

Report No.: EED32K00293601 Page 1 of 78

TEST REPORT

Product : Multi-Functional Wireless Speaker

Trade mark : WOW!dea

SKOIN, M5, M5A, M5B, M5C, M5D,

Model/Type reference: M5E, M5F, M5T, M5S, M5y (y=Refer to

Different Color and Package Set Code)

Serial Number : N/A

Report Number : EED32K00293601

FCC ID : 2AJIX-M5

Date of Issue : May 13, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Hongyi Science & Technology Development Co., Ltd. Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Report Seal

Levin las

Reviewed by:

Mare Xm

Kevin yang

Date:

May 13, 2019

Check No.: 3757538892

2 Version

Version No.	Date	Description
00	May 13, 2019	Original
	- da	

Report No. : EED32K00293601 Page 3 of 78

3 Test Summary

1651 Julilliary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
	1027	I ICA TO I	3.60	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

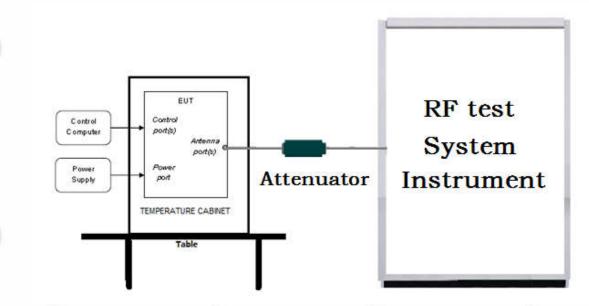
Model No.: SKOIN, M5, M5A, M5B, M5C, M5D, M5E, M5F, M5T, M5S, M5y (y=Refer to Different Color and Package Set Code)

Only the model M5 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being outer decoration.

Page 4 of 78

4 Content

1 COVER PAGE		,
2 VERSION		
3 TEST SUMMARY		
4 CONTENT		
5 TEST REQUIREMENT		
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION		
6 GENERAL INFORMATION		
6.1 CLIENT INFORMATION	STANDARD	
7 EQUIPMENT LIST		 10
8 RADIO TECHNICAL REQUIREMENTS SPECIFIC	CATION	12
Appendix A): 20dB Occupied Bandwidth	nissionsons sing Sequencesionental frequency (Radiated)	
PHOTOGRAPHS OF TEST SETUP		 70
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DE	ETAILS	72



Report No. : EED32K00293601 Page 5 of 78

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

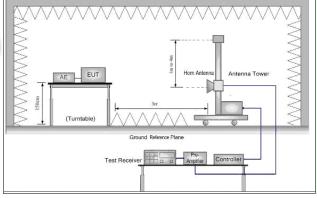
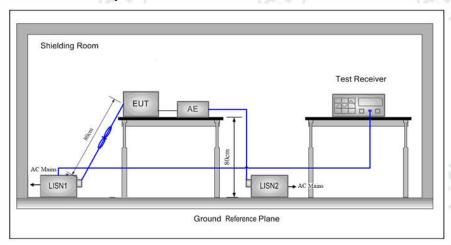



Figure 3. Above 1GHz

Report No. : EED32K00293601 Page 6 of 78

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	0		0
Temperature:	24°C		
Humidity:	55 % RH		
Atmospheric Pressure:	1010mbar	(3)	

5.3 Test Condition

Test Mode	Tx		RF Channel			
rest wode	IX.	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3, DH5)		2402MHz	2441MHz	2480MHz		
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).						

Test mode:

Pre-scan under all rate at Highest channel 1

Mode	GFSK				
packets	1-DH1 1-DH3 1-DH5				
Power(dBm)	0.918	0.899	0.860		

Mode	π/4DQPSK				
packets	2-DH1 2-DH3 2-E				
Power(dBm)	2.280	2.179	2.122		
Mode		8DPSK			
packets	3-DH1	3-DH3	3-DH5		
Power(dBm)	2.744	2.638	2.510		

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No. : EED32K00293601 Page 7 of 78

6 General Information

6.1 Client Information

Applicant:	Shenzhen Hongyi Science & Technology Development Co., Ltd.	
Address of Applicant:	Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China	/3
Manufacturer:	Shenzhen Hongyi Science & Technology Development Co., Ltd.	
Address of Manufacturer:	Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China	
Factory:	Shenzhen Hongyi Science & Technology Development Co., Ltd.	
Address of Factory:	Unit 601-602, Building No. A4, East Industrial Park of OCT, Nanshan District, Shenzhen, China	

6.2 General Description of EUT

Product Name:	Multi-Functional Wireless Speaker				
Model No.(EUT):	SKOIN, M5, M5A, M5B, M5C, M5D, M5E, M5F, M5T, M5S, M5y (y=Refer to Different Color and Package Set Code)				
Test model No.(EUT):	M5				
Trade mark:	WOW!dea				
EUT Supports Radios application:	BT: 4.2 BT Dual mode: 2402MHz to 2480MHz				
Power Supply:	DC 12V, Battery 7.4V				
Sample Received Date:	Oct. 30, 2018				
Sample tested Date:	Jan. 31, 2019 to Apr. 20, 2019				

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MH	2402MHz~2480MHz					
Bluetooth	Version:	4.2	4.2					
Modulatio	n Technique:	Frequen	cy Hopping Sp	read Spectru	ım(FHSS)			
Modulatio	n Type:	GFSK, π	GFSK, π/4DQPSK, 8DPSK					
Number o	f Channel:	79	<u> </u>	13	<u> </u>	730	\.	
Hopping (Channel Type:	Adaptive	Frequency Ho	pping syster	ns	(6)		
Hardware	Version:	V4.0(ma	nufacturer decl	are)				
Firmware	Version:	V4.0(ma	nufacturer decl	are)				
Test Powe	er Grade:	N/A	N/A					
Test Softv	vare of EUT:	N/A	(3/1))	(2)		(8)	
Antenna 7	Гуре:	PCB Ant	enna	/		7.	6	
Antenna (Gain:	-0.58 dB	į					
Test Volta	ige:	AC 120V	60Hz, Battery	7.4V				
Operation	Frequency ea	ch of channe	el .	(1)		(4)	1	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	

Report No.: EED32K00293601 Page 8 of 78

5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associa	ted equipment name	Manufacture	model	S/N	Supplied by	Certification
AE1	DC Source	TRADEX	LPS 202A	10209898	CTI	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

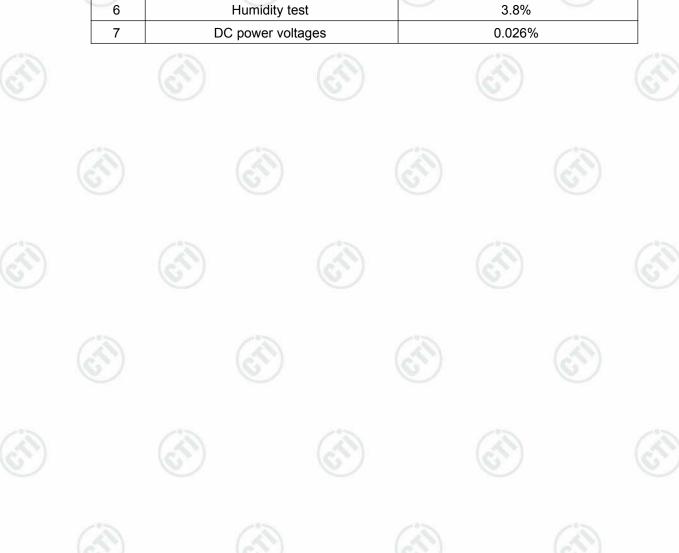
None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.



