
FCC Part 95 Rules Test Report

Report No.:AGC02294200302FE10

FCC ID : 2AJGM-P51UV

PRODUCT DESIGNATION : TWO WAY RADIO

BRAND NAME : BAOFENG, POFUNG

MODEL NAME : P51UV, P8UV, P9UV, UV-5R, UV-5REX, UV-5R+PLUS, UV-5RTP, GT-3, GT-3TP, BF-R3, UV-S9, UV-B2PLUS, TR-818UV, UV-5REPLUS, UV-5X, FF-12P, BF-F8GP, BF-F8TD

APPLICANT : PO FUNG ELECTRONIC(HK) INTERNATIOANL GROUP COMPANY

DATE OF ISSUE : Jun. 19, 2020

STANDARD(S) : FCC Part 95 Rules

REPORT VERSION : V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 19, 2020	Valid	Initial release

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

VERIFICATION OF COMPLIANCE

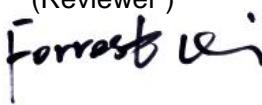
Applicant	PO FUNG ELECTRONIC(HK) INTERNATIOANL GROUP COMPANY
Address	3/F FULOK BLDG 131-133 WING LOK ST SHEUNG WAN, Hong Kong
manufacturer	PO FUNG ELECTRONIC(HK) INTERNATIOANL GROUP COMPANY
Address	3/F FULOK BLDG 131-133 WING LOK ST SHEUNG WAN, Hong Kong
Factory	PO FUNG ELECTRONIC(HK) INTERNATIOANL GROUP COMPANY
Address	3/F FULOK BLDG 131-133 WING LOK ST SHEUNG WAN, Hong Kong
Product Designation:	TWO WAY RADIO
Brand Name:	BAOFENG,POFUNG
Test Model	P51UV
Serial Model	P8UV, P9UV, UV-5R, UV-5REX, UV-5R+PLUS, UV-5RTP, GT-3, GT-3TP, BF-R3, UV-S9, UV-B2PLUS, TR-818UV, UV-5REPLUS, UV-5X, FF-12P, BF-F8GP, BF-F8TD
Difference Description	The same motherboard and specifications, only the shell design differences & models, trademarks are different
Date of Test:	Mar. 05, 2020~Jun. 19, 2020

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 95 requirements. The test results of this report relate only to the tested sample identified in this report.

Prepared By

Calvin Liu
(Project Engineer)


Jun. 19, 2020

Reviewed By

Max Zhang
(Reviewer)

Jun. 19, 2020

Approved By

Forrest Lei
Authorized Officer

Jun. 19, 2020

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	6
1.2 RELATED SUBMITTAL(S) / GRANT (S).....	8
1.3 TEST METHODOLOGY.....	8
1.4 TEST FACILITY	8
1.5 SPECIAL ACCESSORIES.....	8
1.6 EQUIPMENT MODIFICATIONS.....	8
2. SYSTEM TEST CONFIGURATION.....	9
2.1 EUT CONFIGURATION	9
2.2 EUT EXERCISE	9
2.3 CONFIGURATION OF TESTED SYSTEM	10
3. SUMMARY OF TEST RESULTS.....	11
4. DESCRIPTION OF TEST MODES	14
5. FREQUENCY TOLERANCE	15
5.1 PROVISIONS APPLICABLE	15
5.2 MEASUREMENT PROCEDURE	15
5.3 TEST SETUP BLOCK DIAGRAM	16
5.4 TEST RESULT.....	17
6. EMISSION BANDWIDTH	19
6.1 PROVISIONS APPLICABLE	19
6.2 MEASUREMENT PROCEDURE	19
6.3 TEST SETUP BLOCK DIAGRAM	20
6.4 MEASUREMENT RESULT.....	23
7. UNWANTED RADIATION.....	26
7.1 PROVISIONS APPLICABLE	26
7.2 MEASUREMENT PROCEDURE	26
7.3 TEST SETUP BLOCK DIAGRAM	28
7.4 MEASUREMENT RESULTS:	30
7.5 EMISSION MASK PLOT	38
8. AUDIO LOW PASS FILTER RESPONSE	42
8.1. PROVISIONS APPLICABLE	42
8.2. TEST PROCEDURE	42
8.3 TEST CONFIGURATION.....	42
8.4 TEST RESULT	43

9. MAXIMUMN TRANSMITTER POWER	44
9.1 PROVISIONS APPLICABLE	44
9.2 TEST PROCEDURE.....	45
9.3 TEST CONFIGURATION.....	46
9.4 TEST RESULT	48
10. MODULATION CHARACTERISTICS	49
10.1 PROVISIONS APPLICABLE	49
10.2 MEASUREMENT METHOD	49
10.3 MEASUREMENT RESULT	50
APPENDIX I: PHOTOGRAPHS OF SETUP	53

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a **TWO WAY RADIO** designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

Product Designation	TWO WAY RADIO
Test Model	P51UV
Hardware Version	5RTS.V05
Software Version	5RTS.V05
Modulation	FM
Channel Separation	12.5KHz
Emission Type	F3E
Emission Bandwidth	10.54KHz
Maximum Transmitter Power	36.15dBm
Rated Output power	5W/0.5W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)
Antenna Designation	Inseparable
Antenna Type	Integral Antenna
Antenna Gain	1.50dBi
Power Supply	DC 7.40V
Limiting Voltage	DC 6.29V~ 8.51V
Operation Frequency Range and Channel	GMRS: 462.5625MHz -462.7125MHz(5W) 462.5500MHz -462.7250MHz(5W) 467.5500MHz -467.7250MHz(5W) 467.5625MHz-467.7125MHz(0.5W) Test Channel :4, 12, 20 and 27 channel
Frequency Tolerance	1.039ppm

Channel List:

CH. No	CH. Freq	Power	CH. No	CH. Freq	Power
1	462.5625	5W	16	467.5500	5W
2	462.5875		17	467.5750	
3	462.6125		18	467.6000	
4	462.6375		19	467.6250	
5	462.6625		20	467.6500	
6	462.6875		21	467.6750	
7	462.7125		22	467.7000	
8	462.5500	5W	23	467.7250	0.5W
9	462.5750		24	467.5625	
10	462.6000		25	467.5875	
11	462.6250		26	467.6125	
12	462.6500		27	467.6375	
13	462.6750		28	467.6625	
14	462.7000		29	467.6875	
15	462.7250		30	467.7125	

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: **2AJGM-P51UV**, filing to comply with the FCC Part 95 requirements.

1.3 TEST METHODOLOGY.

The radiated emission testing was performed according to the procedures of TIA/EIA 603.

1.4 TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	TWO WAY RADIO	P51UV	FCC ID: 2AJGM-P51UV	EUT
2	Battery	N/A	DC 7.4V 3800mAh	AE
3	Adapter	N/A	Input: AC 100-240V 50/60Hz, 0.25A Output: DC 10V 0.5A	AE
4	Charger	CH-5	Input: DC 10V Output: DC 8.4V 400mA	AE
5	Back cli	N/A	N/A	AE
6	Lanyard	N/A	N/A	AE

Note: The battery is full-charged during the test

3. SUMMARY OF TEST RESULTS

FCC 47 CFR Part 95 Test Cases			
Test Item	Test Requirement	Test Method	Result
Maximum Transmitter Power	FCC CFR Part 95.1767 FCC 47 CFR Part 2.1046(a)	ANSI/TIA-603-E-2016	PASS
Modulation Limit	FCC CFR Part 95.1775 FCC 47 CFR Part 2.1047(a)(b)	ANSI/TIA-603-E-2016	PASS
Audio Frequency Response	FCC CFR Part 95.1775 FCC 47 CFR Part 2.1047(a)	ANSI/TIA-603-E-2016	PASS
Audio Low Pass Filter Response	FCC 47 CFR Part 95.1775(e)	ANSI/TIA-603-E-2016	PASS
Emission Bandwidth	FCC CFR Part 95.1773	ANSI/TIA-603-E-2016	PASS
Emission Mask	FCC CFR Part 95.1779	ANSI/TIA-603-E-2016	PASS
Transmitter Radiated Spurious Emission	FCC CFR Part 95.1779	ANSI/TIA-603-E-2016	PASS
Frequency Stability	FCC CFR Part 95.1765 FCC 47 CFR Part 2.1055 (a)(1)	ANSI/TIA-603-E-2016	PASS

LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
TEST RECEIVER	R&S	ESCI	10096	Jun. 09, 2020	Jun. 08, 2021
EXA Signal Analyzer	Agilent	N9020A	W1312-60196	Oct. 08, 2019	Oct. 07, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.18, 2018	Sep.17, 2020
preamplifier	ChengYi	EMC184045SE	980508	Sep. 23, 2019	Sep. 22, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 17, 2019	May. 16, 2021
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 12, 2019	Jun. 11, 2020
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 09, 2020	Jun. 08, 2021
Double-Ridged Waveguide Horn	ETS	3117	00154520	Oct. 26, 2019	Oct. 25, 2021
SIGNAL GENERATOR	AGILENT	E4421B	MY43351603	Jun. 12, 2019	Jun. 11, 2020
SIGNAL GENERATOR	AGILENT	E4421B	MY43351603	Jun. 09, 2020	Jun. 08, 2021
SIGNAL GENERATOR	R&S	SMT03	A0304261	Jun. 12, 2019	Jun. 11, 2020
SIGNAL GENERATOR	R&S	SMT03	A0304261	Jun. 09, 2020	Jun. 08, 2021
ANTENNA	SCHWARZBECK	VULB9168	VULB9168-494	Jan. 09, 2019	Jan. 08, 2021
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.26, 2018	Sep.25, 2020
Modulation Domain Analyzer	HP	53310A	3121A02467	Oct. 30, 2019	Oct. 29, 2020
Small environmental tester	ESPEC	SH-242	--	Oct. 08, 2019	Oct. 07, 2020
RF Communication Test Set	HP	8920B	--	Jun. 12, 2019	Jun. 11, 2020
RF Communication	HP	8920B	--	Jun. 09, 2020	Jun. 08, 2021

Test Set					
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 13, 2019	Jun. 12, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 11, 2020	Jun. 10, 2021
Attenuator	Schaffner	58-30-33	ML030	Oct. 28, 2019	Oct. 27, 2020
Vector Analyzer	Agilent	E4440A	US40420298	July 02, 2019	July 01, 2020
RF Cable	R&S	1#	--	Each time	N/A
Fliter-UHF	Microwave	N25155M2	498705	May. 13, 2019	May. 12, 2020
Fliter-UHF	Microwave	N25155M2	498705	May. 11, 2020	May. 10, 2021

Note: 8920B can generate audio modulation frequency.

4. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (**TWO WAY RADIO**) has been tested under normal operating condition. (GMRS TX) are chosen for testing at each channel separation.

No.	TEST MODES	CHANNEL SEPARATION
1	GMRS TX	12.5KHz

Note:1. Only the result of the worst case was recorded in the report.

5. FREQUENCY TOLERANCE

5.1 PROVISIONS APPLICABLE

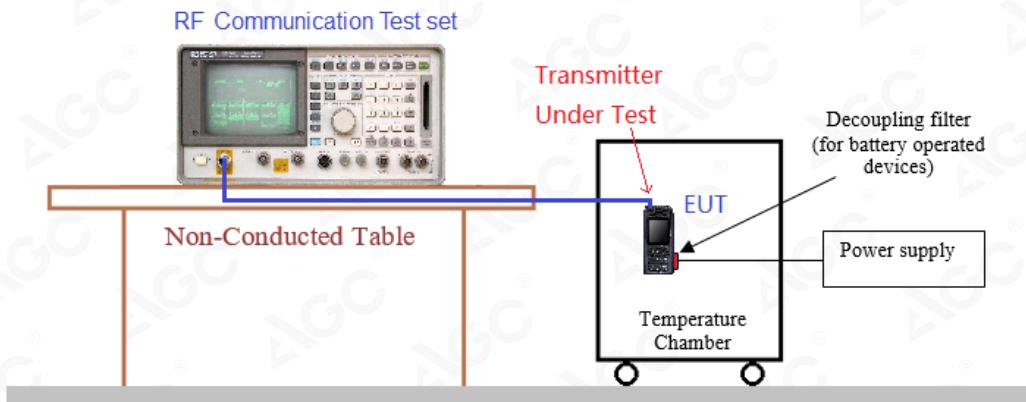
Standard Applicable [Part 95.1765]The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

FCC Part 95.1765,

GMRS: The carrier frequency of each GMRS transmitter transmitting an emission with an occupied bandwidth of 12.5 kHz or less must remain within 2.5 ppm

The carrier frequency of each GMRS transmitter transmitting an emission with an occupied bandwidth greater than 12.5 kHz must remain within 5 ppm

5.2 MEASUREMENT PROCEDURE


5.2.1 Frequency stability versus environmental temperature

1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz. Record this frequency as reference frequency.
3. Set the temperature of chamber to 50 °C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
4. Repeat step 2 with a 10 °C decreased per stage until the lowest temperature -30 °C is measured, record all measured frequencies on each temperature step.

