

TEST REPORT

PO FUNG ELECTRONIC (HK) INTERNATONAL GROUP

Applicant: COMPANY LIMITED

Address: Room 1508, 15/F, Office Tower II, Grand Plaza, 625 Nathan Road,

Kowloon, Hong Kong

Product Name: Amateur Radio

FCC ID: 2AJGM-UV25

Standard(s): FCC Part 15B ANSI C63.4-2014

Report Number: XMTN1240103-00741E-RF-00A

Report Date: 2024/4/10

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Ganin Xn

Reviewed By: Gavin Xu Approved By: Ivan Cao

Title: RF Engineer Title: EMC Manager

from Cas

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked \blacktriangle is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \bigstar .

CONTENTS

DOCUMENT REVISION HISTORY	3
1. GENERAL INFORMATION	4
1.1 GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	4
1.2 Accessory Information	
1.3 EQUIPMENT MODIFICATIONS	4
2. SUMMARY OF TEST RESULTS	5
3. DESCRIPTION OF TEST CONFIGURATION	6
3.1 OPERATION FREQUENCY AND TEST CHANNEL:	6
3.2 DESCRIPTION OF TEST CONFIGURATION	
3.3 EUT Exercise Software	
3.4 SUPPORT EQUIPMENT LIST AND DETAILS	
3.5 SUPPORT CABLE LIST AND DETAILS	
3.6 BLOCK DIAGRAM OF TEST SETUP	7
3.7 Test Facility	
3.8 Measurement Uncertainty	9
4. REQUIREMENTS AND TEST RESULTS	10
4.1 AC LINE CONDUCTED EMISSIONS	10
4.1.1 Applicable Standard	10
4.1.2 Test System Setup	
4.1.3 EMI Test Receiver Setup	
4.1.4 Test Procedure	
4.1.5 Corrected Amplitude & Margin Calculation	11
4.1.6 Test Data and Result	12
4.2 RADIATION SPURIOUS EMISSIONS	
4.2.1 Applicable Standard	
4.2.2 Test System Setup	
4.2.3 EMI Test Receiver Setup	
4.2.4 Test Procedure	
4.2.5 Corrected Result & Margin Calculation	19
4.2.6 Test Data and Result	20
4.3 SCANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SCANNING RECEIVERS	
4.3.1 Applicable Standard 4.3.2 Test Procedure	
4.3.3 Test Data and Result	
APPENDIX A - EUT PHOTOGRAPHS	
APPENDIX B - TEST SETUP PHOTOGRAPHS	37

Bay Area Compliance Laboratories Corp. (Dongguan)

Report No.: XMTN1240103-00741E-RF-00A

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	XMTN1240103-00741E-RF-00A	Original Report	2024/4/10

Report Template Version: FCC-Part 15B-CSR-V1.2

1. GENERAL INFORMATION

1.1 General Description Of Equipment Under Test

t .		
Product Name:	Amateur Radio	
Test Model:	UV25M	
Multiple Models:	UV25L, UV25G, UV25A, AR25M,UV25	
Highest Operation Frequency:	520 MHz	
Rated Input Voltage:	DC 7.4Vdc from battery or DC 5V from USB port	
Serial Number: 2G6S-3(AC line conducted emissions and Radiated emission) 2G6S-1(Antenna port conducted test)		
EUT Received Date:	2024/1/25	
EUT Received Status:	Good	
Note: the Multiple models are electrically identical with the test model. Please refer to the declaration letter for		

Note: the Multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
/	/	/	/

1.3 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

Standard Clause	Description of Test	Test Result
FCC§15.107	Conducted emissions	Compliant
FCC§15.109	Radiated emissions	Compliant
FCC§15.121(b)	Scanning receivers and frequency converters used with scanning receivers	Compliant

Report Template Version: FCC-Part 15B-CSR-V1.2

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency And Test Channel:

Operation Modes	Operation Frequency Range (MHz)	Test Frequency (MHz)
	108-136	108.0125, 122, 135.9875
VHF Receiving	136-174	136.0125, 155, 173.9875
	220-260	220.0125, 240, 259.9875
UHF Receiving	350-390	350.0125, 370, 389.9875
	400-520	400.0125, 460, 519.9875
	108-136	108-136
Scanning	136-174	136-174
	220-260	220-260
	350-390	350-390
	400-520	400-520

3.2 Description of Test Configuration

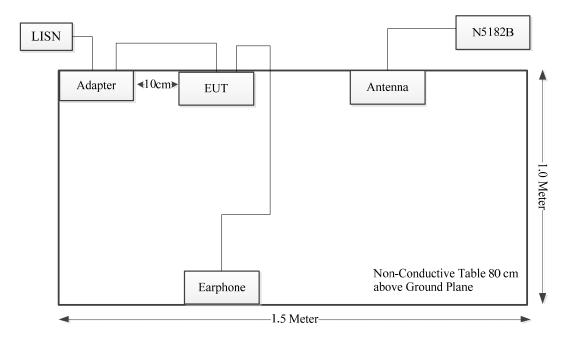
The system was configured for testing in a typical fashion (as normally used by a typical user). The following summary table is showing all test modes to demonstrate in compliance with the standard:

Test Items	Test Mode(s)
Radiated Spurious Emission :	Test Mode 1: Charging&Scanning
radated Sparrous Emission :	Test Mode 2: Charging&Receiving
AC Line Conducted Emission	Test Mode 1: Charging&Scanning
AC Line Conducted Emission	Test Mode 2: Charging&Receiving
RF Conducted:	Test Mode 1: Scanning

3.3 EUT Exercise Software

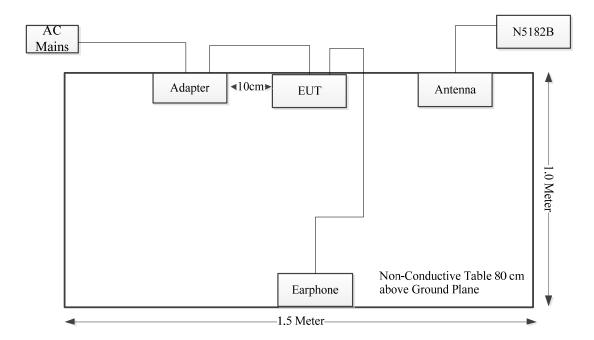
No software was used to test.