Report No. : EED32K00293601 Page 9 of 78

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction engineers	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32K00293601 Page 10 of 78

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-02-2018 03-01-2019	03-01-2019 02-28-2020		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-02-2018 03-01-2019	03-01-2019 02-28-2020		
PC-1	Lenovo	R4960d		03-02-2018 03-01-2019	03-01-2019 02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-02-2018 03-01-2019	03-01-2019 02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-02-2018 03-01-2019	03-01-2019 02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-02-2018 03-01-2019	03-01-2019 02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019		
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019		

Page 11 of 78

	3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019			
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019			
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Multi device Controller	maturo	NCD/070/1071 1112		01-09-2019	01-08-2020			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019			
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020			
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020			
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020			
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020			

3M full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-20-2018	06-19-2019	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021	
Preamplifier	EMCI	EMC184055S E	980596	06-20-2018	06-19-2019	
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-02-2018	05-01-2019	
Fully Anechoic Chamber	TDK	FAC-3	75	01-17-2018	01-15-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021	
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020	
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020	
Cable line	Times	HF160- KMKM-3.00M	393493-0001	01-09-2019	01-08-2020	

Report No.: EED32K00293601 Page 12 of 78

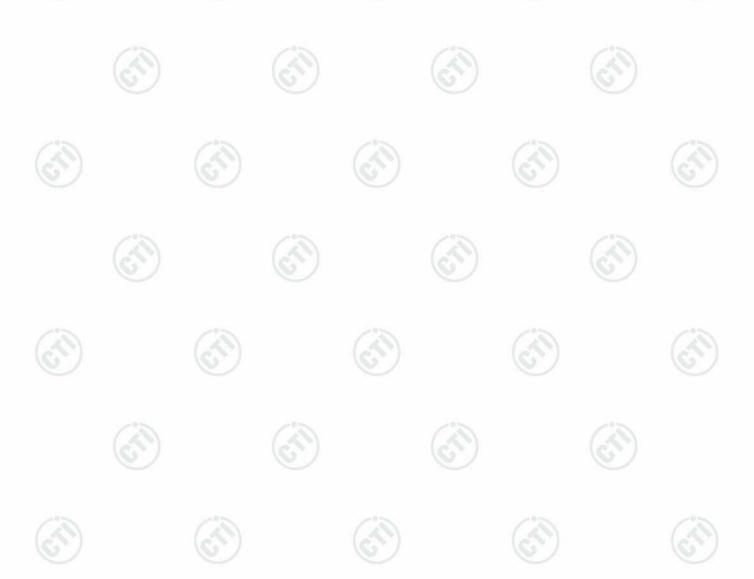
8 Radio Technical Requirements Specification

Reference documents for testing:

No	o. Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)



Report No. : EED32K00293601 Page 13 of 78

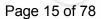
Appendix A): 20dB Occupied Bandwidth

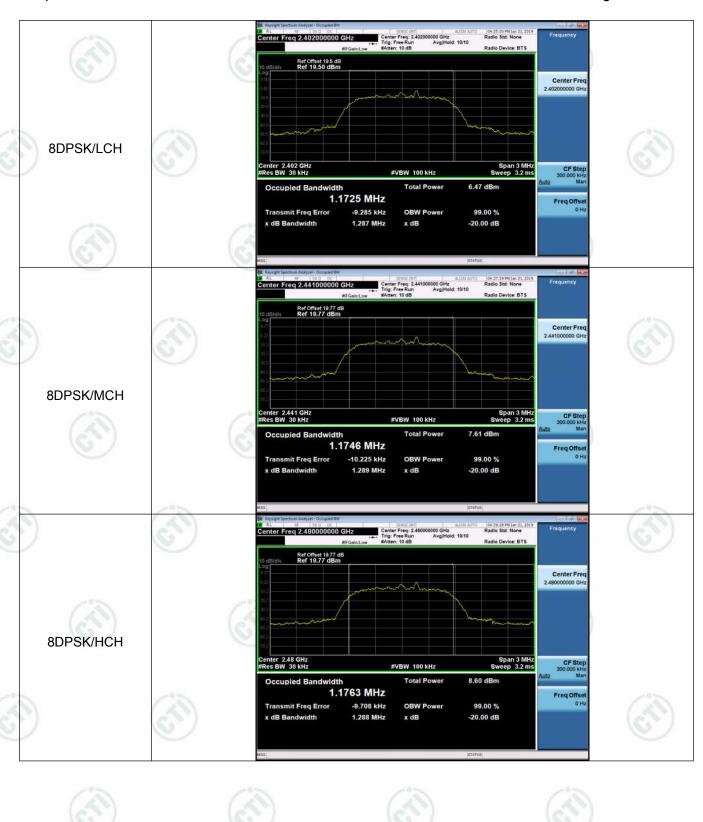
Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9874	0.91686	PASS	(65)
GFSK	MCH	0.9876	0.91618	PASS	
GFSK	нсн	0.9908	0.91901	PASS	
π/4DQPSK	LCH	1.286	1.1786	PASS	
π/4DQPSK	MCH	1.288	1.1790	PASS	Peak
π/4DQPSK	нсн	1.290	1.1796	PASS	detector
8DPSK	LCH	1.287	1.1725	PASS	
8DPSK	MCH	1.289	1.1746	PASS	(3)
8DPSK	HCH	1.288	1.1763	PASS	(0,

