

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

No. 1 Workshop, M-10, Middle section, Science & Technology Park,
Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM180500460601
Page: 1 of 22

TEST REPORT

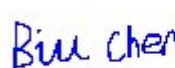
Application No.: SZEM1805004606CR
Applicant: XIONG FA HANG Toy Craft Factory
Address of Applicant: FENGXIN NO.1 ROAD, CHENGHAI DISTRICT SHANTOU, China

Equipment Under Test (EUT):

EUT Name: Remote control ship series
Model No.: Please refer to section 2 ♣
♣ Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
FCC ID: 2AJDV201805678
Standard(s) : 47 CFR Part 15, Subpart C 15.227
Date of Receipt: 2018-05-31
Date of Test: 2018-06-01 to 2018-06-05
Date of Issue: 2018-06-05

Test Result:	Pass*
---------------------	-------

* In the configuration tested, the EUT complied with the standards specified above.


Keny Xu

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2018-06-05		Original

Authorized for issue by:				
		 Bill Chen		
		<hr/> Bill Chen /Project Engineer		
		 Eric Fu		
		<hr/> Eric Fu /Reviewer		

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.227	N/A	47 CFR Part 15, Subpart C 15.203	Pass

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
20dB Bandwidth	47 CFR Part 15, Subpart C 15.227	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass
Field Strength of the Fundamental Signal (15.227(a))	47 CFR Part 15, Subpart C 15.227	ANSI C63.10 (2013) Section 6.4	47 CFR Part 15, Subpart C 15.227(a)	Pass
Radiated Emissions	47 CFR Part 15, Subpart C 15.227	ANSI C63.10 (2013) Section 6.4&6.5	47 CFR Part 15, Subpart C 15.227(b) & C 15.209	Pass

Declaration of EUT Family Grouping:

Model No.:

88040, 88041, 88042, 88043, 88045, 88046, 88047, 88048, 88049, 88050, 88051, 88052, 88053, 88055, 88056, 88057, 88058, 88059, 88060, 88061, 311-A1, 311-A2, 311-A3, 311-A5, 311-A6, 311-A7, 311-A8, 311-A15, 311-A16, 311-A18, 311-A19, 311-A71, 311-A72, 311-A75, 311-A32, 311-A35, 311-A36, 311-A38, 311-A51, 311-A52, 311-A53, 311-A55, 311-A56, 311-A57, 311-A58, 311-A59, 311-A60, 311-A61, 311-A62, 311-A63, 311-A65, 311-A66, 311-A67, 311-A68, 311-A69, 311-201, 311-202, 311-203, 311-205, 311-206, 311-207, 311-208, 311-209, 311-210, 311-211, 311-212, 311-213, 311-215, 311-216, 311-217, 311-218, 311-219, 311-220, 311-221, 311-222, 311-223, 311-225, 311-226, 311-227, 311-228

Only the model 88040 was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for all the above models, with only difference on colour, appearance and packaging.

3 Contents

	Page
1 COVER PAGE	1
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 DETAILS OF E.U.T	5
4.2 DESCRIPTION OF SUPPORT UNITS	5
4.3 MEASUREMENT UNCERTAINTY	5
4.4 TEST LOCATION	6
4.5 TEST FACILITY	6
4.6 DEVIATION FROM STANDARDS	6
4.7 ABNORMALITIES FROM STANDARD CONDITIONS	6
5 EQUIPMENT LIST	7
6 RADIO SPECTRUM TECHNICAL REQUIREMENT	9
6.1 ANTENNA REQUIREMENT	9
6.1.1 Test Requirement:	9
6.1.2 Conclusion	9
7 RADIO SPECTRUM MATTER TEST RESULTS	10
7.1 20dB BANDWIDTH	10
7.1.1 E.U.T. Operation	10
7.1.2 Test Setup Diagram	10
7.1.3 Measurement Procedure and Data	10
7.2 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.227(A))	12
7.2.1 E.U.T. Operation	12
7.2.2 Test Setup Diagram	12
7.2.3 Measurement Procedure and Data	12
7.3 RADIATED EMISSIONS	16
7.3.1 E.U.T. Operation	17
7.3.2 Test Setup Diagram	17
7.3.3 Measurement Procedure and Data	17
8 PHOTOGRAPHS	21
8.1 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.227(A)) TEST SETUP	21
8.2 RADIATED EMISSIONS TEST SETUP	21
8.3 EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	22