3.4 Support Equipment List and Details

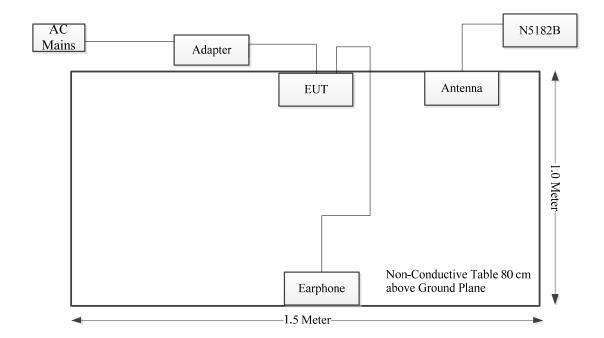

Manufacturer	Description	Model	Serial Number
TIANYIN ELECTRONICS	adapter	GO24-090200-AX	4007202-CS
PO FUNG	Earphone	Unknown	2GSG-5
Agilent	MXG Vector Signal Generator	N5182B	MY51350142

3.5 Support Cable List and Details

Cable Description	Shielding Cable	Ferrite Core	Length (m)	From Port	To
USB cable	No	No	1	Adapter	EUT
Earphone cable	No	No	1	Earphone	EUT


3.6 Block Diagram of Test Setup

AC Power Lines Conducted Emission:



Radiated Spurious Emissions

below 1GHz

above 1GHz

3.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 829273, the FCC Designation No.: CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.8 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

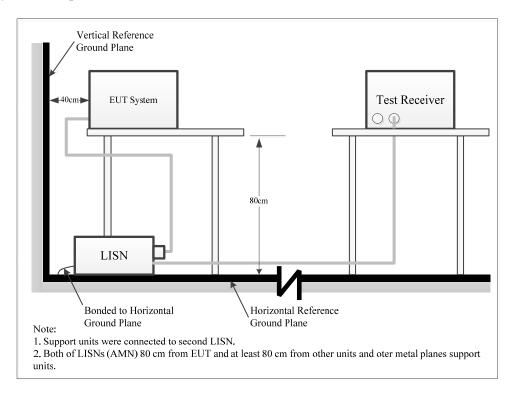
Parameter	Measurement Uncertainty
	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz:
Unwanted Emissions, radiated	5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,
	18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1 °C
Humidity	±5%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

Report Template Version: FCC-Part 15B-CSR-V1.2

4. REQUIREMENTS AND TEST RESULTS

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard


FCC§15.107

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges

Fraguency of amission (MIII)	Conducted	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

4.1.2 Test System Setup

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15 B Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

4.1.6 Test Data and Result

	Serial Number:	2G6S-3	Test Date:	2024/3/10
Ī	Test Site:	CE	Test Mode:	Mode 1, Mode 2
Ī	Tester:	Lane Sun	Test Result:	Pass

Environmental Conditions:

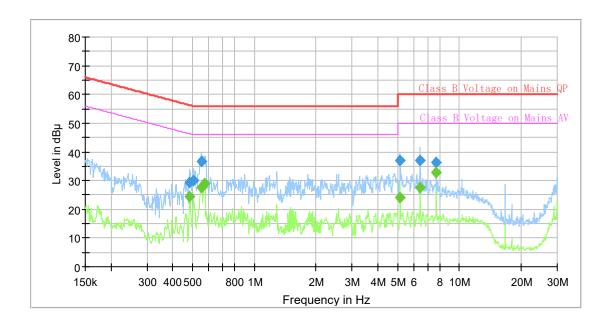
Temperature: (°C) 2	22.6	Relative Humidity: (%)	55	ATM Pressure: (kPa)	101.1
---------------------	------	------------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2023/9/5	2024/9/4
R&S	EMI Test Receiver	ESCI	100035	2023/8/18	2024/8/17
R&S	Test Software	EMC32	V9.10.00	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Mode 1:

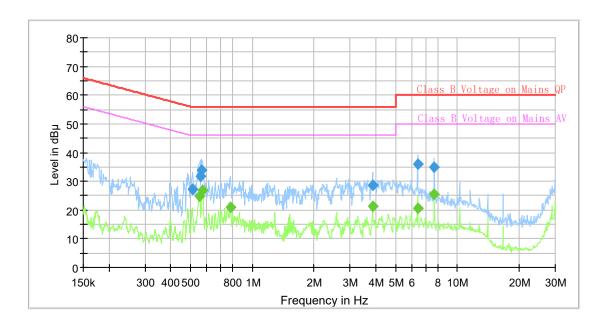

Project No: XMTN1240103-00741E-RF

Port: L
Test Engineer: L and

Test Engineer: Lane Sun Test Date: 2024-3-10

Test Mode: Charging & Scanning Power Source: AC 120V/60Hz

Note: 350-390MHz was tested


Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB μ V)	(dB μ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.484301		24.58	46.26	21.68	9.000	L1	10.8
0.484301	29.42		56.26	26.84	9.000	L1	10.8
0.506536	30.20		56.00	25.80	9.000	L1	10.8
0.551358		27.72	46.00	18.28	9.000	L1	10.8
0.551358	36.73		56.00	19.27	9.000	L1	10.8
0.570947		29.11	46.00	16.89	9.000	L1	10.8
5.150259	37.08		60.00	22.92	9.000	L1	10.8
5.150259		24.24	50.00	25.76	9.000	L1	10.8
6.446171	36.95		60.00	23.05	9.000	L1	10.9
6.446171		27.59	50.00	22.41	9.000	L1	10.9
7.714007		32.99	50.00	17.01	9.000	L1	10.9
7.714007	36.16		60.00	23.84	9.000	L1	10.9