Report No. : EED32K00293601 Page 14 of 78

Test Graph







Report No. : EED32K00293601 Page 17 of 78

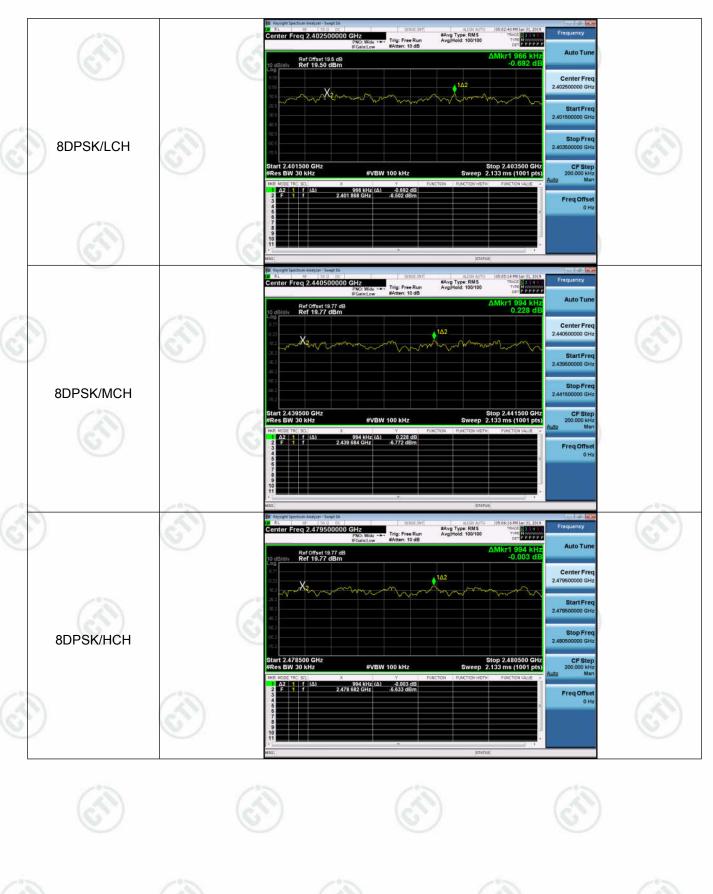
Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.024	PASS
GFSK	MCH	0.900	PASS
GFSK	HCH	1.094	PASS
π/4DQPSK	LCH	1.042	PASS
π/4DQPSK	MCH	1.126	PASS
π/4DQPSK	НСН	1.000	PASS
8DPSK	LCH	0.966	PASS
8DPSK	MCH	0.994	PASS
8DPSK	НСН	0.994	PASS

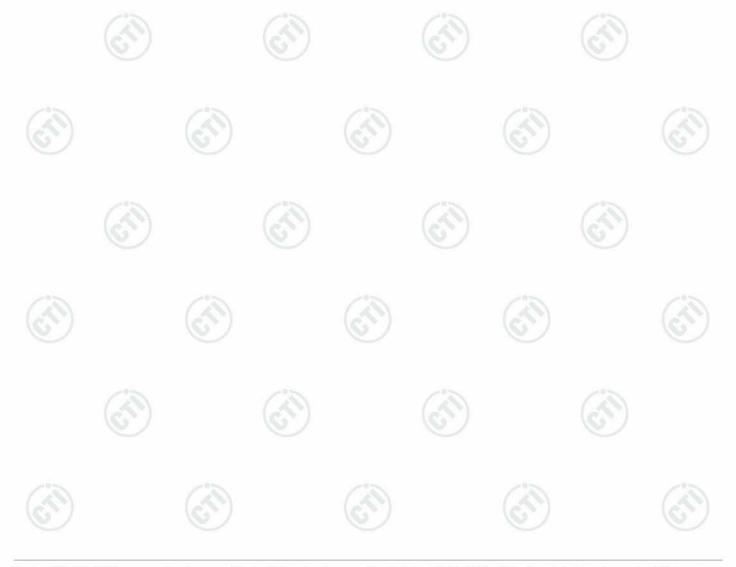
Report No. : EED32K00293601 Page 18 of 78