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.0V by 1.5V x 2"AA" batteries for Tx
Modulation Type:	ASK
Antenna Type	Integral
Antenna Gain:	0dBi
Operation Frequency	27.145MHz

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25×10^{-8}
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	RF Radiated power	4.5dB (below 1GHz) 4.8dB (above 1GHz)
8	Radiated Spurious emission test	4.5dB (Below 1GHz) 4.8dB (Above 1GHz)
9	Temperature test	1 °C
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China.
518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS (No. CNAS L2929)**

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- A2LA (Certificate No. 3816.01)**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

- VCCI**

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

- FCC –Designation Number: CN1178**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

- Industry Canada (IC)**

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

5 Equipment List

20dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Field Strength of the Fundamental Signal (15.227(a))					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM025-01	2017-07-13	2018-07-12
EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-09-27	2018-09-26
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01

Radiated Emissions(9kHz-30MHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2018-03-31	2021-03-30
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM029-01	2017-07-13	2018-07-12
EMI Test Receiver (9kHz-3GHz)	Rohde & Schwarz	ESCI	SEM004-01	2018-04-02	2019-04-01
Trilog-Broadband Antenna(30MHz-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-01-26	2019-01-25
Pre-amplifier	Sonoma Instrument Co	310N	SEM005-04	2018-04-13	2019-04-12
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21

Radiated Emissions(30MHz-1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM025-01	2017-07-13	2018-07-12
EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-09-27	2018-09-26
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01

General used equipment					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

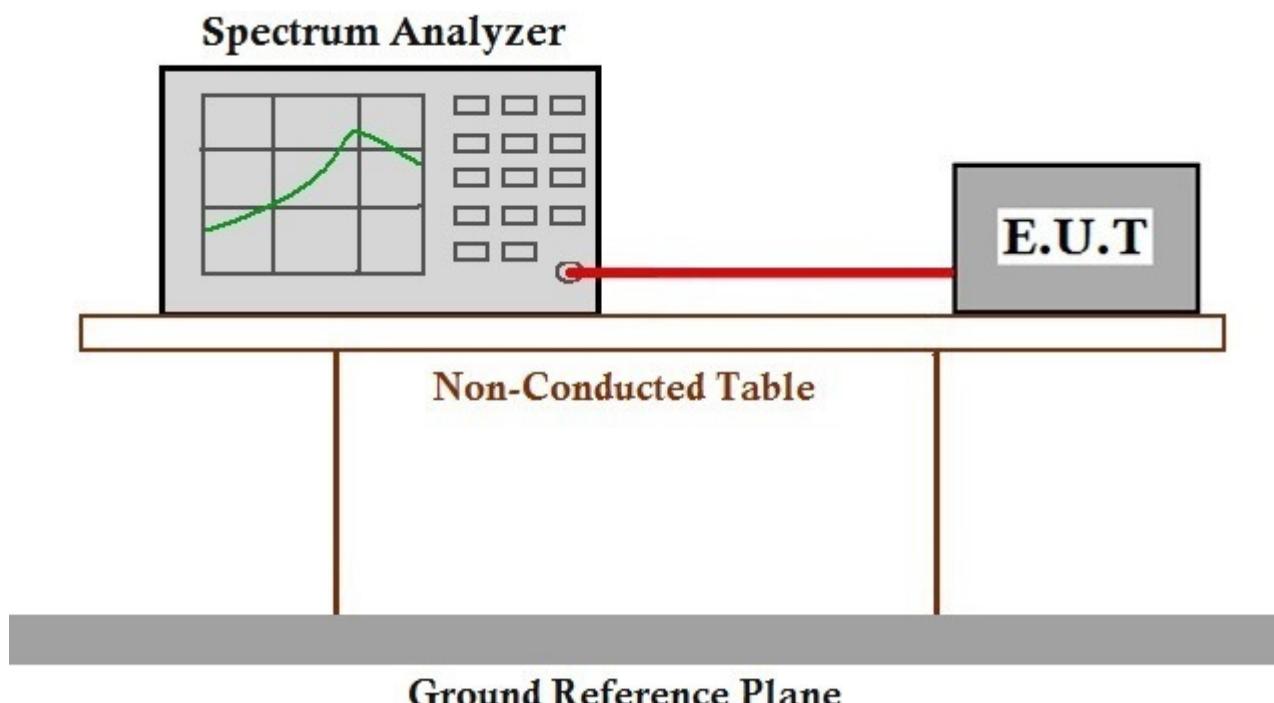
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