5.2.2 Frequency stability versus input voltage

1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15 °C to 25 °C. Otherwise, an environment chamber set for a temperature of 20 °C shall be used. The EUT shall be powered by DC 7.40V.
2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

5.3 TEST SETUP BLOCK DIAGRAM

5.4 TEST RESULT

(1) Frequency stability versus input voltage (Supply nominal voltage is 7.40V)

Environment Temperature (°C)	Power Supply (V)	Reference Frequency				Limit: ppm
		462.6375MHz	462.6500MHz	467.6500MHz	467.6375MHz	
50	DC 7.40V	0.803	0.653	0.756	0.487	±2.5 for GMRS
40	DC 7.40V	0.533	1.039	0.704	0.432	
30	DC 7.40V	0.783	0.921	0.685	0.553	
20	DC 7.40V	0.995	1.018	1.035	0.613	
10	DC 7.40V	0.719	0.569	0.957	0.461	
0	DC 7.40V	0.705	0.632	0.673	0.468	
-10	DC 7.40V	0.918	0.795	0.714	0.816	
-20	DC 7.40V	0.649	0.977	0.597	0.960	
-30	DC 7.40V	0.862	0.623	0.752	0.784	
Result		Pass				

(2) Frequency stability versus input voltage (Battery limiting voltage is 6.29V)

Environment Temperature (°C)	Power Supply (V)	Reference Frequency				Limit: ppm
		462.6375MHz	462.6500MHz	467.6500MHz	467.6375MHz	
50	DC 6.29V	0.455	0.653	0.736	0.533	±2.5 for GMRS
40	DC 6.29V	0.683	0.695	0.938	0.863	
30	DC 6.29V	1.012	1.022	0.826	0.452	
20	DC 6.29V	0.777	1.019	1.012	0.706	
10	DC 6.29V	0.794	0.951	0.636	0.826	
0	DC 6.29V	0.898	0.806	0.762	0.811	
-10	DC 6.29V	0.859	0.664	0.821	0.343	
-20	DC 6.29V	1.025	0.852	0.807	0.504	
-30	DC 6.29V	1.008	0.655	0.918	0.538	
Result		Pass				

(3) Frequency stability versus input voltage (Battery Fully Charged voltage is 8.51V)

Environment Temperature (°C)	Power Supply	Reference Frequency				Limit: ppm
		(V)	462.6375MHz	462.6500MHz	467.6500MHz	
50	DC 8.51V	0.849	0.653	0.541	0.744	±2.5 for GMRS
40	DC 8.51V	1.010	0.692	0.726	0.954	
30	DC 8.51V	0.574	1.006	1.013	0.812	
20	DC 8.51V	0.567	0.870	0.923	0.958	
10	DC 8.51V	0.525	0.743	0.710	0.572	
0	DC 8.51V	0.520	1.014	0.951	0.325	
-10	DC 8.51V	0.835	0.604	0.860	0.458	
-20	DC 8.51V	0.537	0.529	0.725	0.704	
-30	DC 8.51V	0.861	0.840	1.020	0.980	
Result		Pass				

Note: 1. Battery terminal voltage is declared and specified by the manufacturer.

2. All test values are in "ppm"

6. EMISSION BANDWIDTH

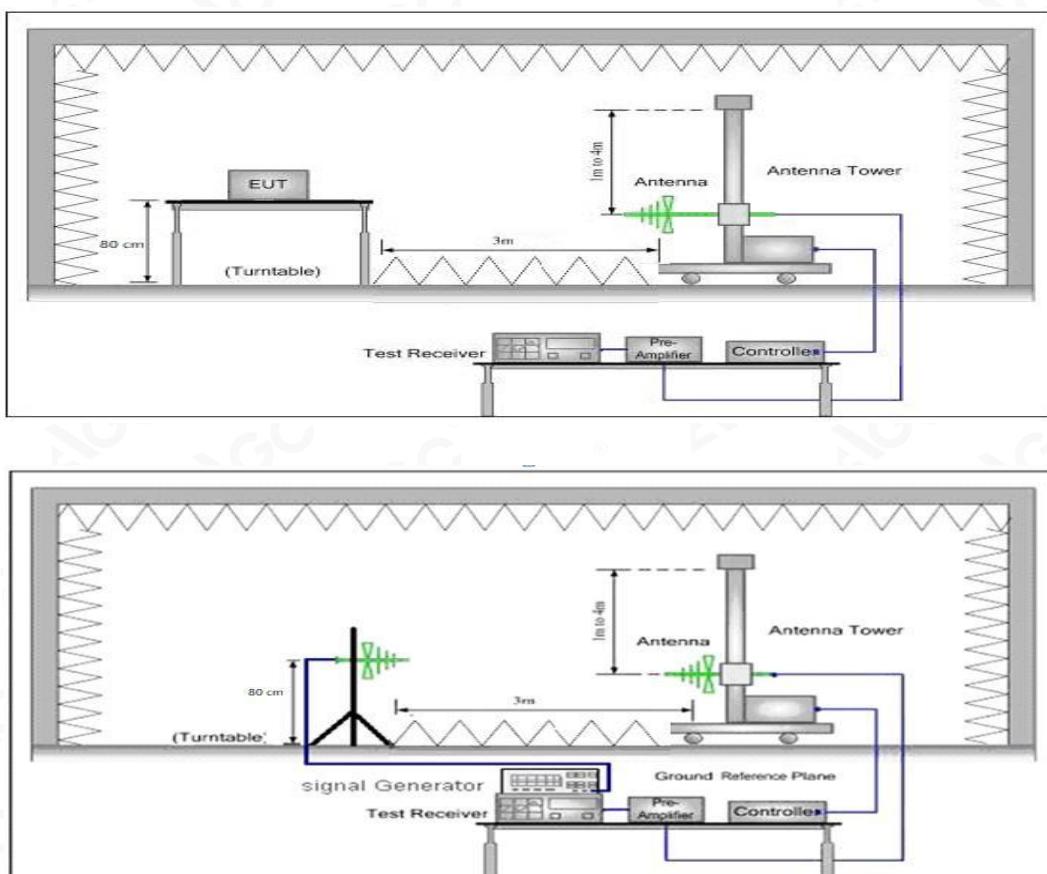
6.1 PROVISIONS APPLICABLE

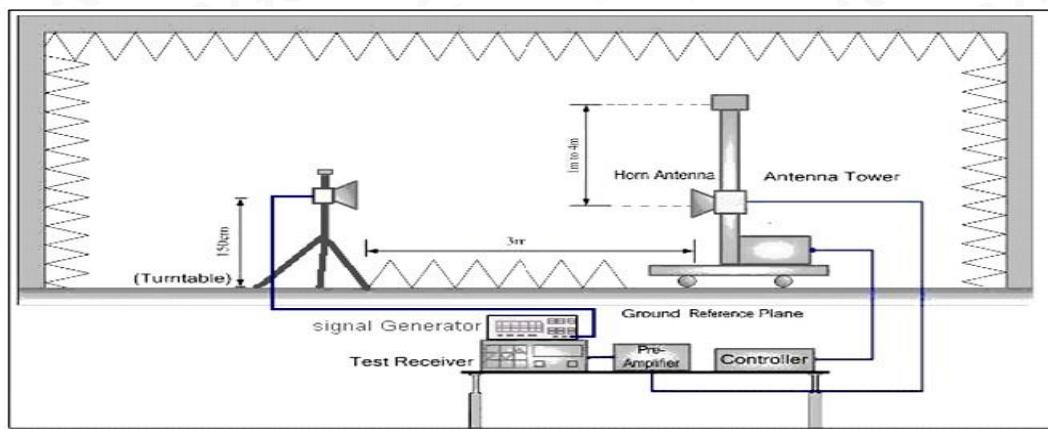
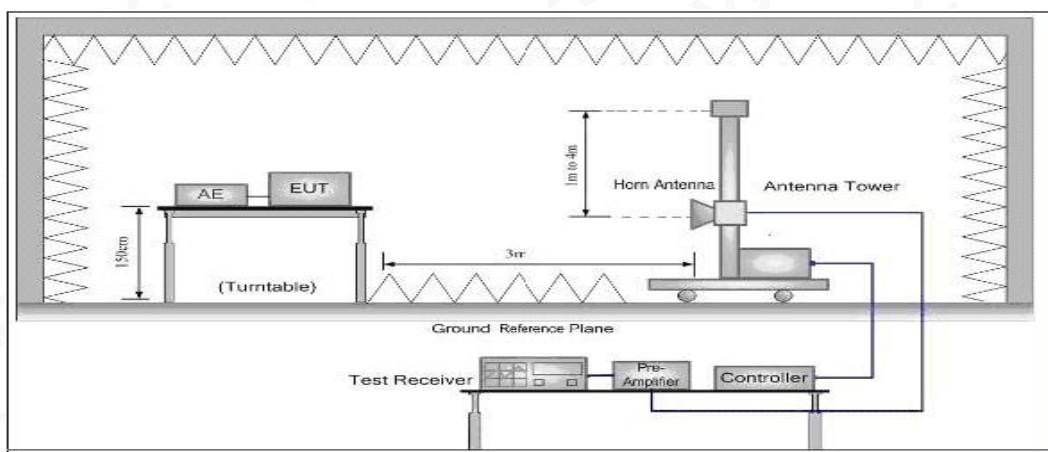
FCC Part 95.1773: GMRS:

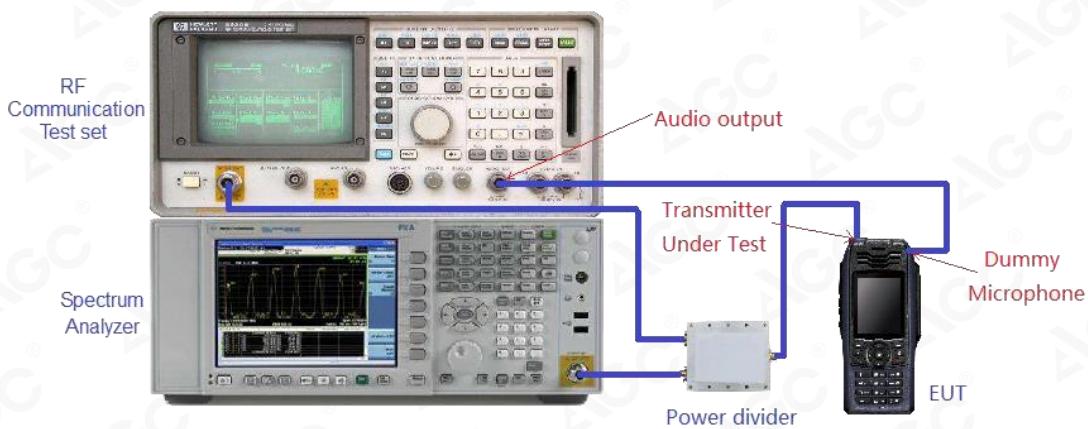
- (a) Main channels. The authorized bandwidth is 20 kHz for GMRS transmitters operating on any of the 462 MHz main channels, or any of the 467 MHz main channels.
- (b) Interstitial channels. The authorized bandwidth is 20 kHz for GMRS transmitters operating on any of the 462 MHz interstitial channels, and is 12.5 kHz for GMRS transmitters operating on any of the 467 MHz interstitial channels.