Test Graph



Page 19 of 78

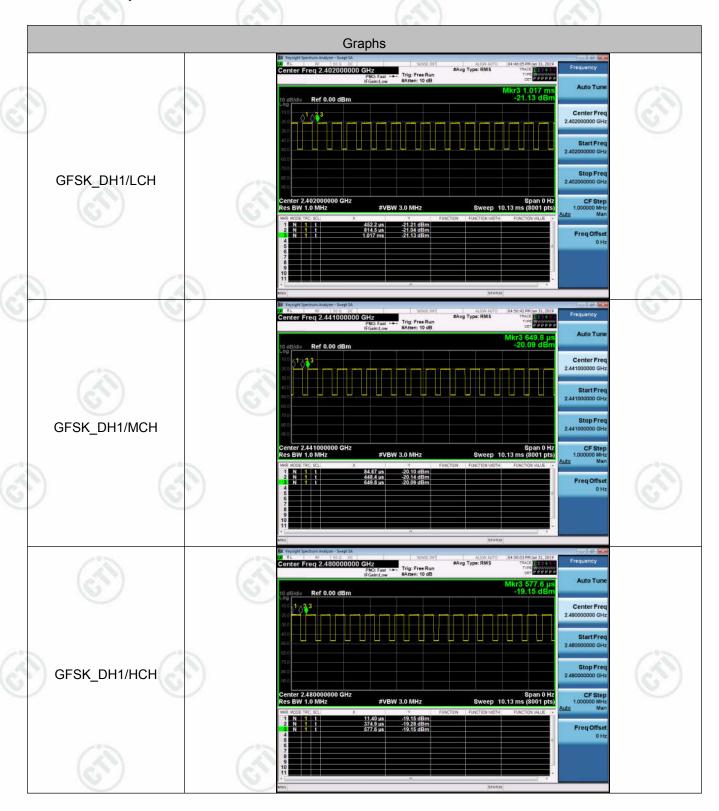
Page 20 of 78


Report No. : EED32K00293601 Page 21 of 78

Appendix C): Dwell Time

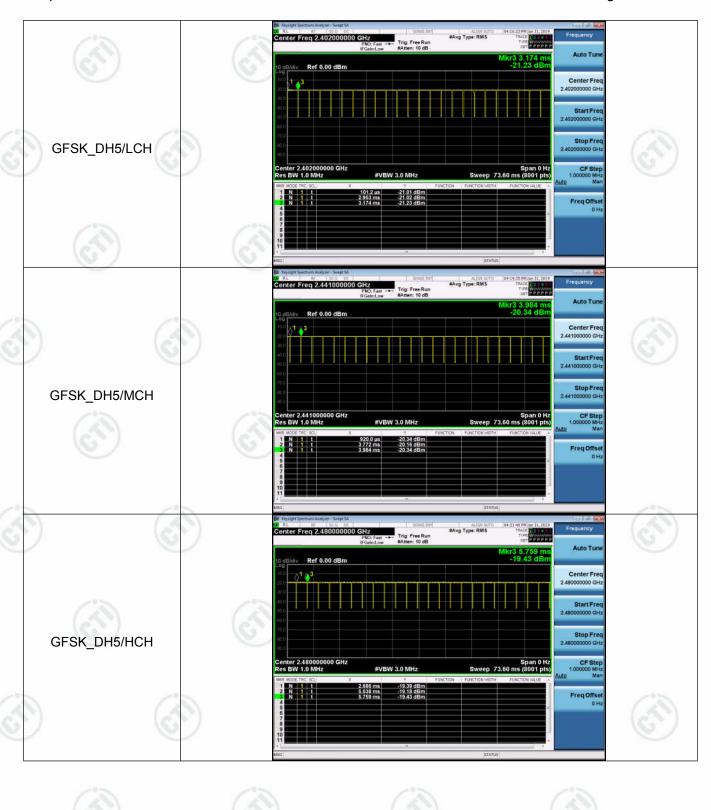
Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Verdict
GFSK	DH1	LCH	0.362267	320	0.116	PASS
GFSK	DH1	MCH	0.3635333	320	0.116	PASS
GFSK	DH1	НСН	0.363533	320	0.116	PASS
GFSK	DH3	LCH	1.6200633	160	0.259	PASS
GFSK	DH3	MCH	1.618803	160	0.259	PASS
GFSK	DH3	HCH	1.618803	160	0.259	PASS
GFSK	DH5	LCH	2.852	106.7	0.304	PASS
GFSK	DH5	MCH	2.852	106.7	0.304	PASS
GFSK	DH5	НСН	2.852	106.7	0.304	PASS


Remark : All modes are tested, only the worst mode GFSK is reported.

Report No. : EED32K00293601 Page 22 of 78

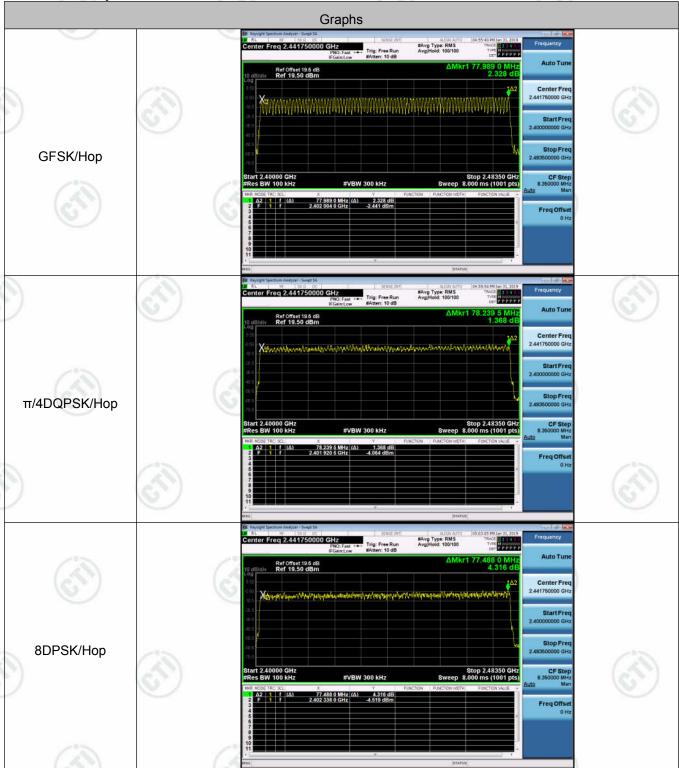
Test Graph



Report No. : EED32K00293601 Page 25 of 78

Appendix D): Hopping Channel Number

Result Table


Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Page 26 of 78

Report No. : EED32K00293601 Page 27 of 78

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-1.183	PASS
GFSK	МСН	-0.026	PASS
GFSK	НСН	0.918	PASS
π/4DQPSK	LCH	0.166	PASS
π/4DQPSK	MCH	1.430	PASS
π/4DQPSK	нсн	2.280	PASS
8DPSK	LCH	0.560	PASS
8DPSK	MCH	1.844	PASS
8DPSK	НСН	2.744	PASS

Report No. : EED32K00293601 Page 28 of 78

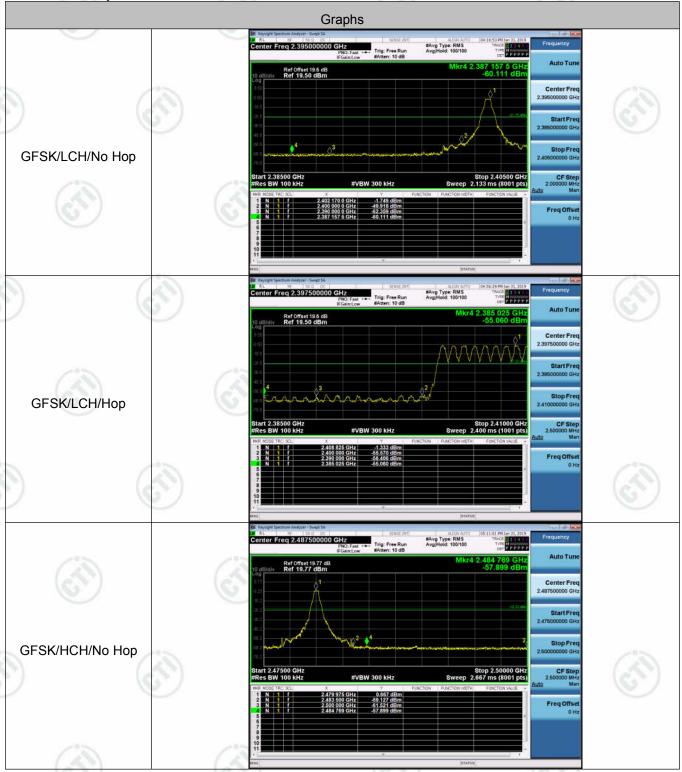
Test Graph



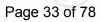
Report No. : EED32K00293601 Page 31 of 78