Project No: XMTN1240103-00741E-RF

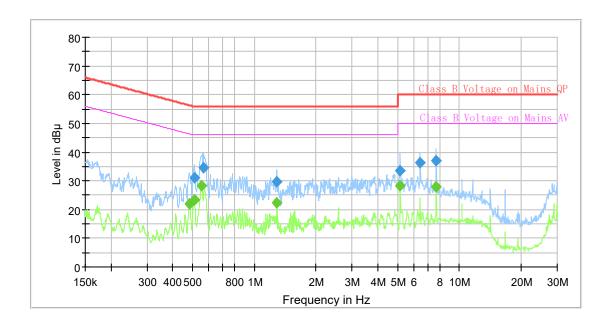
Port: N

Test Engineer: Lane Sun Test Date: 2024-3-10

Test Mode: Charging & Scanning
Power Source: AC 120V/60Hz
Note: 350-390MHz was tested

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB μ V)	(dB µ V)	(dB μ V)	(dB)	(kHz)		(dB)
0.511614	27.33		56.00	28.67	9.000	N	10.7
0.551358		24.63	46.00	21.37	9.000	N	10.7
0.556885	31.64		56.00	24.36	9.000	N	10.7
0.568106	34.00		56.00	22.00	9.000	N	10.7
0.573802		27.01	46.00	18.99	9.000	N	10.7
0.781732		21.06	46.00	24.94	9.000	N	10.8
3.856537	28.52		56.00	27.48	9.000	N	10.9
3.856537		21.23	46.00	24.77	9.000	N	10.9
6.414101	35.85		60.00	24.15	9.000	N	10.9
6.414101		20.60	50.00	29.40	9.000	N	10.9
7.714007		25.52	50.00	24.48	9.000	N	10.8
7.714007	34.94		60.00	25.06	9.000	N	10.8

Test Mode 2:


Project No: XMTN1240103-00741E-RF

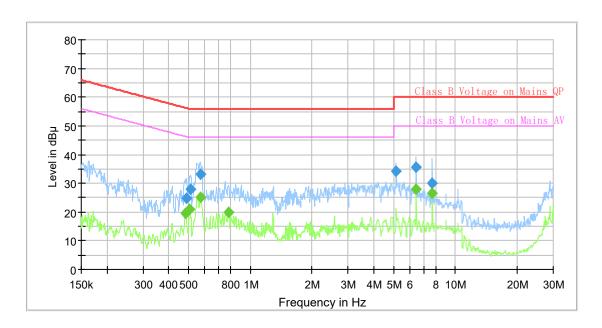
Line: L
Test Engineer: Lane Su

Test Engineer: Lane Sun
Test Date: 2024-3-10

Test Mode: Charging & Receiving Power Source: AC 120V/60Hz

Note: 389.9875MHz was tested

Frequency (MHz)	QuasiPeak (dB µ V)	Average (dB µ V)	Limit (dB µ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.481892		22.15	46.31	24.16	9.000	L1	10.8
0.509069		23.38	46.00	22.62	9.000	L1	10.8
0.509069	31.08		56.00	24.92	9.000	L1	10.8
0.554114		28.15	46.00	17.85	9.000	L1	10.8
0.568106	34.62		56.00	21.38	9.000	L1	10.8
1.287253	29.84		56.00	26.16	9.000	L1	10.8
1.287253		22.24	46.00	23.76	9.000	L1	10.8
5.150259		28.28	50.00	21.72	9.000	L1	10.8
5.150259	33.42		60.00	26.58	9.000	L1	10.8
6.446171	36.35		60.00	23.65	9.000	L1	10.9
7.714007		27.86	50.00	22.14	9.000	L1	10.9
7.714007	37.06		60.00	22.94	9.000	L1	10.9


Project No: XMTN1240103-00741E-RF

Line:

Test Engineer: Lane Sun
Test Date: 2024-3-10

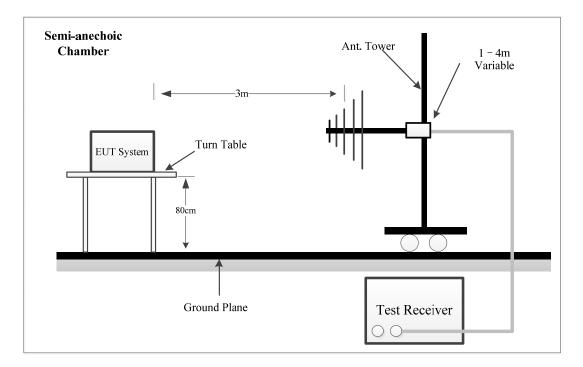
Test Mode: Charging & Receiving Power Source: AC 120V/60Hz

Note: 389.9875MHz was tested

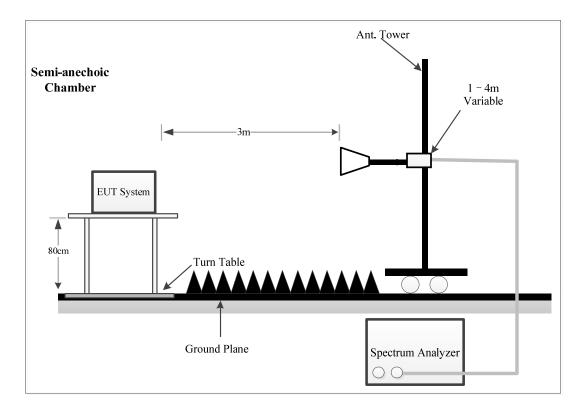
Frequency (MHz)	QuasiPeak (dB µ V)	Average (dB µ V)	Limit (dB µ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.481892		19.59	46.31	26.72	9.000	N	10.7
0.489157	24.72		56.18	31.46	9.000	N	10.7
0.506536		20.89	46.00	25.11	9.000	N	10.7
0.511614	27.84		56.00	28.16	9.000	N	10.7
0.570947	33.12		56.00	22.88	9.000	N	10.7
0.573802		25.11	46.00	20.89	9.000	N	10.7
0.781732		20.01	46.00	25.99	9.000	N	10.8
5.150259	34.19		60.00	25.81	9.000	N	10.8
6.446171	35.46		60.00	24.54	9.000	N	10.9
6.446171		27.91	50.00	22.09	9.000	N	10.9
7.714007		26.69	50.00	23.31	9.000	N	10.8
7.714007	30.09		60.00	29.91	9.000	N	10.8

