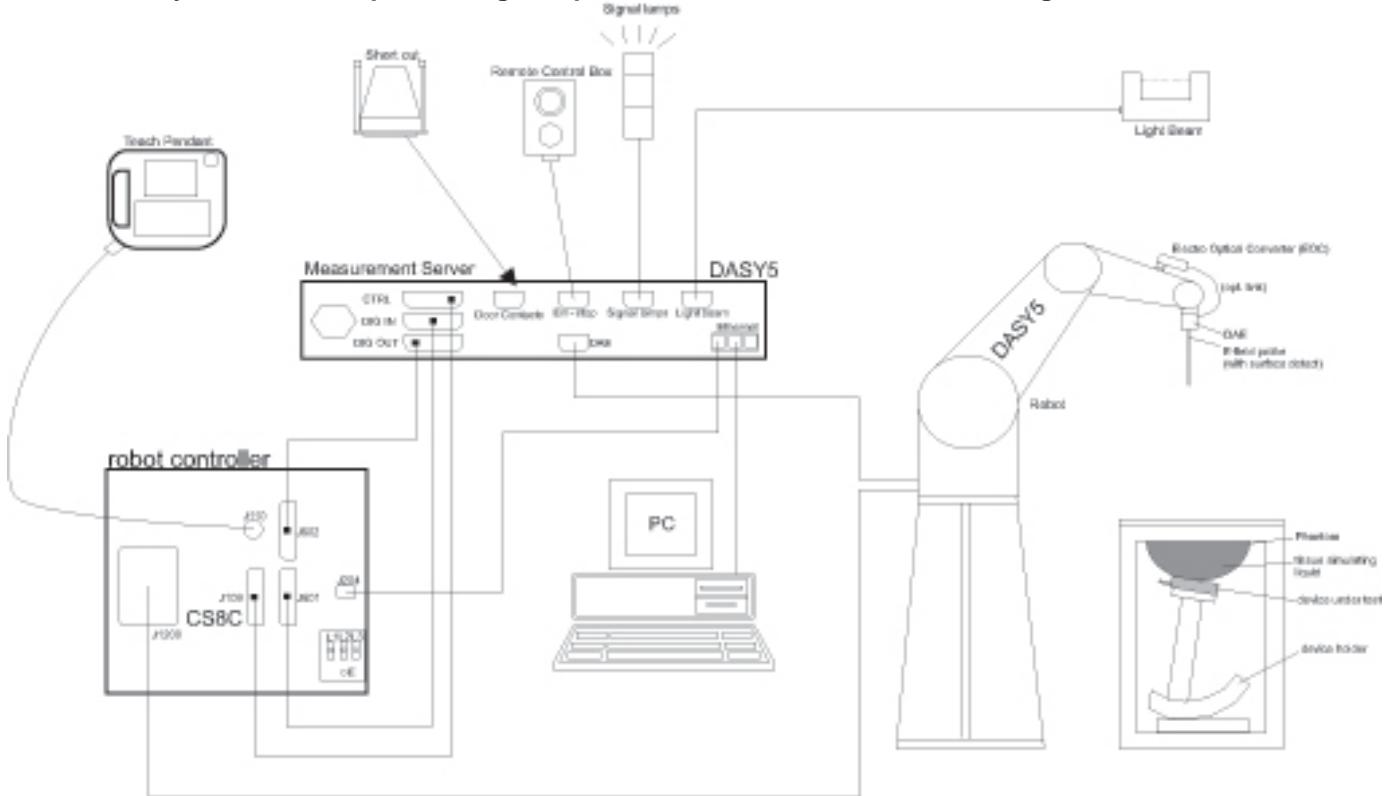
The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure [KDB](#) procedures:

- 248227 D01 802.11 Wi-Fi SAR v02r02
- 447498 D01 General RF Exposure Guidance v06
- 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 1 Room
SAR 2 Room
SAR 3 Room


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at <http://www.iasonline.org/PDF/TL/TL-637.pdf>.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

		≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$ graded grid	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
		$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface $\Delta z_{Zoom}(n>1)$: between subsequent points	≤ 4 mm $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the *reported* SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E5071C	MY46522054	8-18-2017
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	7-26-2017
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	8-17-2017
Thermometer	Lutron	MHB-382SD	AH.91478	8-10-2017