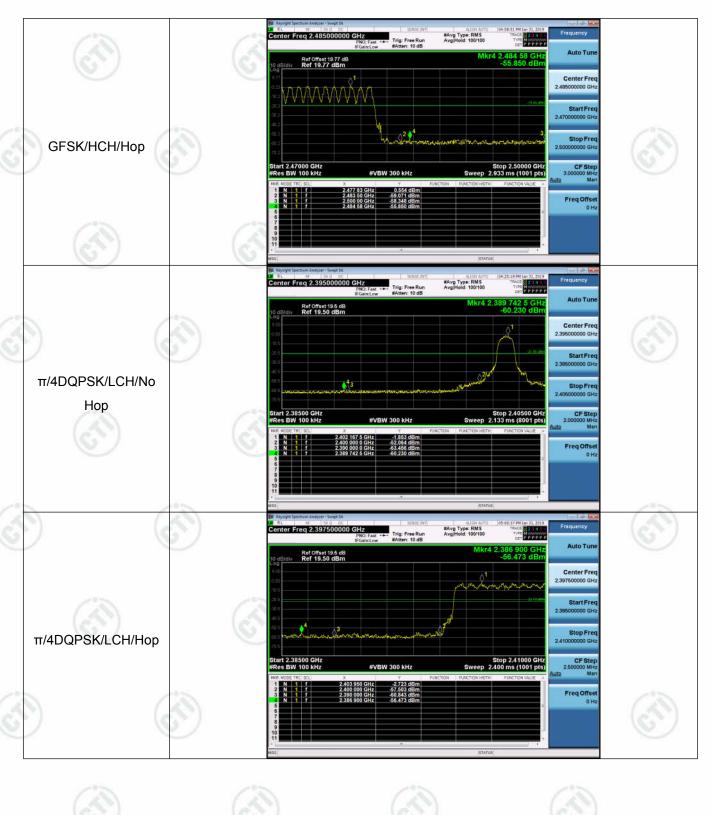
Appendix F): Band-edge for RF Conducted Emissions

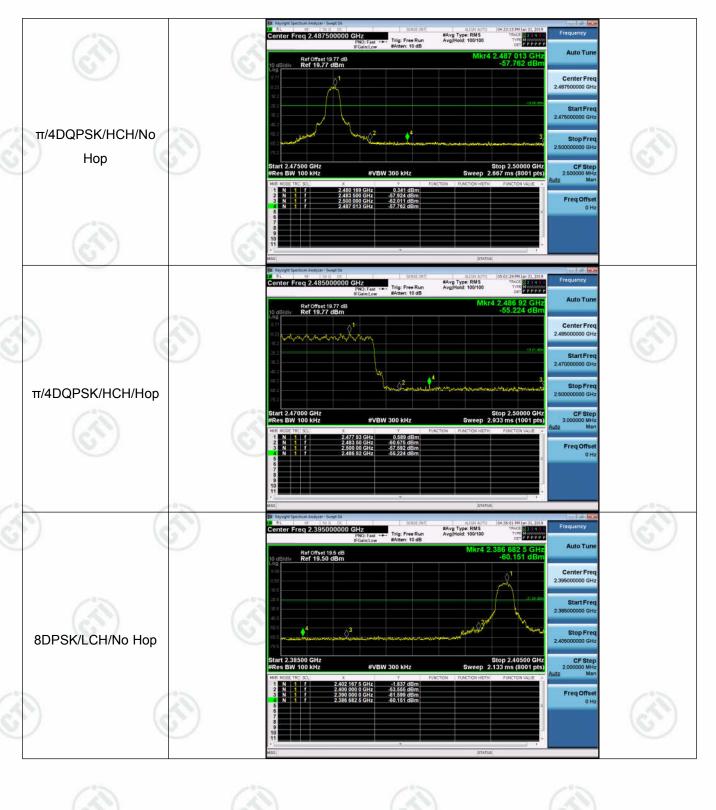
Result Table

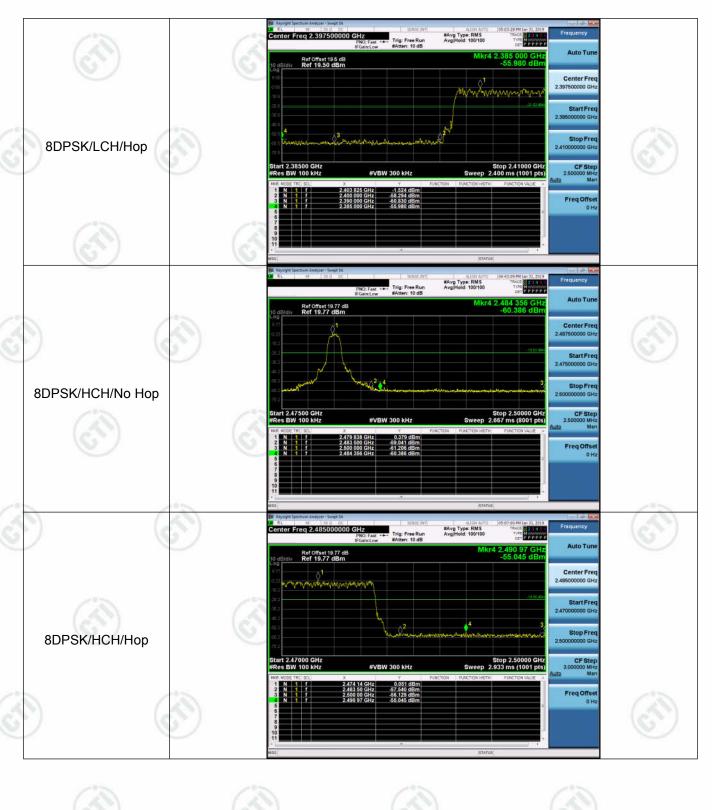

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	-1.749	Off	-60.111	-21.75	PASS
GFSK	LOTT	2402	-1.333	On	-55.060	-21.33	PASS
GFSK	HCH	2480	0.667	Off	-57.899	-19.33	PASS
GFSK	псп	2400	0.554	554 On	-55.850	-19.45	PASS
π/4DQPSK	LCH	2402	-1.853	Off	-60.230	-21.85	PASS
II/4DQPSK	LON	2402	-2.723	On	-56.473	-22.72	PASS
-/ADODEK	HCH	2490	0.341	Off	-57.762	-19.66	PASS
π/4DQPSK	псп	2480	0.589	On	-55.224	-19.41	PASS
ODDCK	1.011	2402	-1.837	Off	-60.151	-21.84	PASS
8DPSK	LCH		-1.524	On	-55.980	-21.52	PASS
ODDCK	ЦСЦ	2490	0.379	Off	-55.126	-19.62	PASS
8DPSK	HCH	2480	0.051	On	-55.045	-19.95	PASS

Page 32 of 78








Page 34 of 78

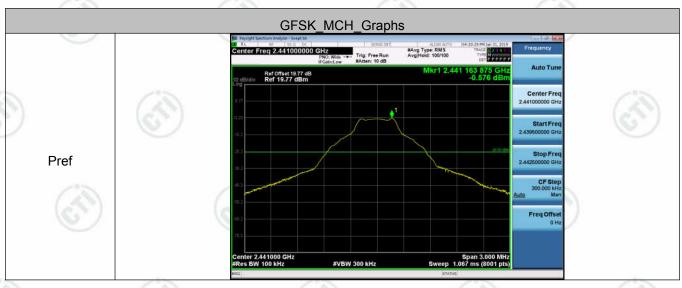
Page 35 of 78

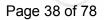
Report No.: EED32K00293601 Page 36 of 78