Occupied Bandwidth: The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.

6.2 MEASUREMENT PROCEDURE

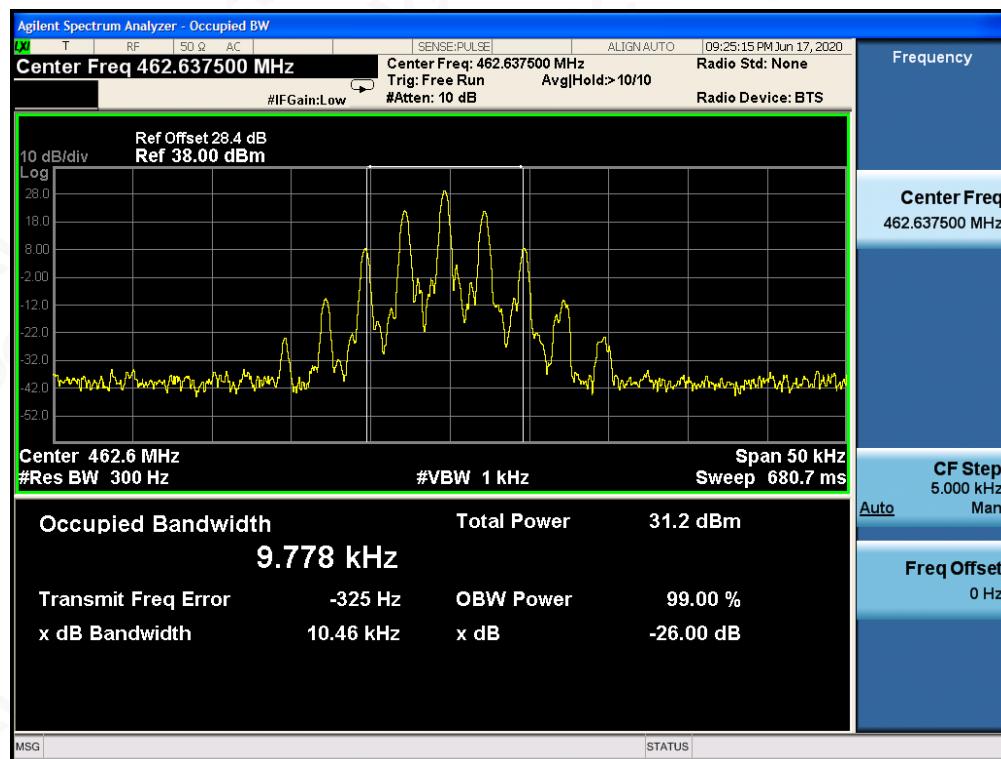

- 1). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).
- 2). Set SPA Center Frequency = fundamental frequency, RBW=300Hz.VBW= 1KHz, Span =50 KHz.
- 3). Set SPA Max hold. Mark peak, -26 dB.

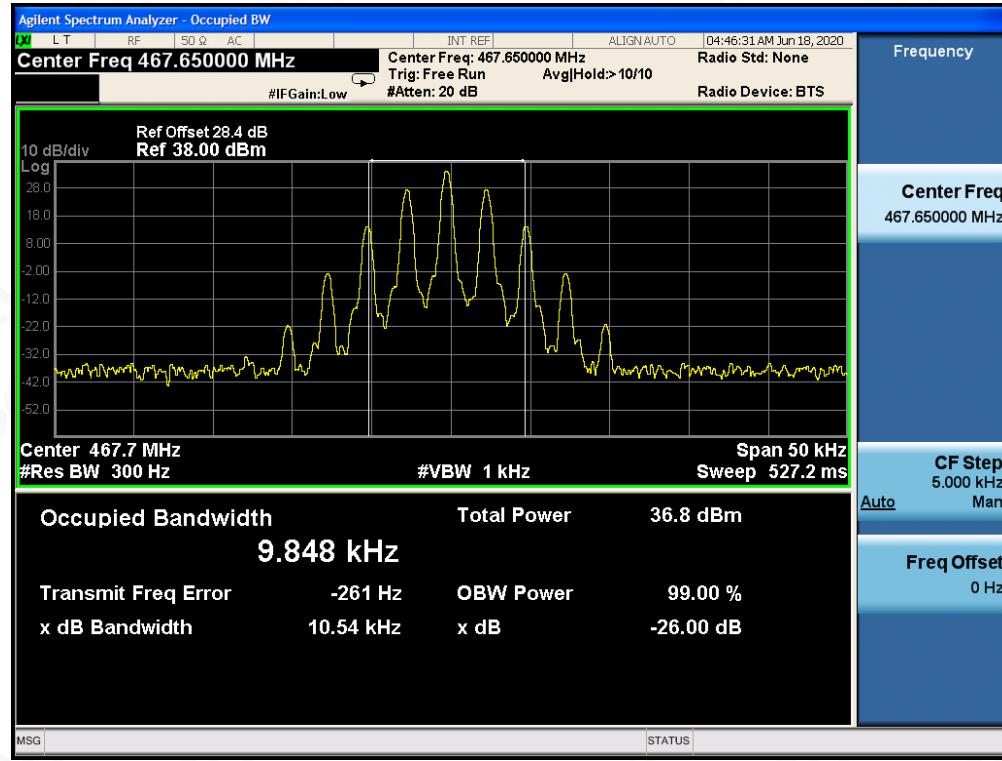

6.3 TEST SETUP BLOCK DIAGRAM

Radiation method:

Radiated Below1GHz

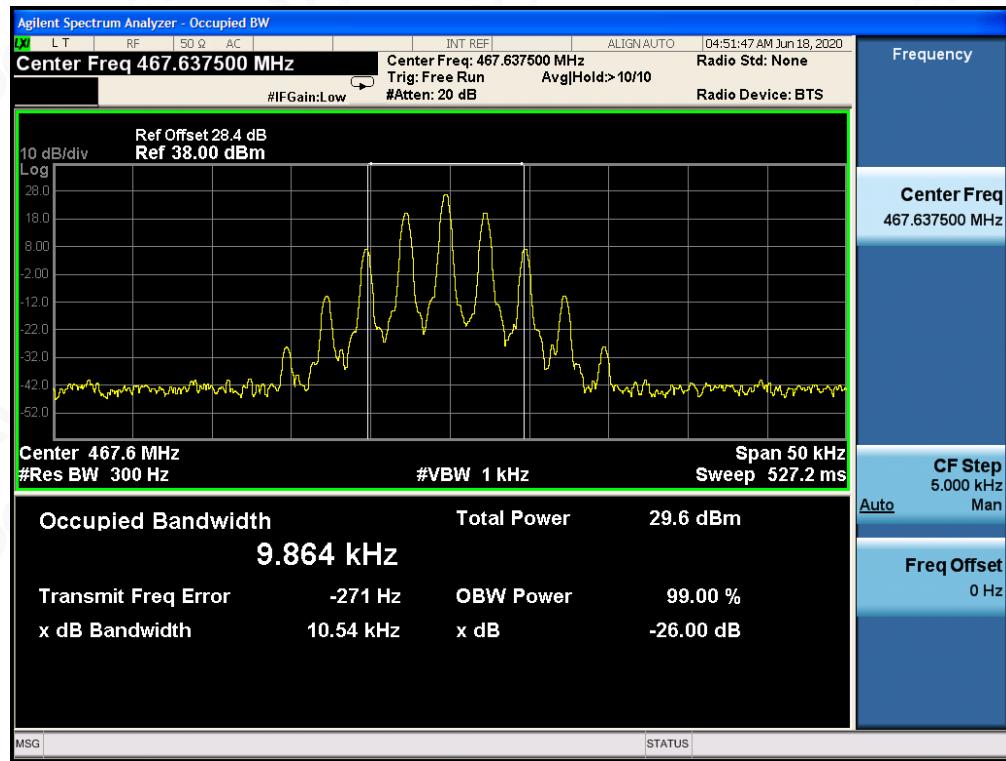

Radiated Above 1 GHz

Conduction method:


6.4 MEASUREMENT RESULT

26dB &99% Bandwidth Measurement Result				
Operating Frequency	12.5 KHz Channel Separation			
	26dB Bandwidth	99% Bandwidth	Limits	Result
462.6375MHz	10.46 KHz	9.778 KHz	20 KHz	Pass
462.6500MHz	10.54 KHz	9.841 KHz	20 KHz	Pass
467.6500MHz	10.54 KHz	9.848 KHz	20 KHz	Pass

Occupied bandwidth of 462.6375MHz



Occupied bandwidth of 462.6500MHz

Occupied bandwidth of 467.6500MHz

26dB &99% Bandwidth Measurement Result-0.5W				
Operating Frequency	12.5 KHz Channel Separation			
	26dB Bandwidth	99% Bandwidth	Limits	Result
467.6375 MHz	10.54 KHz	9.864 KHz	12.5 KHz	Pass

Occupied bandwidth of 467.6375MHz

7. UNWANTED RADIATION

7.1 PROVISIONS APPLICABLE

Standard Applicable [FCC Part 95.1779]

According to FCC section 95.1779, the unwanted emission should be attenuated below TP by at least $43 + 10 \log(\text{Transmit Power})$ dB.

7.2 MEASUREMENT PROCEDURE

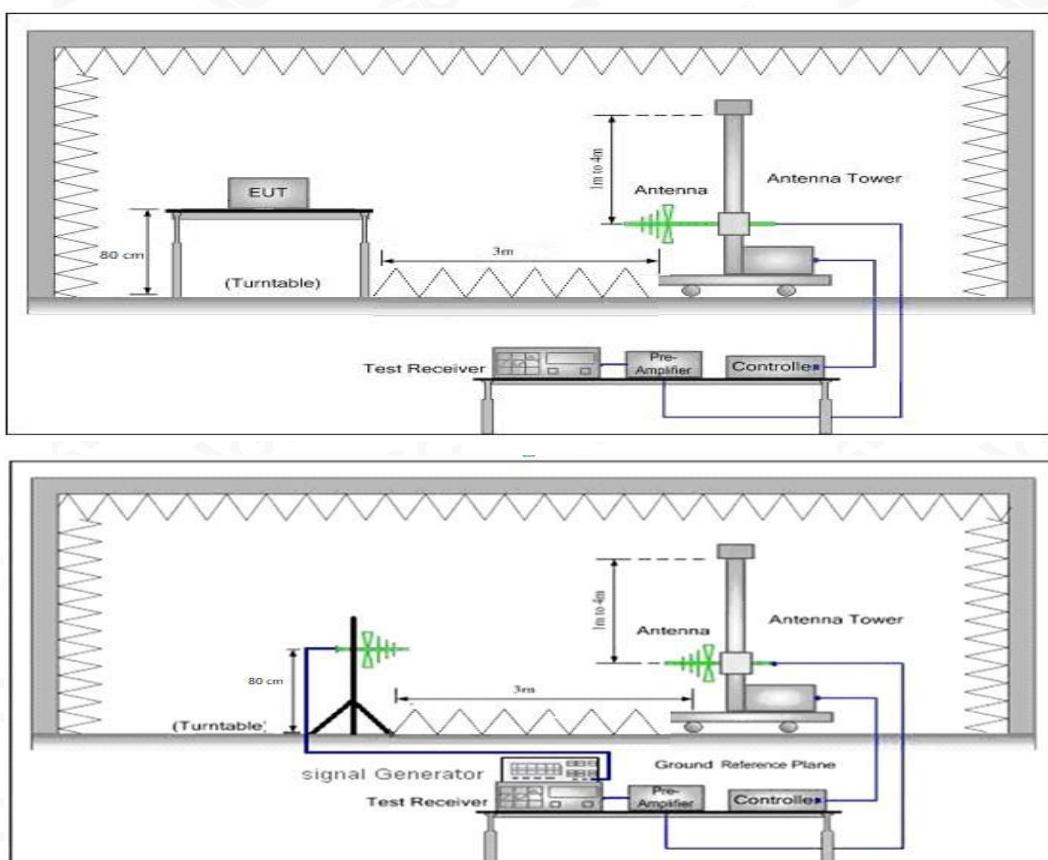
Each GMRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.