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY50145882	8-16-2017
Power Sensor	Agilent	U2000A	MY54260010	8-17-2017
Power Sensor	Agilent	U2000A	MY54260007	8-17-2017
Power Amplifier	EXODUS	1410025-AMP2027-10003	10003	8-17-2017
Directional Coupler	Agilent	778D	MY52180432	8-17-2017
Low Pass Filter	FILTRON	L14012FL	1410003S	8-17-2017
Attenuator	Agilent	8491B/003	MY39269292	8-17-2017
Attenuator	Agilent	8491B/010	MY39269315	8-17-2017
Attenuator	Agilent	8491B/020	MY39269298	8-17-2017
E-Field Probe (SAR2)	SPEAG	EX3DV4	7330	2-24-2017
Data Acquisition Electronics (SAR2)	SPEAG	DAE4	1468	9-8-2017
System Validation Dipole	SPEAG	D2450V2	939	9-23-2017
Thermometer (SAR2)	Lutron	MHB-382SD	AH.50215	8-17-2017

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer of 4787592605-S1V1 FCC Report SAR_App A_Photos & Ant. Locations		
Back Cover	<input checked="" type="checkbox"/> The rechargeable battery is not user accessible.		
Battery Options	<input checked="" type="checkbox"/> The rechargeable battery is not user accessible.		
Wireless Router (Hotspot)	Wi-Fi Hotspot mode is not support.		
Wi-Fi Direct	Wi-Fi Direct mode is not support.		
Test sample information	No.	S/N	Notes
	1	PREDVM0036	Conduction & SAR

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n (HT20)	100%
	5 GHz (U-NII-1 & U-NII-3)	802.11a 802.11n (HT20)	100%
Bluetooth	2.4 GHz	Version 4.0 LE	N/A

6.3. Nominal and Maximum Output Power from Tune-up Procedure

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Upper limit (dB): ~ 0.5		Max. RF Output Power (dBm)	
RF Air interface	Mode	Target	Max. tune-up tolerance limit
WiFi 2.4 GHz	802.11b (Ch.1 - Ch.11)	15.0	15.5
	802.11g (Ch.1 - Ch.3)	10.0	10.5
	802.11g (Ch.4 - Ch.8)	14.0	14.5
	802.11g (Ch.9 - Ch.11)	9.0	9.5
	802.11n HT20 (Ch.1 - Ch.3)	8.0	8.5
	802.11n HT20 (Ch.4 - Ch.8)	12.0	12.5
	802.11n HT20 (Ch.9 - Ch.11)	7.0	7.5
WiFi 5 GHz	802.11a (Ch.36 - Ch.48)	6.0	6.5
	802.11a (Ch.149 - Ch.165)	5.0	5.5
	802.11n HT20 (Ch.36 - Ch.48)	5.0	5.5
	802.11n HT20 (Ch.149 - Ch.165)	2.5	3.0
Bluetooth		8.0	8.5
Bluetooth LE		4.0	4.5

7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

7.1. Standalone SAR Test Exclusion Considerations

Dedicated Host Approach is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.

SAR Test Exclusion Calculations for WLAN and Bluetooth

WLAN and Bluetooth Antennas ≤ 50 mm to adjacent edges

Tx Interface	Frequency (MHz)	Output Power		Separation Distances (mm)							Calculated Threshold Value						
		dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front		Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	
WLAN Antenna Max Power																	
Wi-Fi 2.4 GHz	2462	15.50	35	26	198	31	107	162	11	2.1 -EXEMPT-	> 50 mm	1.8 -EXEMPT-	> 50 mm	> 50 mm	5 -MEASURE-		
Wi-Fi 5.2 GHz	5240	6.50	4	26	198	31	107	162	11	0.4 -EXEMPT-	> 50 mm	0.3 -EXEMPT-	> 50 mm	> 50 mm	0.8 -EXEMPT-		
Wi-Fi 5.8 GHz	5825	5.50	4	26	198	31	107	162	11	0.4 -EXEMPT-	> 50 mm	0.3 -EXEMPT-	> 50 mm	> 50 mm	0.9 -EXEMPT-		
Bluetooth Antenna Max Power																	
Bluetooth	2480	8.50	7	43	198	163	125	38	26	0.3 -EXEMPT-	> 50 mm	> 50 mm	> 50 mm	0.3 -EXEMPT-	0.4 -EXEMPT-		

Note(s):

According to KDB 447498, if the calculated threshold value is > 3 then SAR testing is required.