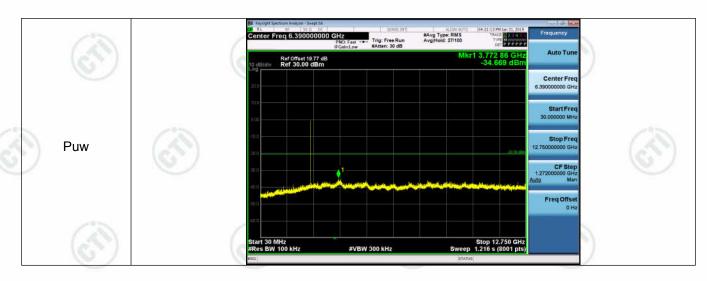
Appendix G): RF Conducted Spurious Emissions Result Table

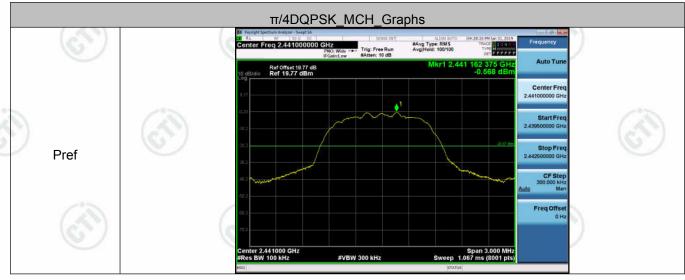
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-1.815	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-0.576	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	0.312	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-1.874	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-0.568	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	0.313	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-1.894	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-0.603	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	0.338	<limit< td=""><td>PASS</td></limit<>	PASS

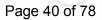
Remark: Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, more than 10dB below the limit, and the below emissions were the highest point could be found when testing, so only the below emissions had been displayed. The amplitude of spurious emissions from the conducted which are attenuated more than 10dB below the limit need not be reported.

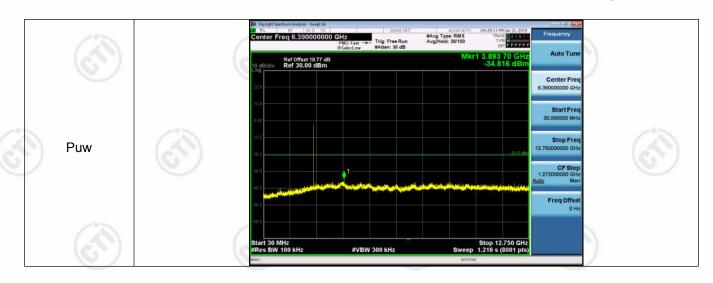


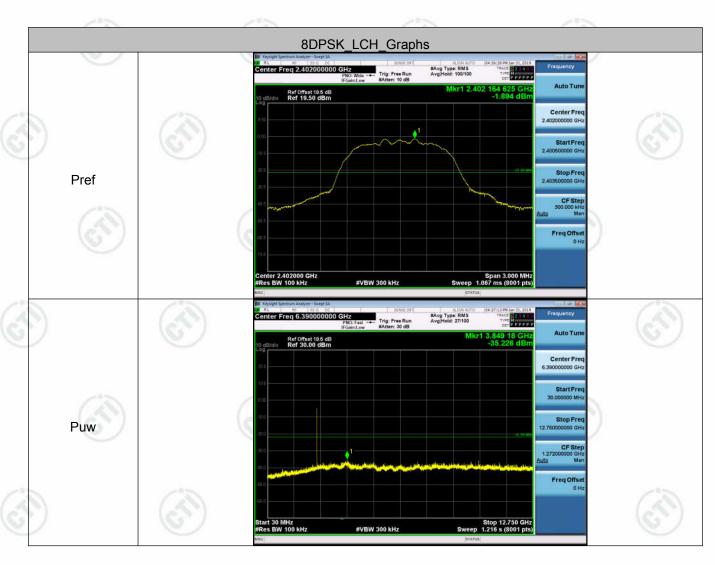

Report No. : EED32K00293601 Page 37 of 78

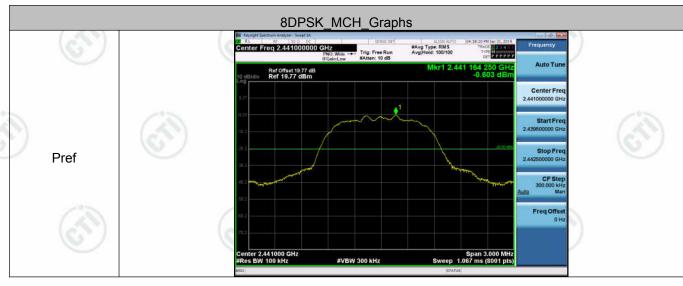

Test Graph



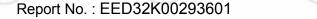








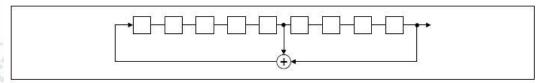




Appendix H): Pseudorandom Frequency Hopping Sequence

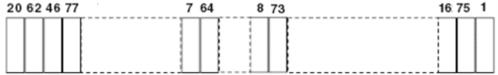
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

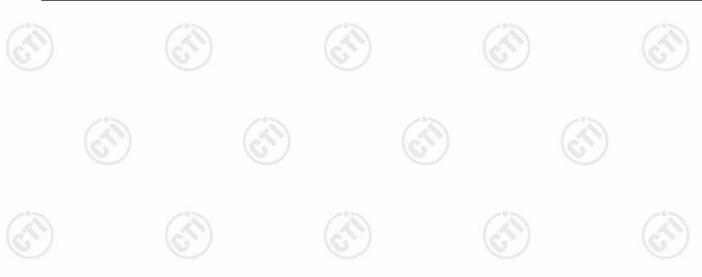
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

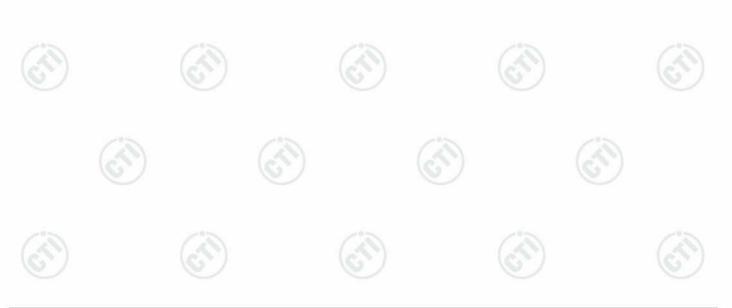
The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32K00293601 Page 44 of 78

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is -0.58 dBi.