4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard


FCC§15.109

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:


Frequency of emission (MHz)	Field strength (microvolts/meter)
30-88	100
88-216	150
216-960	200
Above 960	500

4.2.2 Test System Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed at the 3 meters distance, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15B Class B limits.

4.2.3 EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30MHz – 1000 MHz	100 kHz	300 kHz	/	Peak
30MINZ — 1000 MINZ	/	/	120kHz	QP
	1 MHz	3 MHz	/	Peak
Above 1 GHz	1 MHz	Reduced video bandwidth	/	AVG

4.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The data was recorded in the Quasi-peak detection mode for below 1 GHz, peak and average detection mode above 1 GHz.

If the maximized peak measured value complies with under the QP limit more than 6dB, then it is unnecessary to perform an QP measurement.

4.2.5 Corrected Result & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

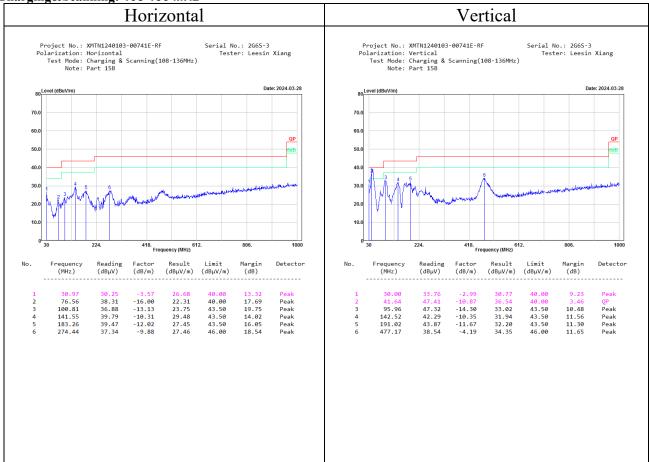
4.2.6 Test Data and Result

Serial Number:	2G6S-3	Test Date:	2024/1/29~2024/3/29
Test Site:	Chamber A, Chamber B	Test Mode:	Mode 1, Mode 2
Tester:	Leesin Xiang, Leo Xiao	Test Result:	Pass

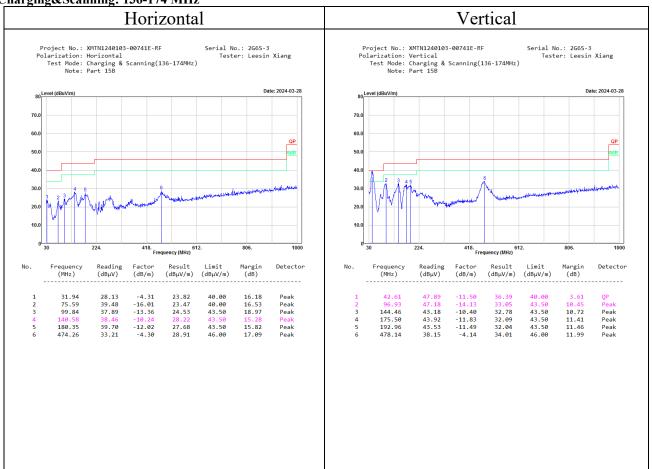
Environmental Conditions:									
Temperature:	17.1~24.8	Relative Humidity: (%)	38~50	ATM Pressure: (kPa)	100.9~101.9				

Test Equipment List and Details:

Test Equipment List and Details:										
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date					
	30MHz-1GHz									
Sunol Sciences	Hybrid Antenna	ЈВ3	A060611-3	2024/1/12	2027/1/11					
Wilson	Coaxial Attenuator	859936	F-08-EM014	2024/1/12	2027/1/11					
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2023/7/1	2024/6/30					
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2023/7/1	2024/6/30					
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2023/7/1	2024/6/30					
Sonoma	Amplifier	310N	372193	2023/7/1	2024/6/30					
R&S	EMI Test Receiver	ESR3	102453	2023/8/18	2024/8/17					
Audix	Test Software	E3	191218 (V9)	N/A	N/A					
		Above 1	GHz							
AH	Horn Antenna	SAS-571	1394	2023/2/22	2024/2/22					
HUBER+SUHNER	Coaxial Cable	SUCOFLEX 126EA	MY369/26/26EA	2023/9/6	2024/9/5					
AH	Preamplifier	PAM-0118P	530	2023/9/1	2024/8/31					
Agilent	Spectrum Analyzer	E4440A	SG43360054	2023/11/22	2024/11/21					
Audix	Test Software	E3	191218 (V9)	N/A	N/A					


^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

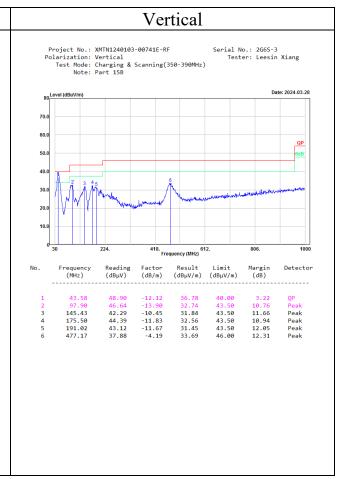

Please refer to the below table and plots. After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