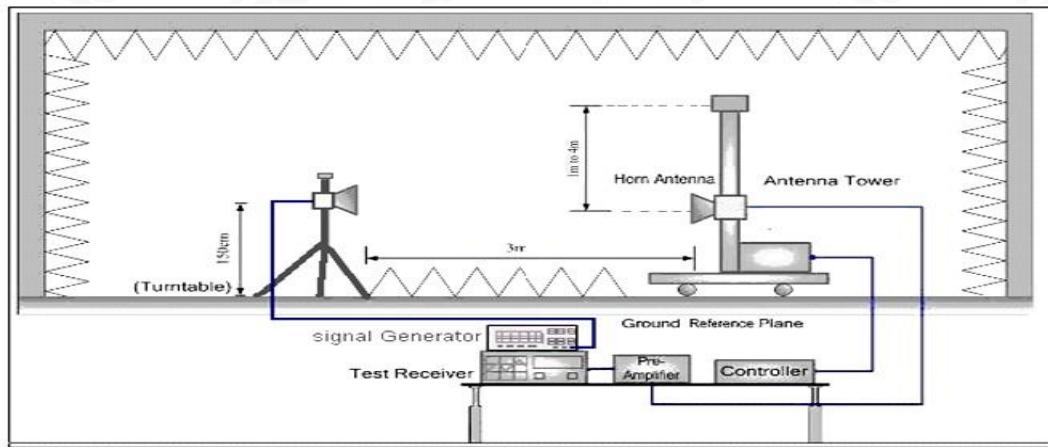
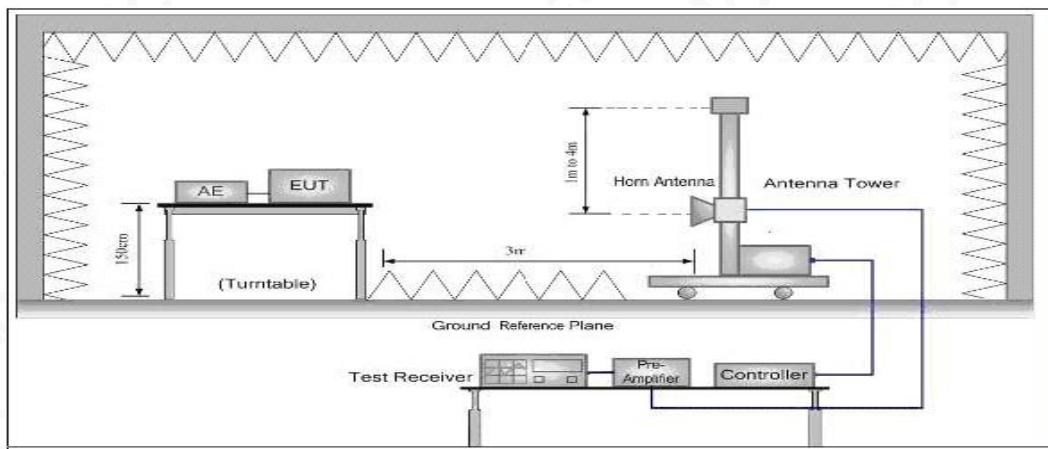
(a) Emission masks. Emission masks applicable to transmitting equipment in the GMRS are defined by the requirements in the following table. The numbers in the attenuation requirements column refer to rule paragraph numbers under paragraph (b) of this section.

Emission types filter	Attenuation requirements
A1D, A3E, F1D, G1D, F2D, F3E, G3E with audio filter	(1), (2), (7)
A1D, A3E, F1D, G1D, F3E, G3E without audio filter	(3), (4), (7)
H1D, J1D, R1D, H3E, J3E, R2E	(5), (6), (7)

(1) Filtering noted for GMRS transmitters refers to the requirement in §95.1775(e).

(2) Unwanted emission power may be measured as either mean power or peak envelope power, provided that the transmitter output power is measured the same way.

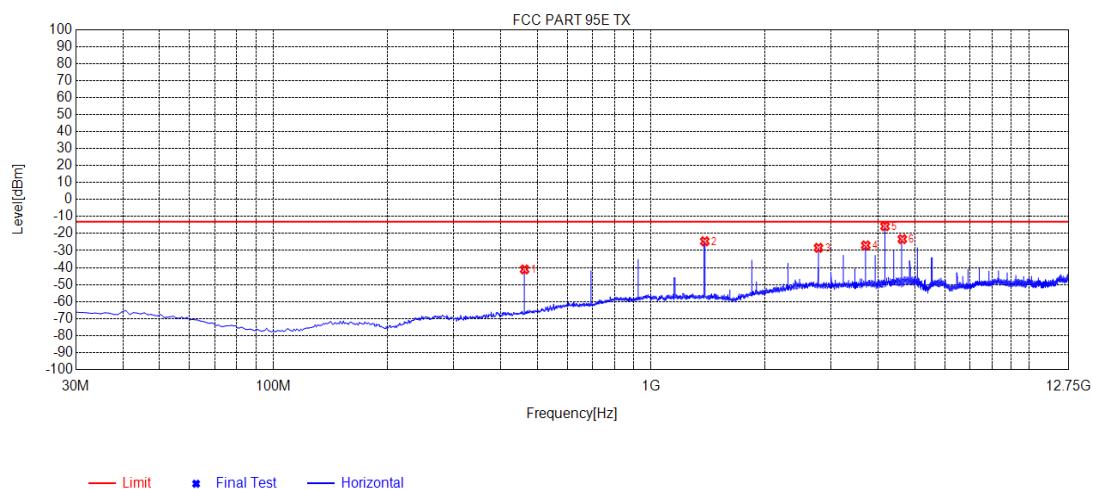

(b) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) by at least:



- (1) 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- (2) 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- (3) $83 \log(fd \div 5)$ dB on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz up to and including 10 kHz.
- (4) $116 \log(fd \div 6.1)$ dB or $50 + 10 \log(P)$ dB, whichever is the lesser attenuation, on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz), of more than 10 kHz up to and including 250% of the authorized bandwidth.
- (5) 25 dB on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 150% of the authorized bandwidth.
- (6) 35 dB on any frequency removed from the center of the authorized bandwidth by more than 150% up to and including 250% of the authorized bandwidth.
- (7) $43 + 10 \log(P)$ dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

- (1) EUT was placed on a 0.8 or 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- (2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- (3) The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- (4) The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- (5) A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- (6) The measurement results are obtained as described below: $\text{Power(EIRP)} = \text{PMea} - \text{PAg} - \text{Pcl} - \text{Ga}$ The measurement results are amend as described below:
 $\text{Power(EIRP)} = \text{PMea} - \text{Pcl} - \text{Ga}$
- (7) This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15\text{dBi}$.
- (8) Test the EUT in the lowest channel, the middle channel the Highest channel

7.3 TEST SETUP BLOCK DIAGRAM**SUBSTITUTION METHOD: (Radiated Emissions)****Radiated Below 1GHz**

Radiated Above 1 GHz

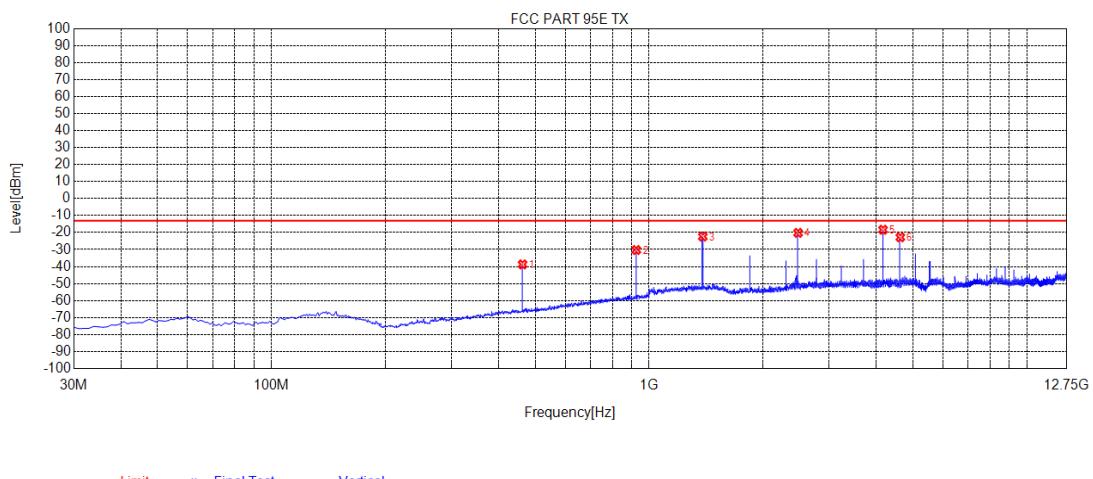

7.4 MEASUREMENT RESULTS:

the unwanted emission should be attenuated below TP by at least $43+10 \log(\text{Transmit Power})$ dB

Limit: At least $43+10 \log (P) = 43+10\log (5) = 49.99$ (dBc) $36.99-49.99 = -13$ dBm

At least $43+10 \log (P) = 43+10\log (0.5) = 39.99$ (dBc) $26.99-39.99 = -13$ dBm

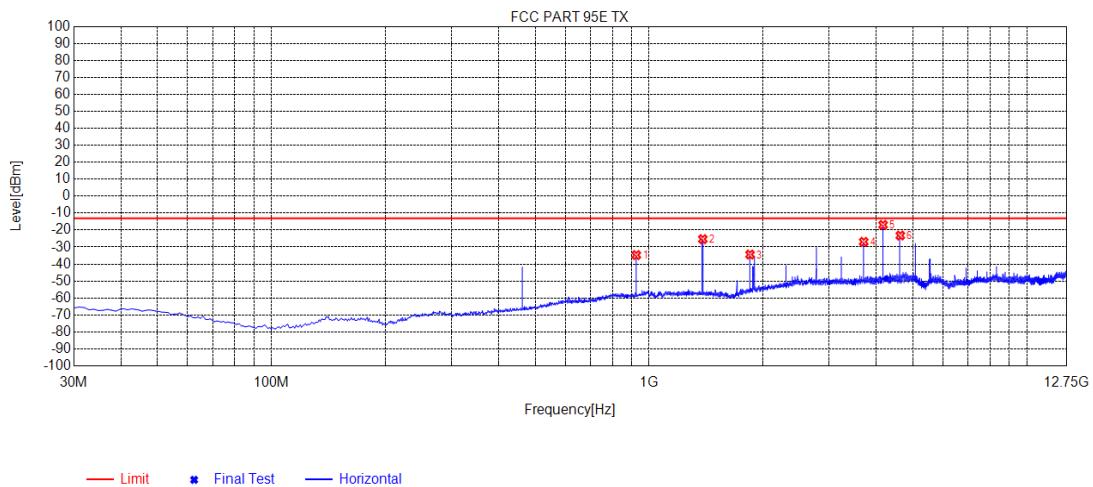
Measurement Result for 12.5 KHz Channel Separation @ 462.6375MHz-5W-Horizontal



NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	462.6200	-76.75	-41.13	-13.00	28.13	35.62	351	Horizontal
2	1387.7888	-21.10	-24.55	-13.00	11.55	-3.45	88	Horizontal
3	2775.6026	-33.30	-28.39	-13.00	15.39	4.91	351	Horizontal
4	3701.5952	-33.79	-26.98	-13.00	13.98	6.81	0	Horizontal
5	4163.4163	-24.05	-15.73	-13.00	2.73	8.32	23	Horizontal
6	4626.4126	-32.82	-23.27	-13.00	10.27	9.55	50	Horizontal

Note:

1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
3. Margin=Limit- Level


Measurement Result for 12.5 KHz Channel Separation @ 462.6375MHz-5W-Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	462.6200	-74.62	-38.75	-13.00	25.75	35.87	360	Vertical
2	925.3100	-73.84	-30.27	-13.00	17.27	43.57	9	Vertical
3	1387.7888	-23.77	-22.36	-13.00	9.36	1.41	26	Vertical
4	2480.6481	-23.62	-20.17	-13.00	7.17	3.45	54	Vertical
5	4163.4163	-25.90	-18.36	-13.00	5.36	7.54	1	Vertical
6	4626.4126	-31.05	-22.78	-13.00	9.78	8.27	9	Vertical