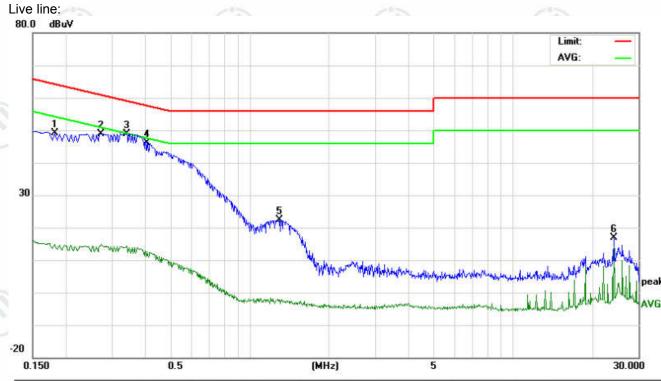
Report No.: EED32K00293601 Page 45 of 78

Appendix J): AC Power Line Conducted Emission

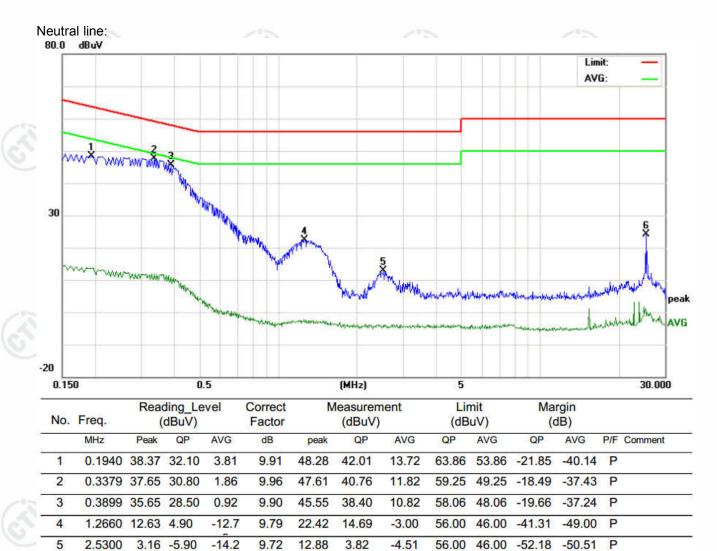
Appendix J). Ac	Power Line Condu	icted Elliission	100							
Test Procedure:	Test frequency range :150KH	z-30MHz								
0	1)The mains terminal disturba	nce voltage test was co	onducted in a shield	led room.						
	2) The EUT was connected to AC power source through a LISN 1 (Stabilization Network) which provides a 50Ω/50μH + 5Ω linear power cables of all other units of the EUT were connected to a which was bonded to the ground reference plane in the same was for the unit being measured. A multiple socket outlet strip was multiple power cables to a single LISN provided the rating of the exceeded.									
	3)The tabletop EUT was place reference plane. And for for horizontal ground reference	loor-standing arrangem		-						
	4) The test was performed we EUT shall be 0.4 m from the reference plane was bond 1 was placed 0.8 m from ground reference plane plane. This distance was All other units of the EUT LISN 2.	he vertical ground refer led to the horizontal gro the boundary of the u for LISNs mounted or between the closest po	ence plane. The ve bund reference plan nit under test and n top of the groun ints of the LISN 1 a	rtical ground le. The LISN bonded to a ld reference and the EUT.						
	5) In order to find the maximu of the interface cables mu conducted measurement.									
Limit:	(6,2)	(6.)	(6,)							
		Limit (d	BµV)							
	Frequency range (MHz)	Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*	7:3						
) (E	0.5-5	56	46	(6)						
	5-30	60	50							
(*5	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is app	•		e range 0.15						
Temperature:	(-4.3)	ımidity:	53%							

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$


No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	leasuren (dBuV)		Lir (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	39.14	33.40	4.91	9.91	49.05	43.31	14.82	64.39	54.39	-21.08	-39.57	P	2
2	0.2740	39.00	32.50	4.78	9.98	48.98	42.48	14.76	60.99	50.99	-18.51	-36.23	P	T)
3	0.3420	38.96	31.10	4.46	9.95	48.91	41.05	14.41	59.15	49.15	-18.10	-34.74	P	ũ
4	0.4100	39.64	29.10	6.25	9.89	49.53	38.99	16.14	57.65	47.65	-18.66	-31.51	Р	
5	1.3020	12.48	4.80	-11.9	9.78	22.26	14.58	-2.21	56.00	46.00	-41.42	-48.21	Р	N.
6	24.1700	6.85	3.50	4.16	9.93	16.78	13.43	14.09	60.00	50.00	-46.57	-35.91	P	2

Page 47 of 78

Notes:

6

25.4300 14.17 -4.50

1. The following Quasi-Peak and Average measurements were performed on the EUT:

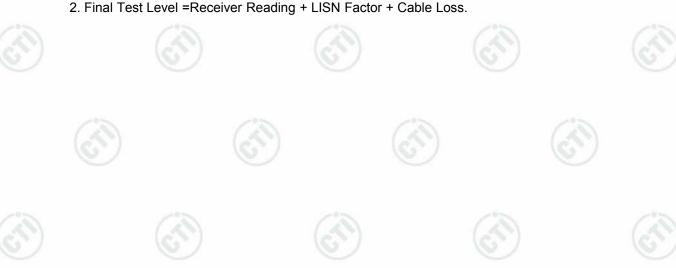
24.11

5.44

-0.06

60.00

50.00


-54.56

-50.06

P

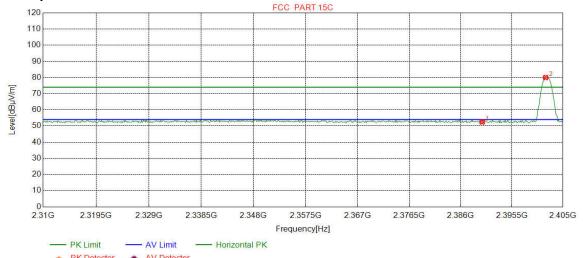
9.94

-10.0

Report No. : EED32K00293601 Page 48 of 78

Appendix K): Restricted bands around fundamental frequency (Radiated)