1) 30MHz-1GHz:

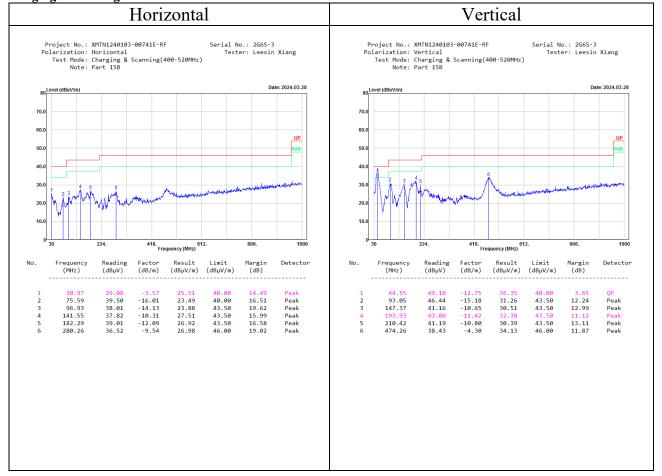
Charging&Scanning: 108-136 MHz

Charging&Scanning: 136-174 MHz

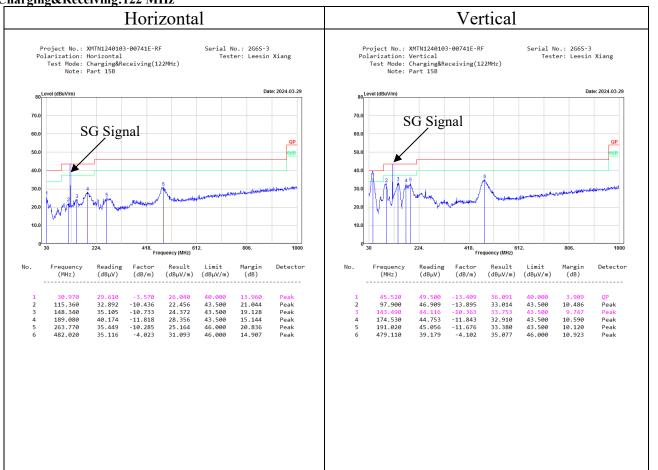


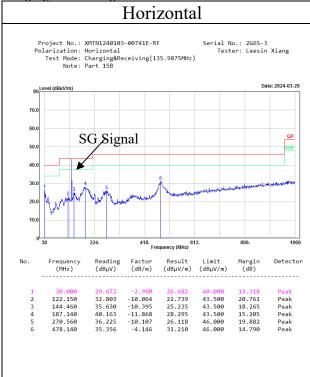

Charging&Scanning: 220-260 MHz

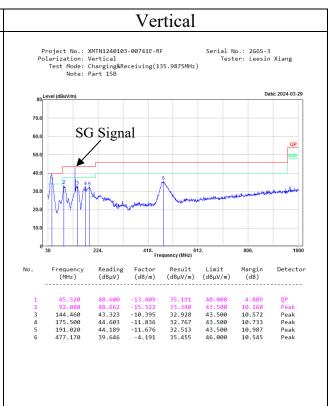
Horizontal Project No.: XMTN1240103-00741E-RF Polanization: Horizontal Test Mode: Charging & Scanning(220-260MHz) Note: Part 158 60.0 50.0 50. 418. Frequency (MHz) 612. Result (dBμV/m) Frequency (MHz) Factor (dB/m) (dBµV/m) $(dB\mu V)$ 30.97 75.59 98.87 140.58 183.26 279.29 30.44 38.79 39.17 38.32 40.58 36.50 40.00 40.00 43.50 43.50 43.50 46.00 Peak Peak Peak Peak Peak Peak 26.87 22.78 25.60 28.08 28.56 -16.01 -13.57 -10.24 -12.02 17.90 15.42 14.94 26.92


Vertical Project No.: XMTN1240103-00741E-RF Polarization: Vertical Test Mode: Charging & Scanning(220-260MHz) Note: Part 158 Serial No.: 2G6S-3 Tester: Leesin Xiang 418. Frequency (MHz) 612 Frequency (MHz) Factor (dB/m) (dBµV/m) (dBµV) $(dB\mu V/m)$ Peak 143.49 175.50 473.29 46.77 41.97 43.59 38.28 43.50 43.50 43.50 46.00 -10.36 -11.83 -4.31 31.61 31.76 33.97 11.89 11.74 12.03 Peak Peak Peak