WLAN and Bluetooth Antennas > 50 mm to adjacent edges

Tx Interface	Frequency (MHz)	Output Power		Separation Distances (mm)							Calculated Threshold Value						
		dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front		Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	
W-LAN Antenna Max Power																	
Wi-Fi 2.4 GHz	2462	15.50	35	26	198	31	107	162	11	< 50 mm -EXEMPT-	1575.6 mW -EXEMPT-	< 50 mm -EXEMPT-	665.6 mW -EXEMPT-	1215.6 mW -EXEMPT-	< 50 mm -EXEMPT-		
Wi-Fi 5.5 GHz	5240	6.50	4	26	198	31	107	162	11	< 50 mm -EXEMPT-	1545.5 mW -EXEMPT-	< 50 mm -EXEMPT-	635.5 mW -EXEMPT-	1185.5 mW -EXEMPT-	< 50 mm -EXEMPT-		
Wi-Fi 5.8 GHz	5825	5.50	4	26	198	31	107	162	11	< 50 mm -EXEMPT-	1542.2 mW -EXEMPT-	< 50 mm -EXEMPT-	632.2 mW -EXEMPT-	1182.2 mW -EXEMPT-	< 50 mm -EXEMPT-		
Bluetooth Antenna Max Power																	
Bluetooth	2480	8.50	7	43	198	163	125	38	26	< 50 mm -EXEMPT-	1575.3 mW -EXEMPT-	1225.3 mW -EXEMPT-	845.3 mW -EXEMPT-	< 50 mm -EXEMPT-	< 50 mm -EXEMPT-		

7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

Test Configurations	Rear	Edge 1		Edge 2		Edge 3		Edge 4		Front
		(Top Edge)	(Right Edge)	(Bottom Edge)	(Left Edge)					
Wi-Fi 2.4 GHz	No	No	No	No	No	Yes				
Wi-Fi 5 GHz	No	No	No	No	No	No				
Bluetooth	No	No	No	No	No	No				

Note(s):

Yes = Testing is required. No = Testing is not required.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^\circ\text{C}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR 2 Room

Date	Freq. (MHz)	Liquid Parameters		Measured	Target	Delta (%)	Limit \pm (%)	
12-5-2016	Body 2450	e'	51.4700	Relative Permittivity (ϵ_r):	51.47	52.70	-2.33	5
		e"	14.7800	Conductivity (σ):	2.01	1.95	3.25	5
	Body 2410	e'	51.6400	Relative Permittivity (ϵ_r):	51.64	52.76	-2.12	5
		e"	14.6300	Conductivity (σ):	1.96	1.91	2.78	5
	Body 2475	e'	51.3600	Relative Permittivity (ϵ_r):	51.36	52.67	-2.48	5
		e"	14.8700	Conductivity (σ):	2.05	1.99	3.08	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Target SAR Values (W/kg)		
				1g/10g	Head	Body
D2450V2	939	9-23-2016	2450	1g	52.10	49.90
				10g	24.40	23.70

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 2 Room

Date Tested	System Dipole		T.S. Liquid	Measured Results		Target (Ref. Value)	Delta $\pm 10\%$	Plot No.
	Type	Serial #		Zoom Scan to 100 mW	Normalize to 1 W			
12-05-2016	D2450V2	939	Body	1g 10g	5.21 2.38	52.10 23.80	49.90 23.70	4.41 0.42

9. Conducted Output Power Measurements

9.1. Wi-Fi 2.4GHz (DTS Band)

Measured Results

Antenna	Mode	Data Rate	Ch #	Freq. (MHz)	Max Pwr.		
					Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)
W-LAN Ant.	802.11b	1 Mbps	1	2412	13.7	15.5	Yes
			6	2437	13.7		
			11	2462	14.0		
	802.11g	6 Mbps	1	2412	Not PWR Meas. Require	10.5	No
			6	2437		14.5	
			11	2462		9.5	
	802.11n	6.5 Mbps	1	2412	Not PWR Meas. Require	8.5	No
			6	2437		12.5	
			11	2462		7.5	

Note(s):

1. Output Power and SAR is not required for 802.11g/n HT20 channels when the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