(Radialed)	(2000)	(2018)	- ((20)		
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	About 4011-	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	re as below:	(6)			6
	a. The EUT was placed of at a 3 meter semi-anec determine the position of b. The EUT was set 3 met was mounted on the top c. The antenna height is well determine the maximum polarizations of the antend d. For each suspected em the antenna was tuned table was turned from 0 e. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectra for lowest and highest of the Above 1GHz test procedures. Different between above to fully Anechoic Cham	n the top of a rohoic camber. The hoic camber. The highest raters away from profession of a variable-ratied from one movement of the field are set to heights from the degrees to 360 m was set to Permit and Mode. In the hold Mode of the restrict pliance. Also mum analyzer places as below: The is the test site of the hold with the restrict pliance.	the table was adiation. the interfer neight ante meter to for eld strength make the rowas arrange 1 meter to 0 degrees the tak Detect cated band of the easure any ot. Repeat the e, change for the edited band of the easure any ot.	ence-receinna tower. Four meters Sen. Both hor Seged to its Seged to i	ving antenna above the gra- rizontal and vent. worst case ar and the rotata maximum rea nd Specified he transmit is in the restrict ower and mod	, which cound ertical additional the able adding.
9)	meter(Above 18GHz the h. b. Test the EUT in the li. The radiation measurer Transmitting mode, and j. Repeat above procedure	ne distance is 1 owest channel ments are perfo	meter and , the Highe rmed in X, kis position	table is 1.5 st channel Y, Z axis p ing which i	meter). positioning for t is worse cas	
Limit:	Frequency	Limit (dBµV	/m @3m)	Rei	mark	
	30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	216MHz-960MHz	46.0	0	Quasi-pe	eak Value	
		54.0	0	Quasi-pe	eak Value	
	960MHz-1GHz	54.0	0			
	960MHz-1GHz Above 1GHz	54.0	-	-	je Value	

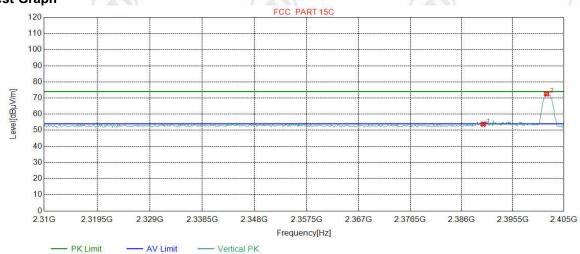


Report No.: EED32K00293601 Page 49 of 78

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark	:: Peak		(6,2)

Test Graph

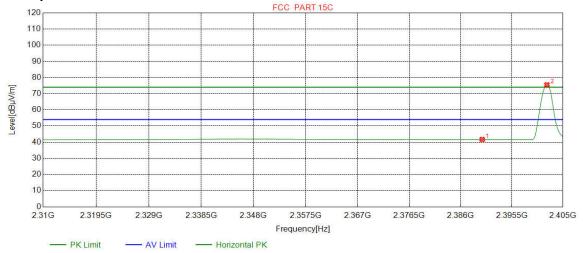

PK Detector **AV** Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.28	52.46	74.00	21.54	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	76.89	80.03	74.00	-6.03	Pass	Horizontal

Mode: **GFSK Transmitting** Channel: 2402 Remark: Peak

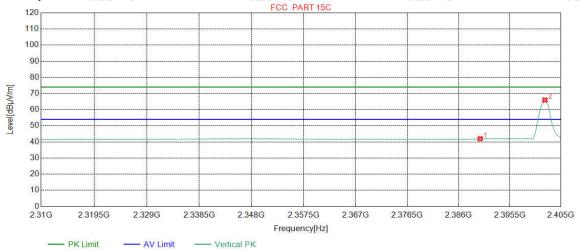
Test Graph

* AV Detector


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.60	53.78	74.00	20.22	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	69.43	72.57	74.00	1.43	Pass	Vertical

Page 50 of 78

Test Graph

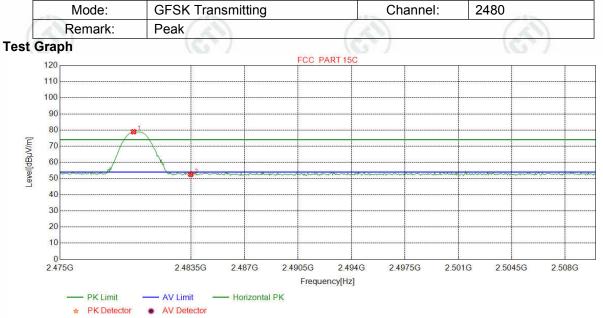


PK Detector **AV** Detector

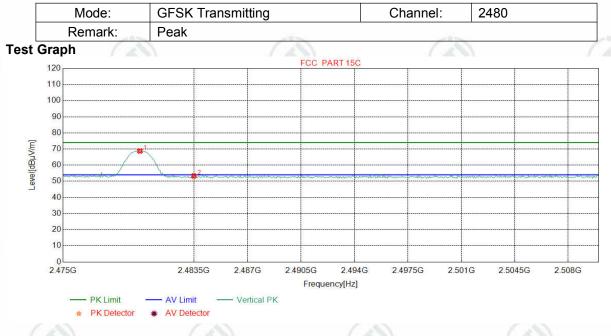
N	O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.48	41.66	54.00	12.34	Pass	Horizontal
	2	2402.0275	32.26	13.31	-42.43	72.37	75.51	54.00	-21.51	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		/

Test Graph

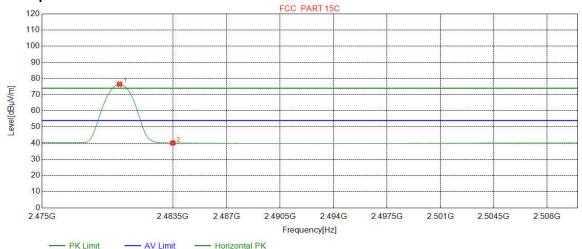


- PK Limit - AV Limit ♠ PK Detector * AV Detector


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.82	42.00	54.00	12.00	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	62.82	65.96	54.00	-11.96	Pass	Vertical

Page 51 of 78

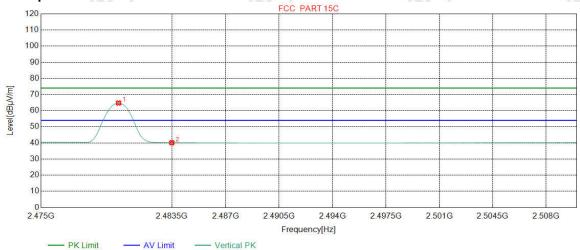
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7747	32.37	13.39	-42.39	75.58	78.95	74.00	-4.95	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.21	52.57	74.00	21.43	Pass	Horizontal


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	65.38	68.75	74.00	5.25	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.93	53.29	74.00	20.71	Pass	Vertical

Page 52 of 78

Test Graph

PK Limit — AV Limit —


→ PK Detector ★ AV Detector

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
F	1	2480.0375	32.37	13.39	-42.39	73.12	76.49	54.00	-22.49	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	36.73	40.09	54.00	13.91	Pass	Horizontal

Mode: GFSK Transmitting Channel: 2480

Remark: AV

Test Graph

▶ PK Detector
 ★ AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	61.39	64.76	54.00	-10.76	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.74	40.10	54.00	13.90	Pass	Vertical
4.00		1 2		•						1 - 2 - 2 - 2