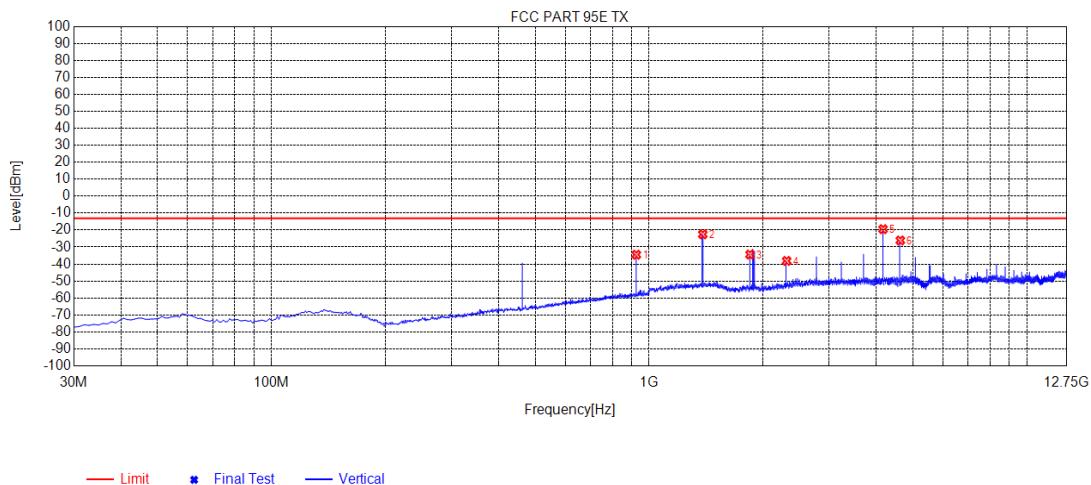
Note:

1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
3. Margin=Limit- Level

Measurement Result for 12.5 KHz Channel Separation @ 462.6500MHz-5W-Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	925.3100	-78.20	-34.71	-13.00	21.71	43.49	210	Horizontal
2	1387.7888	-21.87	-25.32	-13.00	12.32	-3.45	60	Horizontal
3	1850.7851	-33.81	-34.40	-13.00	21.40	-0.59	21	Horizontal
4	3701.5952	-33.73	-26.92	-13.00	13.92	6.81	12	Horizontal
5	4164.5915	-25.25	-16.93	-13.00	3.93	8.32	12	Horizontal
6	4626.4126	-32.75	-23.20	-13.00	10.20	9.55	295	Horizontal

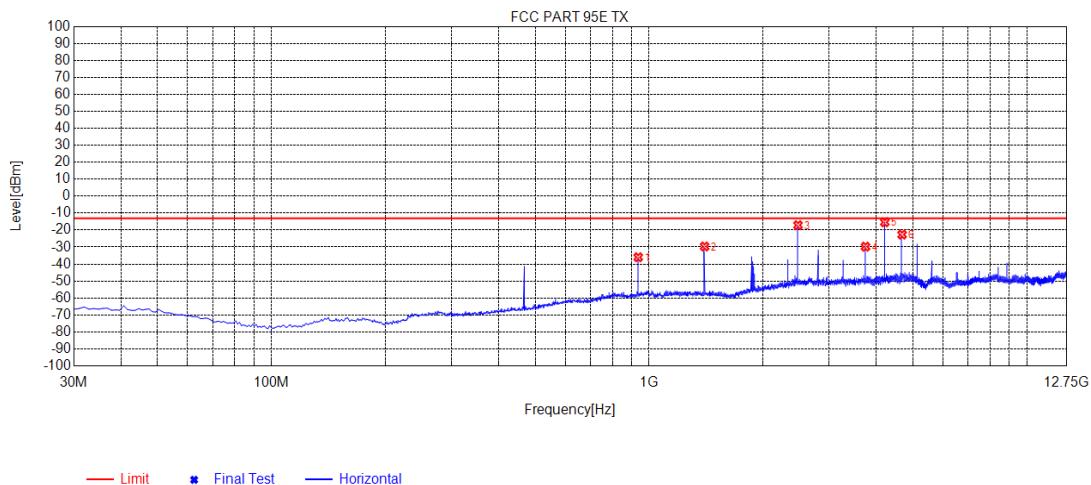
Note:


1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
3. Margin=Limit- Level

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

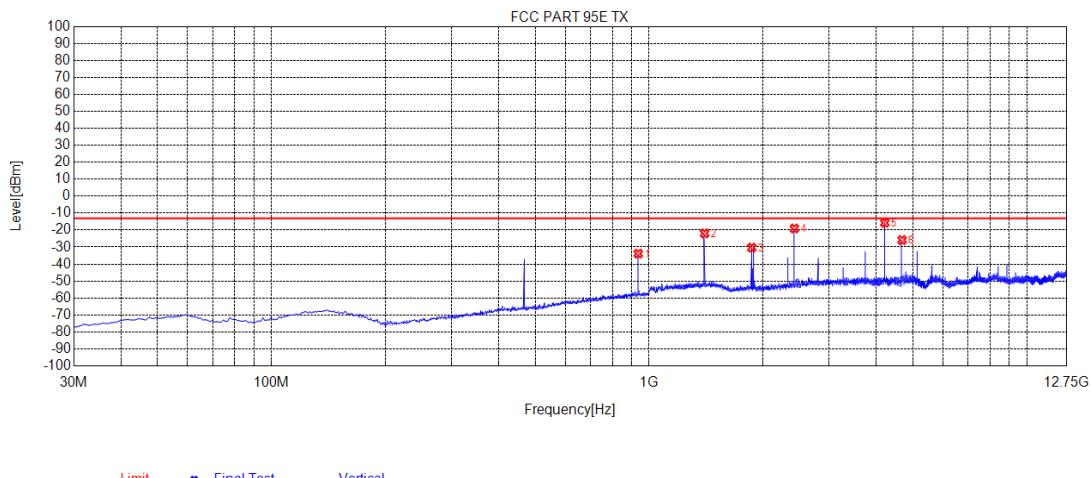
Measurement Result for 12.5 KHz Channel Separation @ 462.6500MHz-5W-Vertical


NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	925.3100	-78.05	-34.48	-13.00	21.48	43.57	28	Vertical
2	1387.7888	-23.91	-22.50	-13.00	9.50	1.41	47	Vertical
3	1850.7851	-35.32	-34.39	-13.00	21.39	0.93	9	Vertical
4	2313.7814	-40.55	-38.16	-13.00	25.16	2.39	103	Vertical
5	4164.5915	-27.00	-19.46	-13.00	6.46	7.54	9	Vertical
6	4626.4126	-34.37	-26.10	-13.00	13.10	8.27	1	Vertical

Note:

1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
3. Margin=Limit- Level

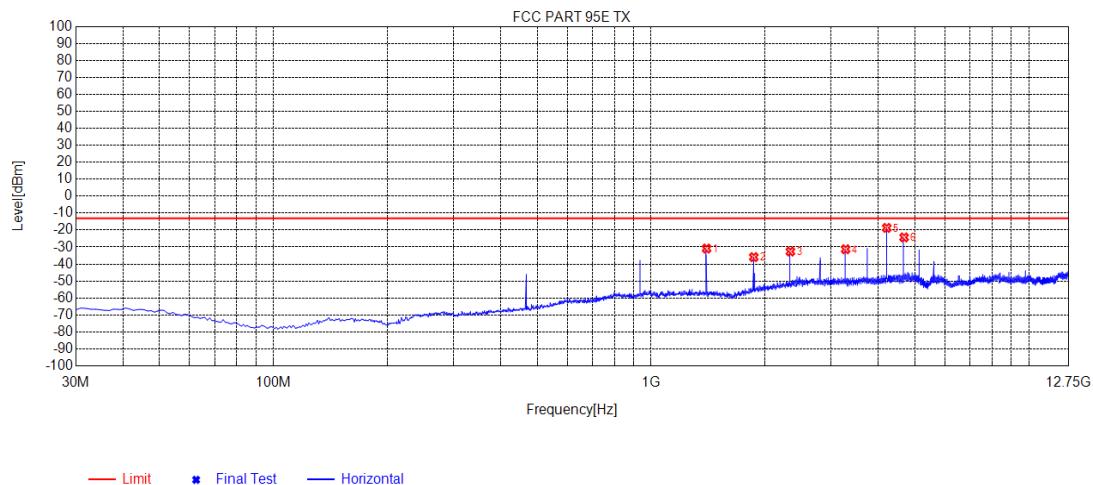
Measurement Result for 12.5 KHz Channel Separation @ 467.6500MHz-5W-Horizontal



NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	935.9800	-79.71	-35.99	-13.00	22.99	43.72	218	Horizontal
2	1403.0653	-26.25	-29.66	-13.00	16.66	-3.41	41	Horizontal
3	2479.4729	-21.38	-17.10	-13.00	4.10	4.28	275	Horizontal
4	3741.5492	-36.71	-29.77	-13.00	16.77	6.94	294	Horizontal
5	4209.2459	-23.85	-15.38	-13.00	2.38	8.47	13	Horizontal
6	4676.9427	-32.24	-22.67	-13.00	9.67	9.57	294	Horizontal

Note:

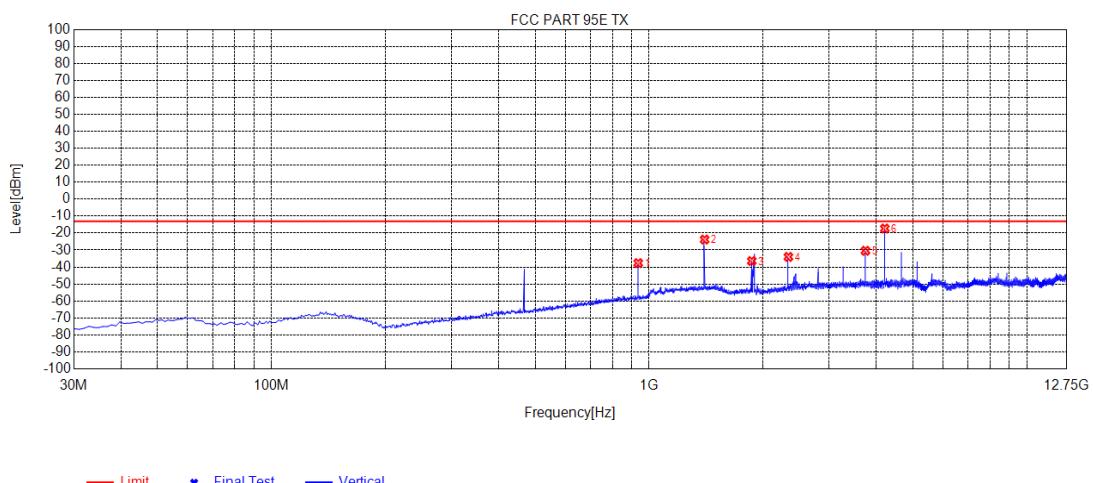
1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
3. Margin=Limit- Level


Measurement Result for 12.5 KHz Channel Separation @ 467.6500MHz-5W -Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	935.9800	-77.56	-33.88	-13.00	20.88	43.68	46	Vertical
2	1403.0653	-23.49	-21.97	-13.00	8.97	1.52	27	Vertical
3	1870.7621	-31.18	-30.32	-13.00	17.32	0.86	178	Vertical
4	2425.4175	-22.14	-19.04	-13.00	6.04	3.10	83	Vertical
5	4209.2459	-23.31	-15.70	-13.00	2.70	7.61	1	Vertical
6	4676.9427	-34.23	-25.87	-13.00	12.87	8.36	1	Vertical

Note:

1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
3. Margin=Limit- Level


Measurement Result for 12.5 KHz Channel Separation @ 467.6375MHz-0.5W-Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1403.0653	-27.47	-30.88	-13.00	17.88	-3.41	96	Horizontal
2	1870.7621	-35.48	-35.92	-13.00	22.92	-0.44	31	Horizontal
3	2338.4588	-35.81	-32.63	-13.00	19.63	3.18	359	Horizontal
4	3273.8524	-37.07	-31.29	-13.00	18.29	5.78	315	Horizontal
5	4208.0708	-27.19	-18.72	-13.00	5.72	8.47	359	Horizontal
6	4676.9427	-33.87	-24.30	-13.00	11.30	9.57	306	Horizontal

Note:

4. Factor=Antenna Factor + Cable loss. (Below 1GHz)
5. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
6. Margin=Limit- Level

Measurement Result for 12.5 KHz Channel Separation @ 467.6375MHz-0.5W -Vertical

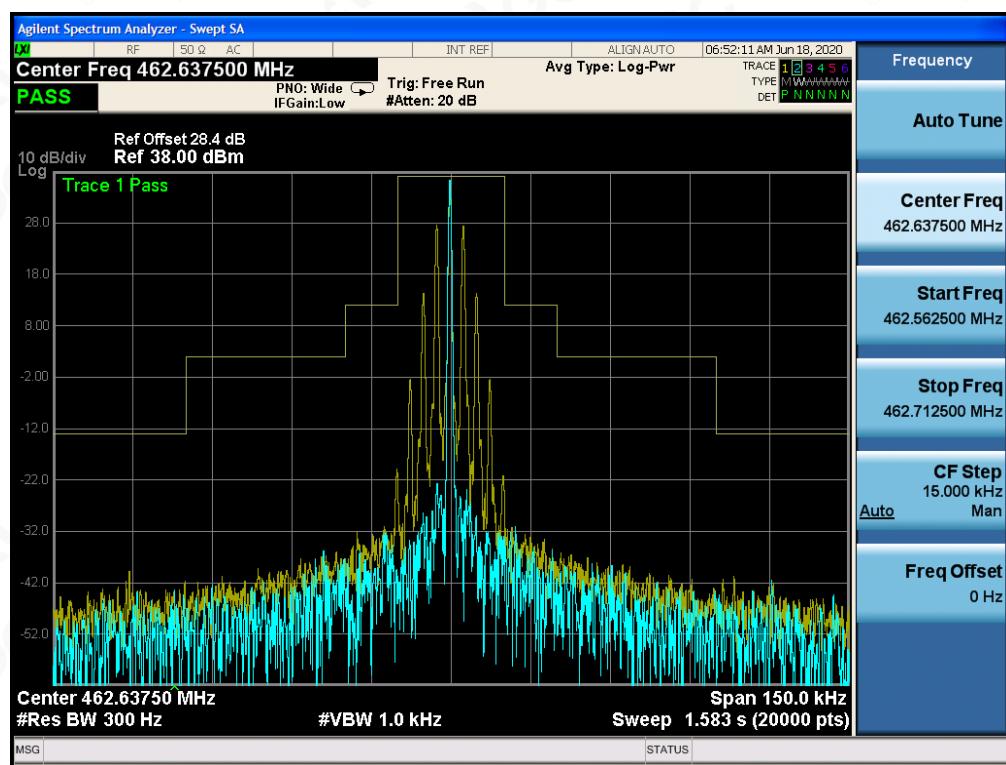
NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	935.9800	-81.35	-37.67	-13.00	24.67	43.68	9	Vertical
2	1403.0653	-25.34	-23.82	-13.00	10.82	1.52	346	Vertical
3	1870.7621	-37.32	-36.46	-13.00	23.46	0.86	1	Vertical
4	2338.4588	-36.57	-34.02	-13.00	21.02	2.55	354	Vertical
5	3741.5492	-37.07	-30.42	-13.00	17.42	6.65	1	Vertical
6	4209.2459	-24.92	-17.31	-13.00	4.31	7.61	1	Vertical

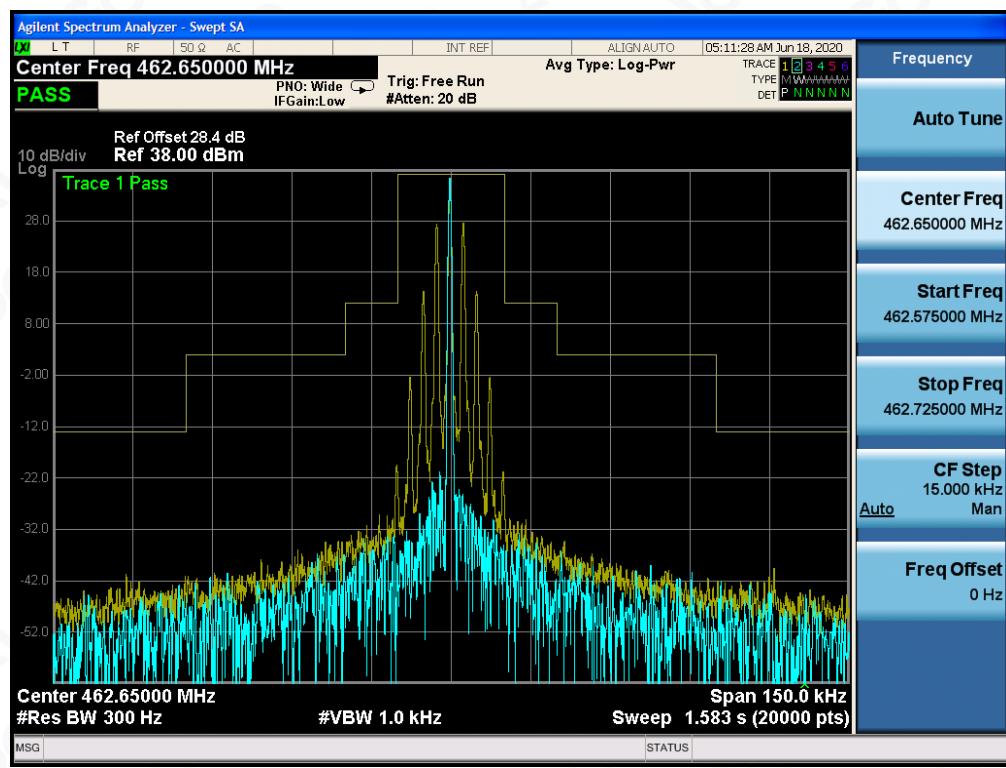
Note:

4. Factor=Antenna Factor + Cable loss. (Below 1GHz)
5. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
6. Margin=Limit- Level

7.5 EMISSION MASK PLOT

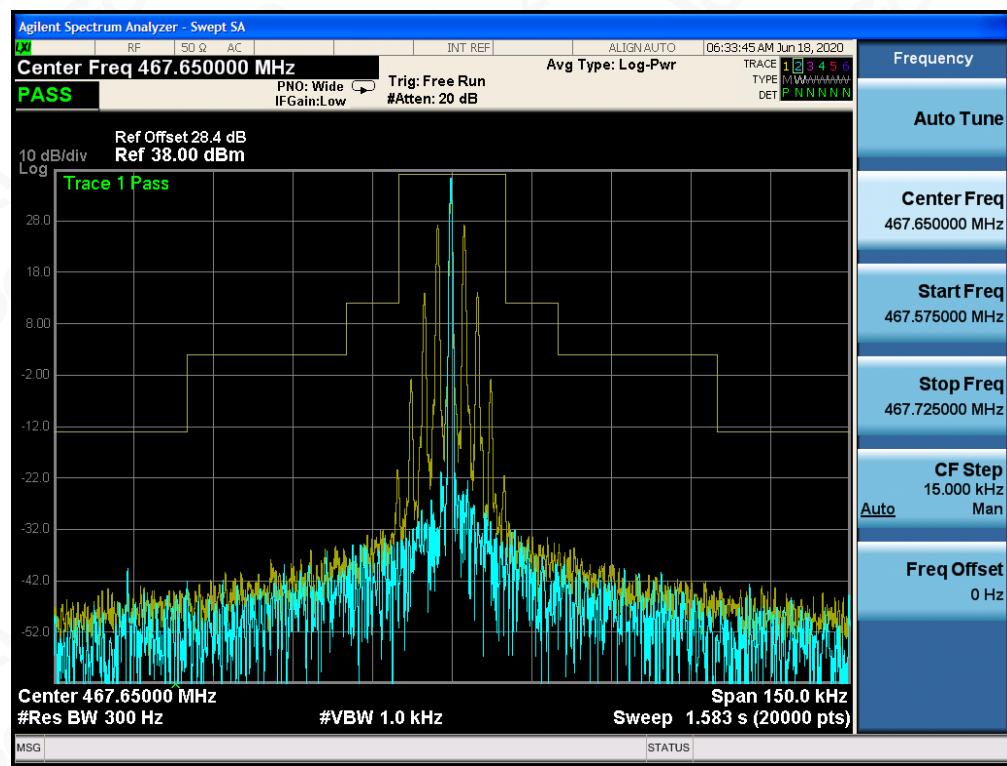
Standard Applicable [FCC Part 95.1779] GMRS: Unwanted emissions shall be attenuated below the unmodulated carrier power in accordance with the following:

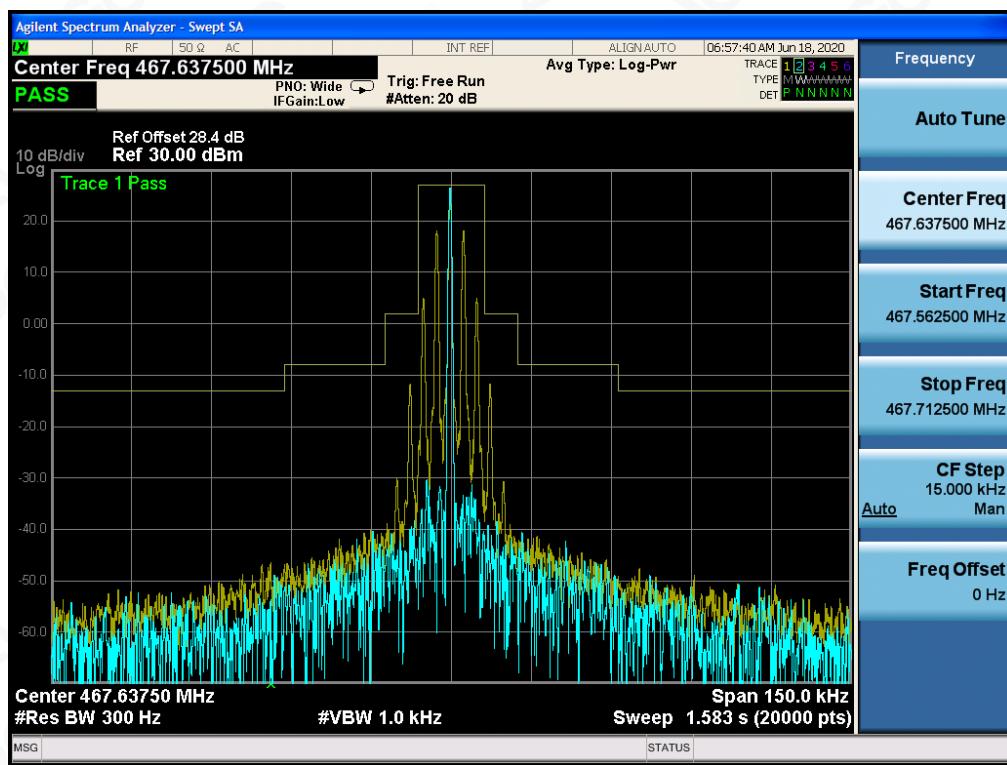

- (1) At least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50 % up to and including 100% of the authorized bandwidth.
- (2) At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100 % up to and including 250 % of the authorized bandwidth.
- (3) At least $43 + 10 \log_{10} (T)$ dB on any frequency removed from the center of the authorized bandwidth by more than 250 %.


The detailed procedure employed for Emission Mask measurements are specified as following:

- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz.