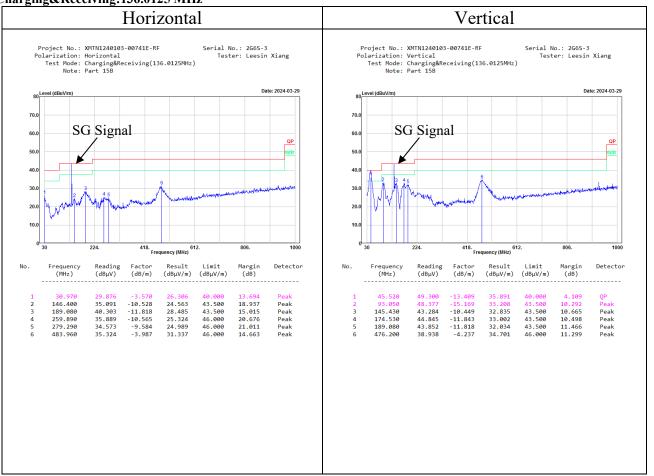
Charging&Scanning:350-390 MHz


Charging&Scanning:400-520 MHz

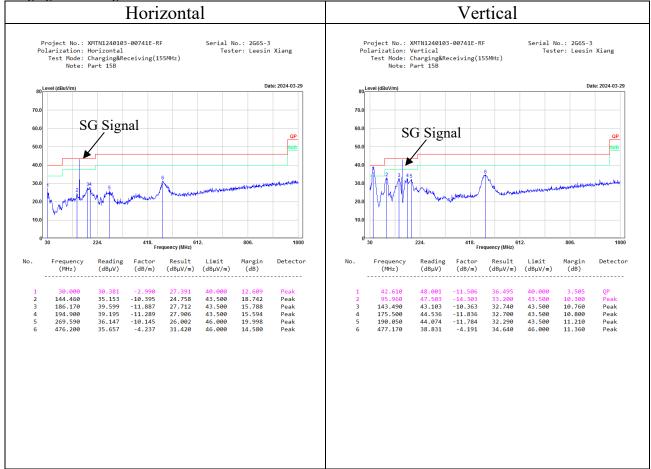

Charging&Receiving:108.0125MHz

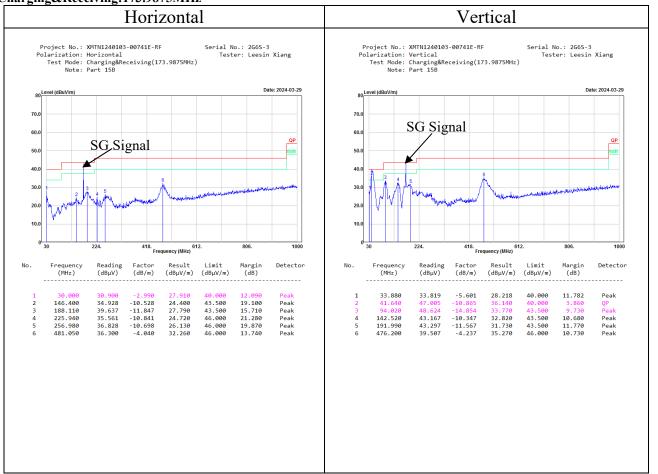


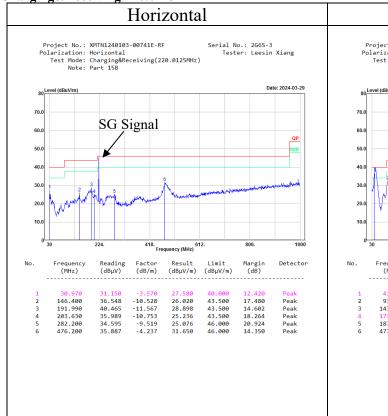
Charging&Receiving:122 MHz

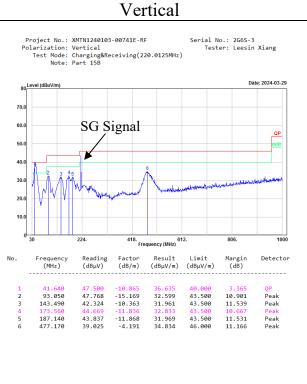


Charging&Receiving:135.9875 MHz

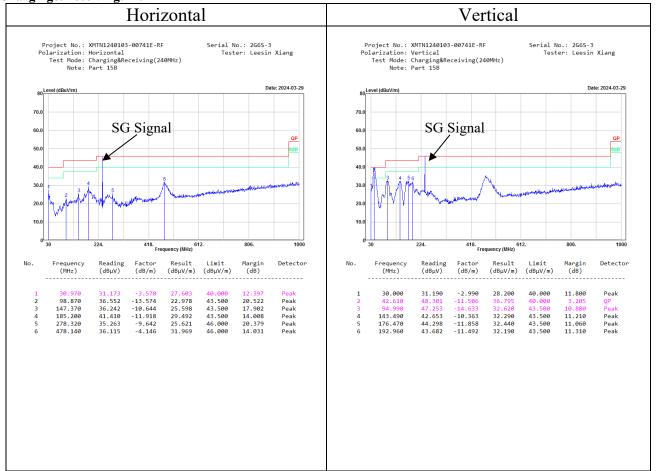



Charging&Receiving:136.0125 MHz

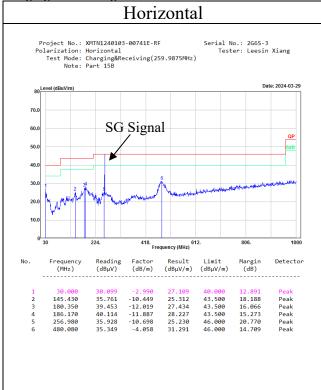

Charging&Receiving:155 MHz

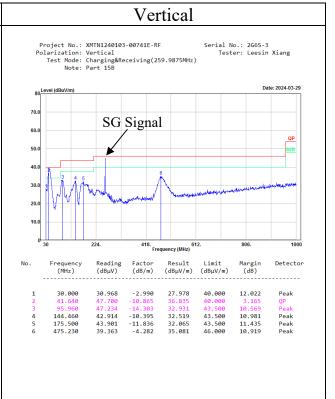


Charging&Receiving:173.9875MHz

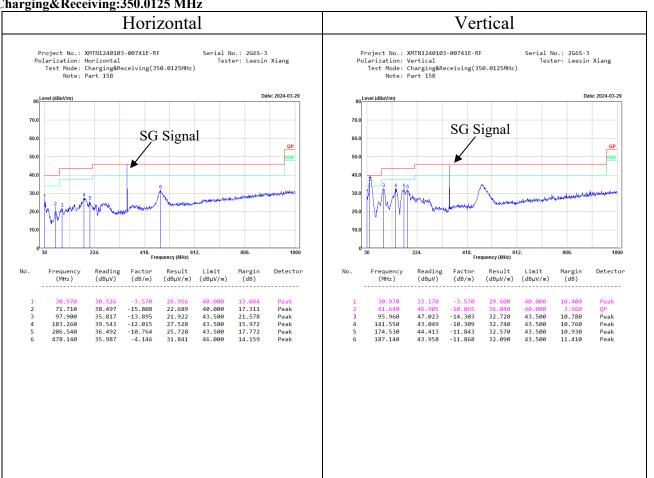


Charging&Receiving:220.0125 MHz

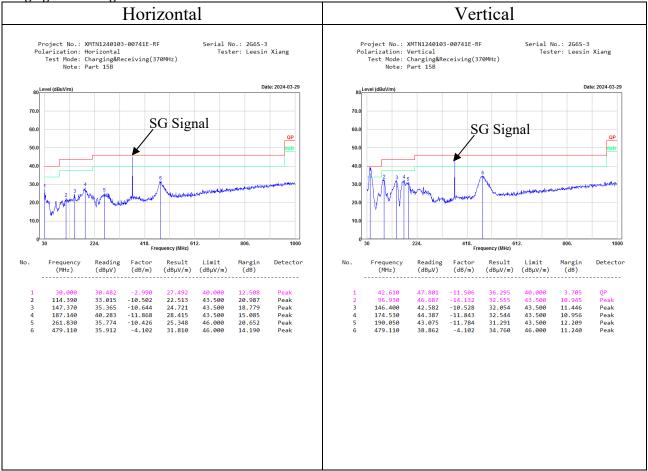


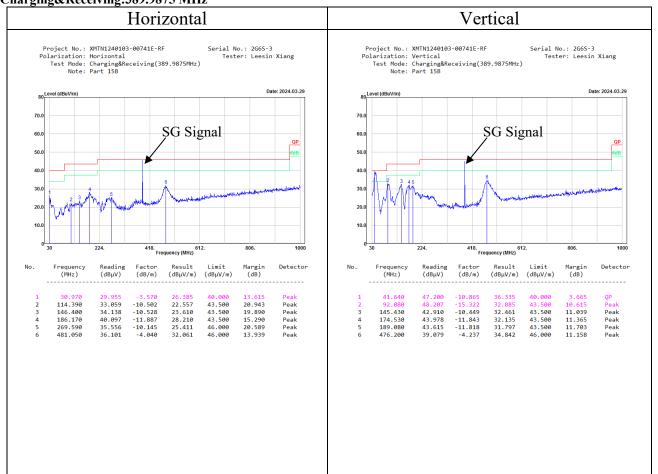


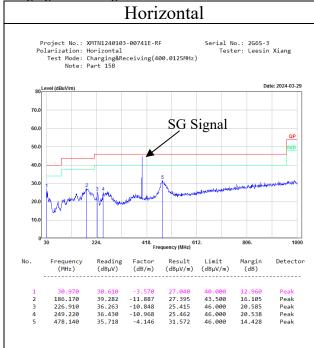
Charging&Receiving:240 MHz

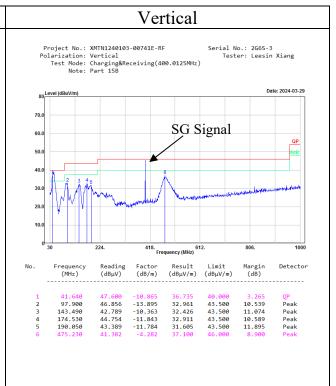


Charging&Receiving: 259.9875MHz

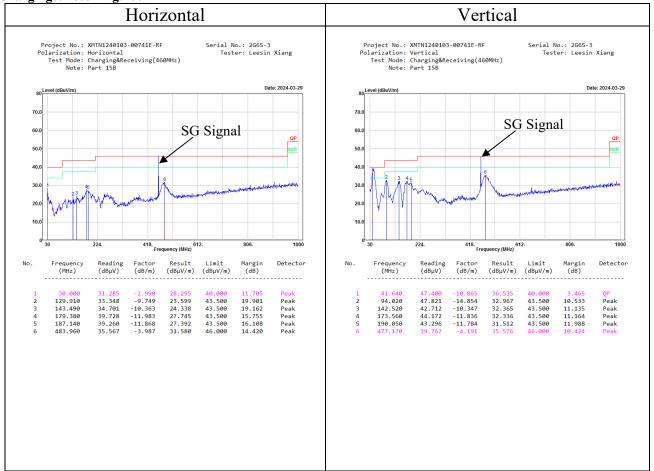



Charging&Receiving:350.0125 MHz

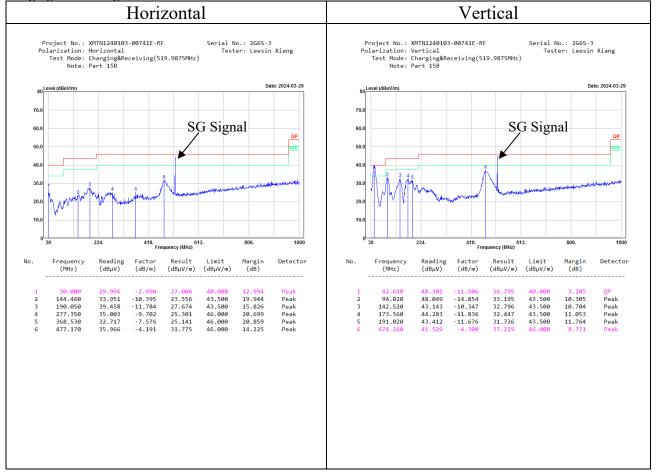

Charging&Receiving:370 MHz



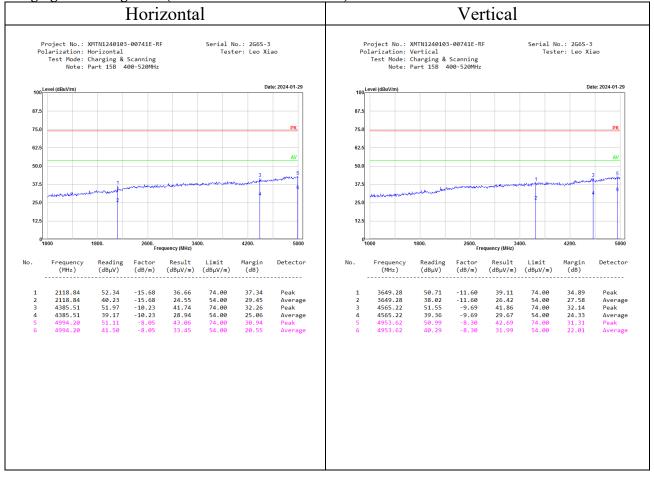
Charging&Receiving:389.9875 MHz



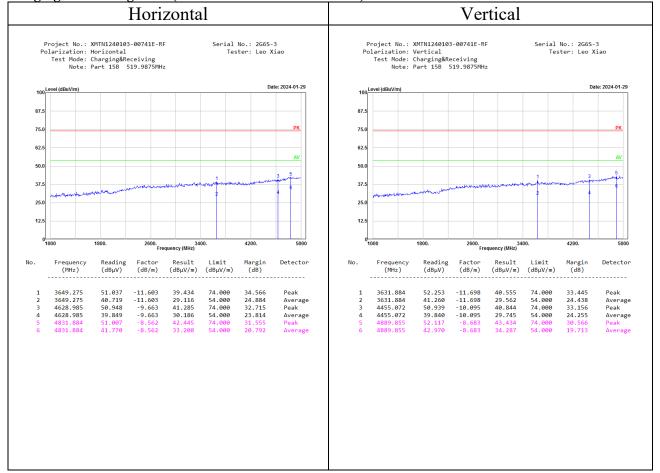
Charging&Receiving:400.0125MHz



Charging&Receiving:460 MHz



Charging&Receiving:519.9875 MHz

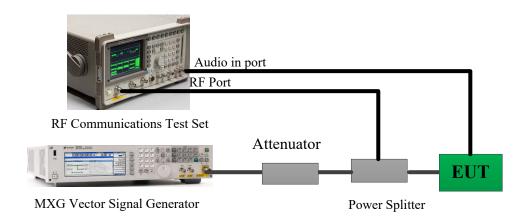


2) 1GHz-5GHz:

Charging&Scanning mode(400-520 MHz was the worst):

Charging&Receiving mode(519.9875 MHz was the worst):

4.3 Scanning Receivers and Frequency Converters Used with Scanning Receivers