9.2. Wi-Fi 5GHz (U-NII Bands)

Maximum tune-up tolerance limit is 6.5 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

9.3. Bluetooth

Maximum tune-up tolerance limit is 8.5 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\leq 0.8 \text{ W/kg}$ or 2.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\leq 100 \text{ MHz}$
- $\leq 0.6 \text{ W/kg}$ or 1.5 W/kg , for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- $\leq 0.4 \text{ W/kg}$ or 1.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\geq 200 \text{ MHz}$

KDB 248227 D01 SAR meas for 802.11 v02r02:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- $\leq 0.4 \text{ W/kg}$, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- $> 0.4 \text{ W/kg}$, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is $\leq 0.8 \text{ W/kg}$ or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is $> 0.8 \text{ W/kg}$, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is $\leq 1.2 \text{ W/kg}$ or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is $\leq 1.2 \text{ W/kg}$, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is $\leq 1.2 \text{ W/kg}$, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the *Maximum Value of SAR (measured)*. The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the initial test position.

10.1. Wi-Fi (DTS Band)

Frequency Band	Mode	RF Exposure Conditions	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Area Scan Max. SAR (W/kg)	Power (dBm)		1-g SAR (W/kg)		Plot No.
								Tune-up limit	Meas.	Meas.	Scaled	
2.4GHz	802.11b 1 Mbps	Standalone	0	Front	11	2462	0.075	15.5	14.0	0.071	0.101	1

Note(s):

Testing for a second channel wasn't required because the reported SAR for this test position was < 0.8 W/kg.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	First Repeated	
						Measured SAR (W/kg)	Largest to Smallest SAR Ratio
2400	Wi-Fi 802.11b/g/n	Standalone	Front	No	0.071	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 .

12. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR_1 + SAR_2)^{1.5} / Ri \leq 0.04$$

Simultaneous Transmission Condition

RF Exposure Condition	Item	Capable Transmit Configurations		
Standalone	1	DTS	+	BT
	2	UNII	+	BT

Notes:

1. DTS, U-NII do not support Hotspot and Wi-Fi Direct.
2. DTS Radio can transmit simultaneously with Bluetooth Radio.
3. U-NII Radio can transmit simultaneously with Bluetooth Radio.
4. U-NII Radio cannot transmit simultaneously with DTS Radio.

Estimated SAR for Simultaneous Transmission SAR Analysis

Considerations for SAR estimation

- When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation:
 - When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations.
 - When the separation distance from the antenna to an adjacent edge is > 5 mm but ≤ 50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation.
 - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg
- Please refer to [Estimated SAR Tables](#) to see which test positions are inherently compliant as they consist of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR values ≤ 0.8 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these test positions.

Estimated SAR for WLAN and Bluetooth

Tx Interface	Frequency (MHz)	Output Power		Separation Distances (mm)						Estimated 1-g SAR Value (W/kg)					
		dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
WLAN Antenna Max Power															
Wi-Fi 2.4 GHz	2462	15.50	35	26	198	31	107	162	11	0.282	0.400	0.236	0.400	0.400	-MEASURE-
Wi-Fi 5.2 GHz	5240	6.50	4	26	198	31	107	162	11	0.047	0.400	0.039	0.400	0.400	0.111
Wi-Fi 5.8 GHz	5825	5.50	4	26	198	31	107	162	11	0.050	0.400	0.042	0.400	0.400	0.117
Bluetooth Antenna Max Power															
Bluetooth	2480	7.00	5	43	198	163	125	38	26	0.024	0.400	0.400	0.400	0.028	0.040

12.1. Sum of the SAR for Wi-Fi & BT

Test Position	Standalone SAR (W/kg)		Σ 1-g SAR (W/kg)
	DTS	Bluetooth	DTS + Bluetooth
	①	②	① + ②
Front	0.101	0.040	0.141

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Appendices

Refer to separated files for the following appendixes.

4787592605-S1V1 FCC Report SAR_App A_Photos & Ant. Locations

4787592605-S1V1 FCC Report SAR_App B_Highest SAR Test Plots

4787592605-S1V1 FCC Report SAR_App C_System Check Plots

4787592605-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients

4787592605-S1V1 FCC Report SAR_App E_Probe Cal. Certificates

4787592605-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates

END OF REPORT