CHANNEL 4:


The Worst Emission Mask for channel 4 -5W-12.5K



CHANNEL 12:
The Worst Emission Mask for channel 12-5W-12.5K

CHANNEL 20:

The Worst Emission Mask for channel 20-5W-12.5K

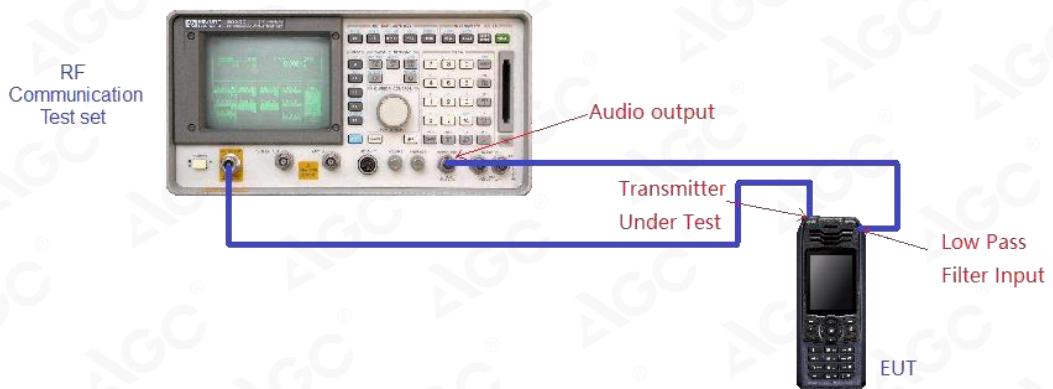
CHANNEL 27:
The Worst Emission Mask for channel 27-0.5W-12.5K

8. AUDIO LOW PASS FILTER RESPONSE

8.1. PROVISIONS APPLICABLE

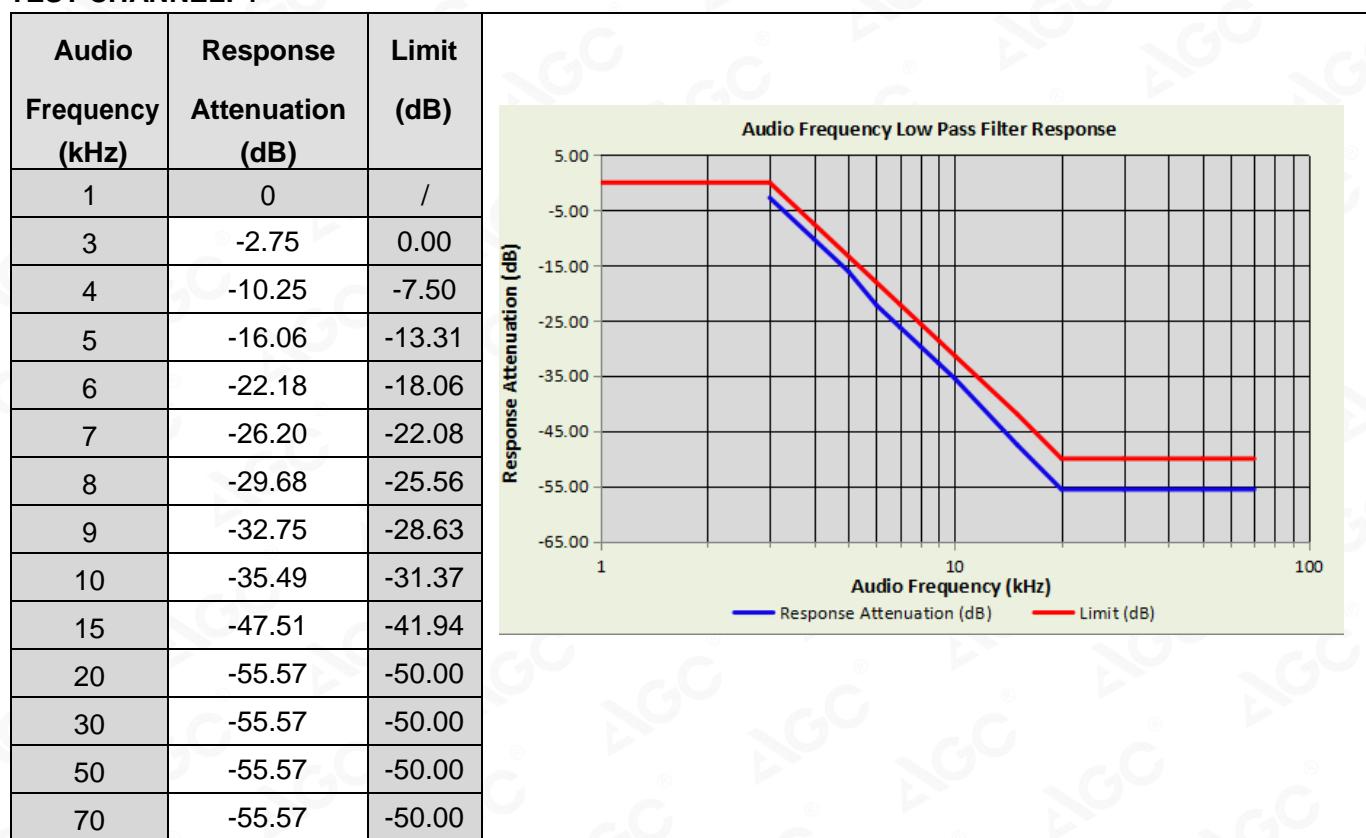
§95.1775 GMRS modulation requirements

Audio filter. Each GMRS transmitter type must include audio frequency low pass filtering, unless it complies with the applicable paragraphs of §95.1779 (without filtering).


The filter must be between the modulation limiter and the modulated stage of the transmitter.

At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least $60 \log(f/3)$ dB more than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB more than the attenuation at 1 kHz

8.2. TEST PROCEDURE


- (1) The DUT transmitter output port was connected to Modulation Analyzer.
- (2) Path loss for the measurement included.
- (3) Press 23.1SPCL on modulation analyzer to enable the external LO from Sigen.
- (4) Set the Sigen frequency to $F_c + 1.5\text{MHz}$, RF output level to 0dBm without modulation.
- (5) Transmit the radio and set the audio analyzer to 1 kHz audio frequency and 60% of the maximum deviation.
- (6) Up the amplitude by 20dB.
- (7) On DSA, get the reference point to 0dB.
- (8) Vary the frequency on audio analyzer from 3 kHz to 30 kHz, record the audio tone from DSA.

8.3 TEST CONFIGURATION

8.4 TEST RESULT

TEST CHANNEL: 4

Note: All the modes had been tested, but only the worst data recorded in the report.

9. MAXIMUMN TRANSMITTER POWER

9.1 PROVISIONS APPLICABLE

FCC Part 95.1767 For GMRS, the maximum permissible transmitter output power effective radiated power (e.r.p.) as follows.

This section contains transmitting power limits for GMRS stations. The maximum transmitting power depends on which channels are being used and the type of station.

(a)462/467 MHz main channels. The limits in this paragraph apply to stations transmitting on any of the 462 MHz main channels or any of the 467 MHz main channels. Each GMRS transmitter type must be capable of operating within the allowable power range. GMRS licensees are responsible for ensuring that their GMRS stations operate in compliance with these limits.

(1)The transmitter output power of mobile, repeater and base stations must not exceed 50 Watts.

(2)The transmitter output power of fixed stations must not exceed 15 Watts.

(b)462 MHz interstitial channels. The effective radiated power (ERP) of mobile, hand-held portable and base stations transmitting on the 462 MHz interstitial channels must not exceed 5 Watts.

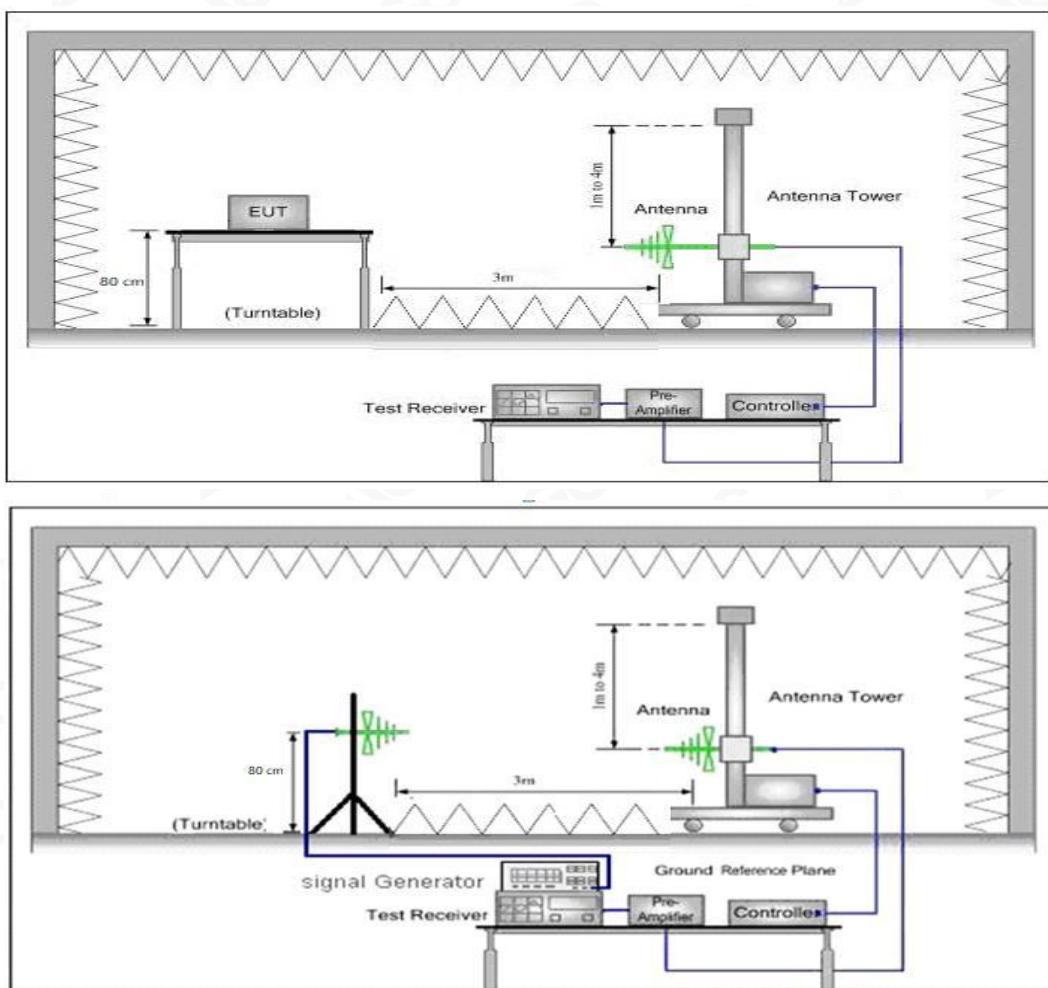
(c)467 MHz interstitial channels. The effective radiated power (ERP) of hand-held portable units transmitting on the 467 MHz interstitial channels must not exceed 0.5 Watt. Each GMRS transmitter type capable of transmitting on these channels must be designed such that the ERP does not exceed 0.5 Watt.