4.3.1 Applicable Standard

FCC §15.121(b).

(b) Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

4.3.2 Test Procedure

1. Connected the EUT as the below block diagram;

- 2. Apply a signal to the EUT antenna port at lowest, middle, highest channel frequencies of the operating band;
- 3. Adjust the audio output level of the EUT to it's rated value with the distortion less than 10%;
- 4. Adjust the 8920 output power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB; These output level of the 8920 at each channel frequency is the sensitivity of the EUT;
- 5. Select the lowest or worst case sensitivity level for all of the bands as the reference sensitivity;
- 6. Adjust the Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step 5 and its frequency to the frequency point in the Cellular Band;
- 7. Set the EUT squelch to threshold, the signal required to open the squelch must be lower than the reference sensitivity level;
- 8. Set the EUT in a scanning mode and allow it to scan through it's complete receiving range;
- 9. If the EUT un-squelched or stopped on any frequency, receiving at this frequency, then adjust the signal generator output level until 12 dB SINAD is produced, this level is the spurious value and the difference between the reference sensitivity and the spurious value is the rejection ratio and must be at least 38 dB;
- 10. Repeat above procedure at the frequencies 824, 836, 849 MHz for the mobile band, and 869, 881.5 and 894 MHz for the Cellular Base Band.

4.3.3 Test Data and Result

Serial Number:	2G6S-1	Test Date:	2024/1/26
Test Site:	RF	Test Mode:	Scanning
Tester:	Stu Song	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	19	Relative Humidity: (%)	30	ATM Pressure: (kPa)	102.2

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
yzjingcheng	Coaxial Cable	KTRFBU-141-50	41010012	2023/9/1	2024/8/31
yzjingcheng	Coaxial Cable	KTRFBU-141-50	41010013	2023/9/1	2024/8/31
yzjingcheng	Coaxial Cable	KTRFBU-141-50	41005011	2023/9/1	2024/8/31
HP	RF Communications Test Set	8920A	3438A05201	2023/10/18	2024/10/17
Agilent	MXG Vector Signal Generator	N5182B	MY51350142	2023/9/1	2024/8/31
Weinschel	Coaxial Power Splitters & Combiner	1515	SERNORH458	2023/9/1	2024/8/31

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Scanning Frequency Range (MHz)	Test Frequency (MHz)	Measurement Result (dB)	Limit (dB)
108-136	824, 836, 849, 869,881.5, 894	45	>38
136-174	824, 836, 849, 869,881.5, 894	45	>38
220-260	824, 836, 849, 869,881.5, 894	45	>38
350-390	824, 836, 849, 869,881.5, 894	45	>38
400-520	824, 836, 849, 869,881.5, 894	45	>38

Bay Area Compliance Laboratories Corp. (Dongguan) APPENDIX A - EUT PHOTOGRAPHS	Report No.: XMTN1240103-00741E-RF-00A
	VD PHT PYTERNAL BUOTOOR 1717
Please refer to the attachment XMTN1240103-00741E-RF-EXMTN1240103-00741E-RF-INP EUT INTERNAL PHOTO	XP EUT EXTERNAL PHOTOGRAPHS and GRAPHS

APPENDIX B - TEST SETUP PHOTOGR	APHS
lease refer to the attachment XMTN1240103-00741E-RF	-00A-TSP TEST SETUP PHOTOGRAPHS.
**** END OF RE	EPORT *****