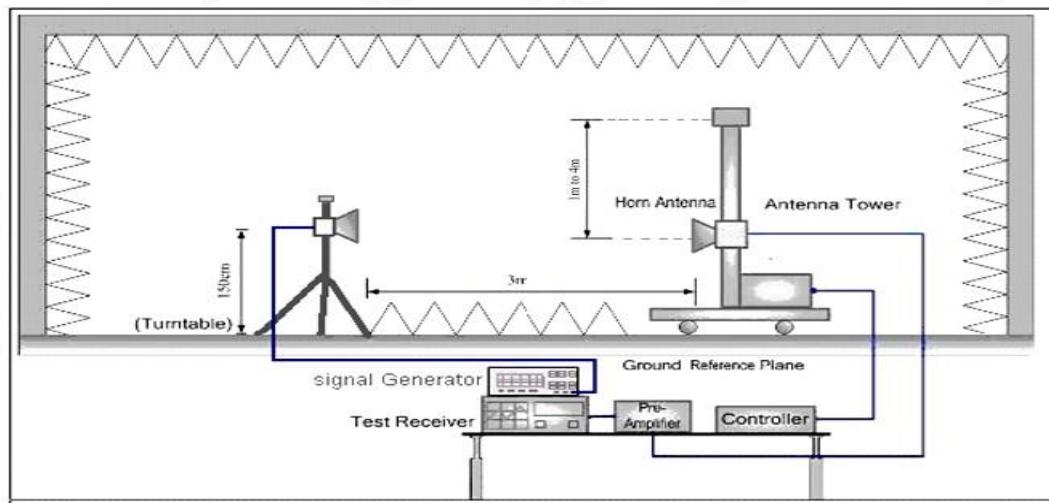
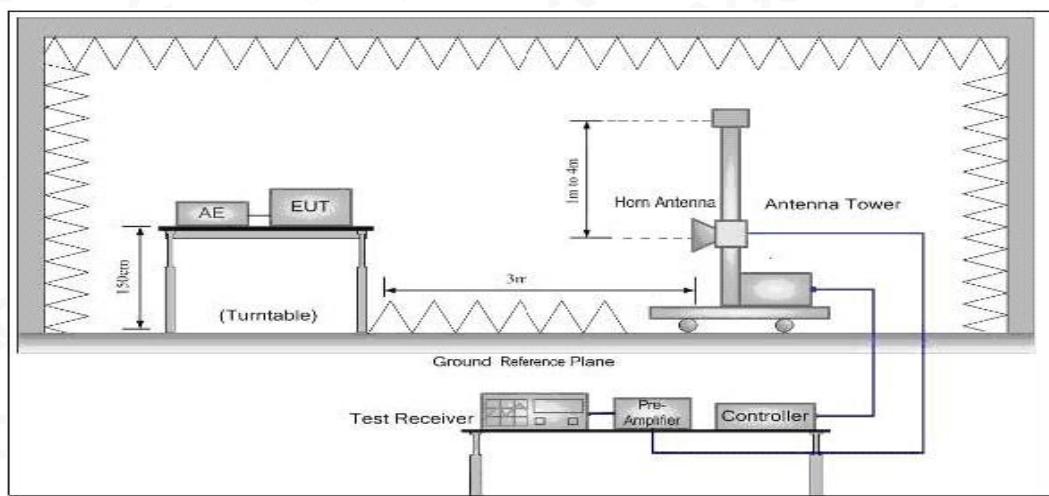
9.2 TEST PROCEDURE

- (1)EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector
- (2)A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver
- (3)The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- (4)The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- (5)A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl),the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl - Ga The measurement results are amend as described below:

$$\text{Power(EIRP)} = \text{PMea} - \text{PAg} - \text{Pcl} - \text{Ga}$$


- (6)This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- (7)ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15\text{dBi}$.
- (8)Test the EUT in the lowest channel, the middle channel the Highest channel

9.3 TEST CONFIGURATION

Effective Radiated Power

Radiated Below1GHz

Radiated Above 1 GHz

9.4 TEST RESULT

The maximum Power (CP) for UHF is

Analog: 5W/0.5W for 12.5 KHz Channel Separation

Calculation Formula: $CP = R + A + L$

* Note:

CP: The final Conducted Power

R : The reading value from spectrum analyzer

A : The attenuation value of the used attenuator

L : The loss of all connection cables

ERP RESULT:

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Emission Level	Limit	Margin
(MHz)	(dBuv/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(W)	(W)	(W)
Channel Separation: 12.5KHz									
462.6375	105.16	V	29.93	0.38	6.6	36.15	4.12	5	0.88
462.6375	105.08	H	29.85	0.38	6.6	36.07	4.05	5	0.95
462.6500	105.14	V	29.91	0.38	6.6	36.13	4.10	50	45.9
462.6500	105.06	H	29.83	0.38	6.6	36.05	4.03	50	45.97
467.6500	104.99	V	29.76	0.38	6.6	35.98	3.96	50	46.04
467.6500	104.93	H	29.70	0.38	6.6	35.92	3.91	50	46.09
467.6375	95.92	V	20.69	0.38	6.6	26.91	0.49	0.5	0.01
467.6375	95.84	H	20.61	0.38	6.6	26.83	0.48	0.5	0.02

NOTE:

Calculation Formula:

Emission Level(dBm) = S.G.(dBm)- Cable Loss(dB)+ Ant.Gain(dBi)

The Ant. Gain including the correct factor 2.15.

Margin(dB) = Limit(dBm)- Emission Level(dBm)

10. MODULATION CHARACTERISTICS

10.1 PROVISIONS APPLICABLE

According to [FCC Part 95.1775, Part 2.1047(a)], for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

Part 95.1775(a) A GMRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz.

Part 2.1047(a) A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

10.2 MEASUREMENT METHOD

10.2.1 Modulation Limit

(1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.

(2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

10.2.2 Audio Frequency Response

Personal Radio Service stations that transmit voice emissions may also transmit audible or subaudible tones or other signals for the purpose of selective calling and/or receiver squelch activation. These tones and signals are ancillary to voice communications and are considered to be included within the voice emission types, e.g., A3E, F3E, and G3E.

(a) Tones that are audible (having a frequency higher than 300 Hertz), must last no longer than 15 seconds at one time.

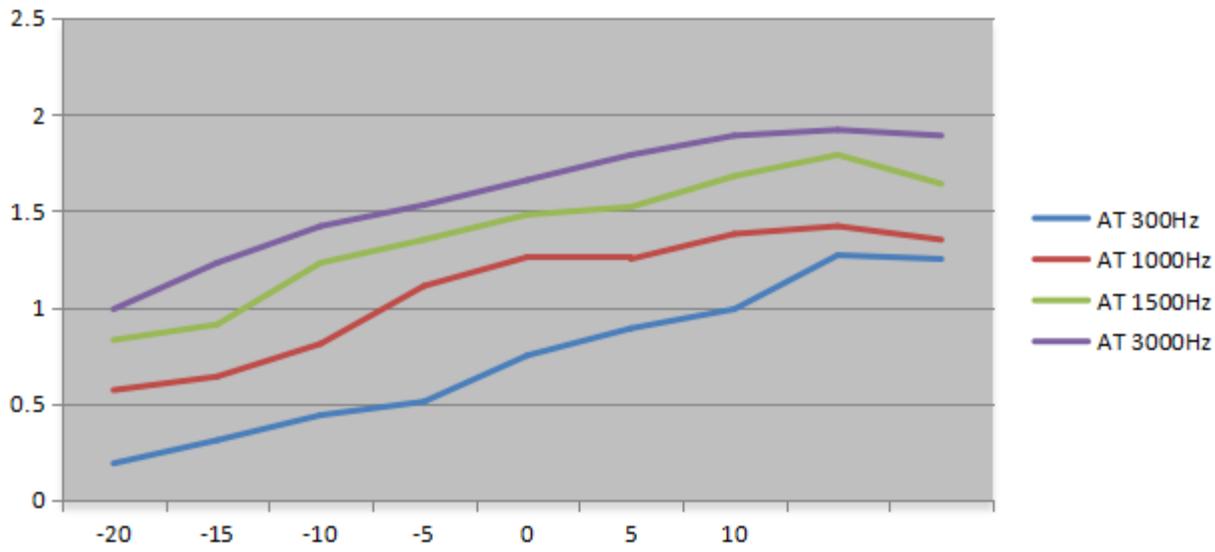
(b) Tones that are subaudible (having a frequency of 300 Hertz or less), may be transmitted continuously during a communication session.

(1). Configure the EUT as shown in figure 1.

(2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).

(3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.

(4). Audio Frequency Response = $20\log_{10}(\text{Deviation of test frequency}/\text{Deviation of 1 KHz reference})$.


10.3 MEASUREMENT RESULT

TEST CHANNEL: 4

(A). MODULATION LIMIT:

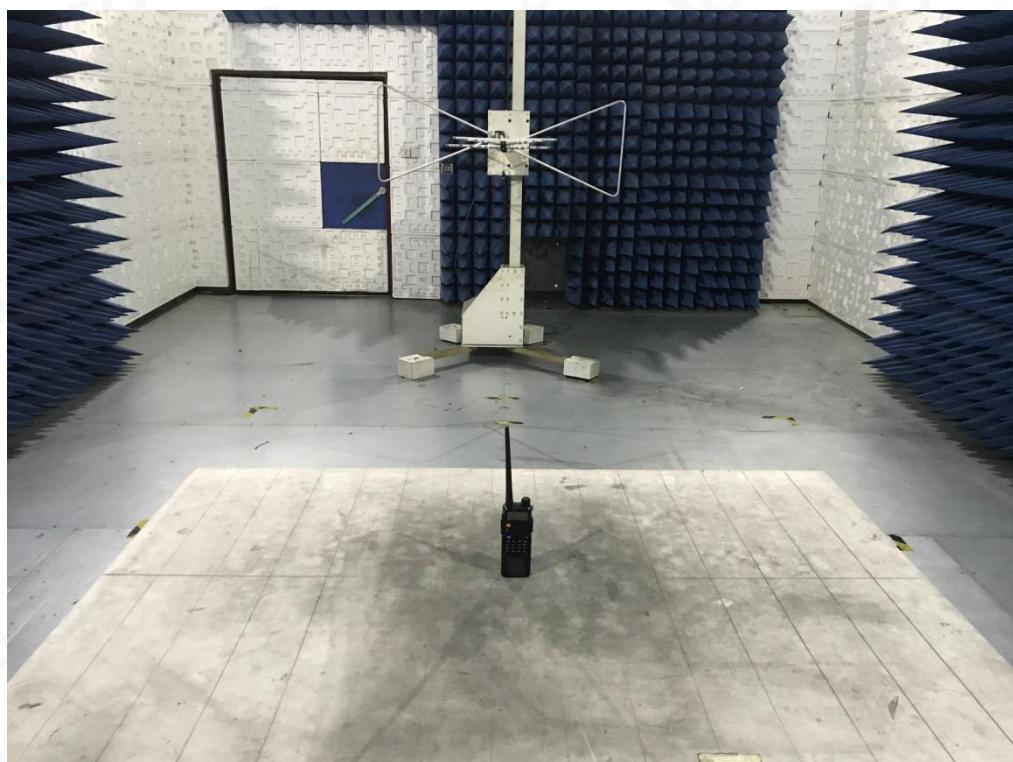
462.6375MHz @ 12.5KHz Channel Separations-5W

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.19	0.57	0.83	0.99
-15	0.31	0.64	0.91	1.23
-10	0.44	0.81	1.23	1.42
-5	0.51	1.11	1.35	1.53
0	0.75	1.26	1.48	1.66
+5	0.89	1.25	1.52	1.79
+10	0.99	1.38	1.68	1.89
+15	1.27	1.42	1.79	1.92
+20	1.25	1.35	1.64	1.89

Note: All the modes had been tested, but only the worst data recorded in the report.

(B). AUDIO FREQUENCY RESPONSE:
462.6375MHz @ 12.5 KHz Channel Separations-5W

Frequency (Hz)	Deviation (KHz)	Audio Frequency Response(dB)
100	--	--
200	--	--
300	0.14	-15.14
400	0.22	-11.21
500	0.36	-6.94
600	0.43	-5.39
700	0.53	-3.58
800	0.69	-1.28
900	0.78	-0.22
1000	0.85	0.53
1200	0.99	1.85
1400	1.11	2.84
1600	1.23	3.74
1800	1.39	4.80
2000	1.43	5.04
2400	1.52	5.58
2500	1.74	6.75
2800	1.52	5.58
3000	1.67	6.39
3200	1.82	7.14
3600	1.91	7.56
4000	1.22	3.67
4500	1.19	3.45
5000	0.91	1.12
5500	0.47	-4.62
6000	0.28	-9.12
6500	0.26	-9.76
7000	0.11	-17.23
7500	0.08	-20.00
9000	--	--
10000	--	--
14000	--	--
18000	--	--
20000	--	--
30000	--	--


Frequency Response Result**12.5 KHz Channel Separations**

Note: All the modes had been tested, but only the worst data recorded in the report.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: <http://cn.agc-cert.com/>

APPENDIX I: PHOTOGRAPHS OF SETUP
RADIATED EMISSION TEST SETUP**----END OF REPORT----**