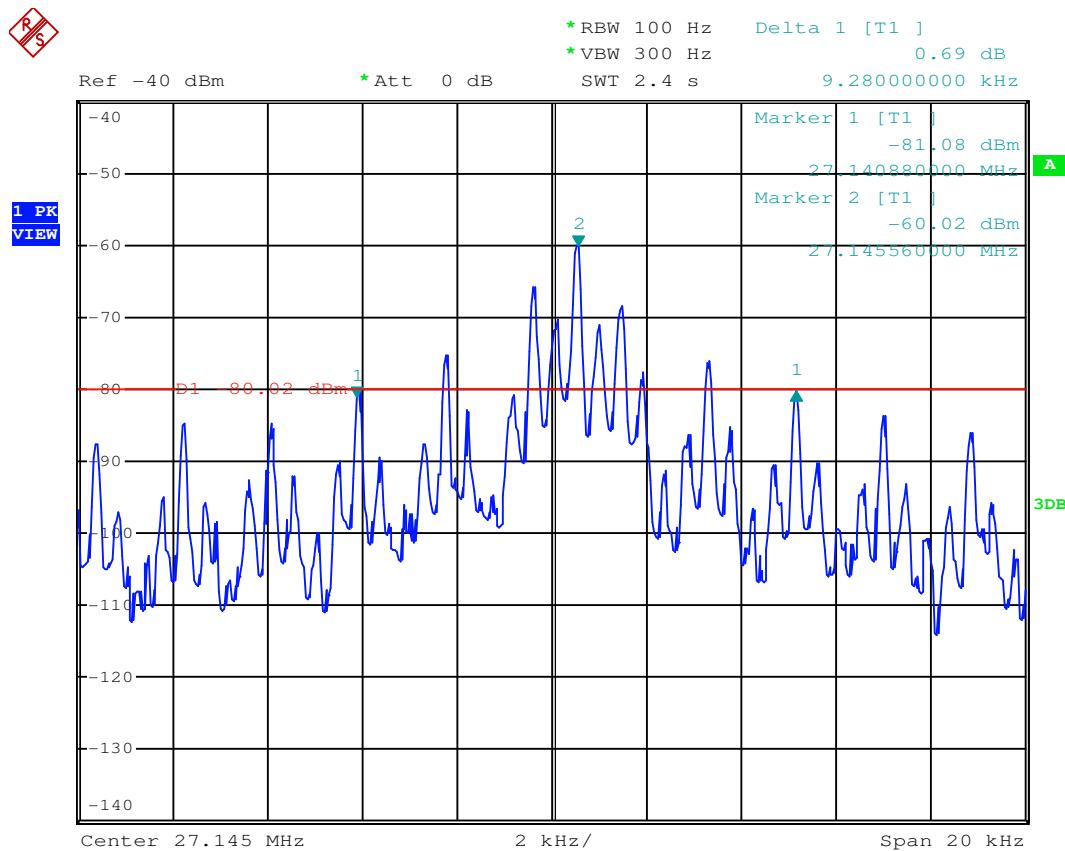
7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth


Test Requirement 47 CFR Part 15, Subpart C 15.215
Test Method: ANSI C63.10 (2013) Section 6.9

7.1.1 E.U.T. Operation

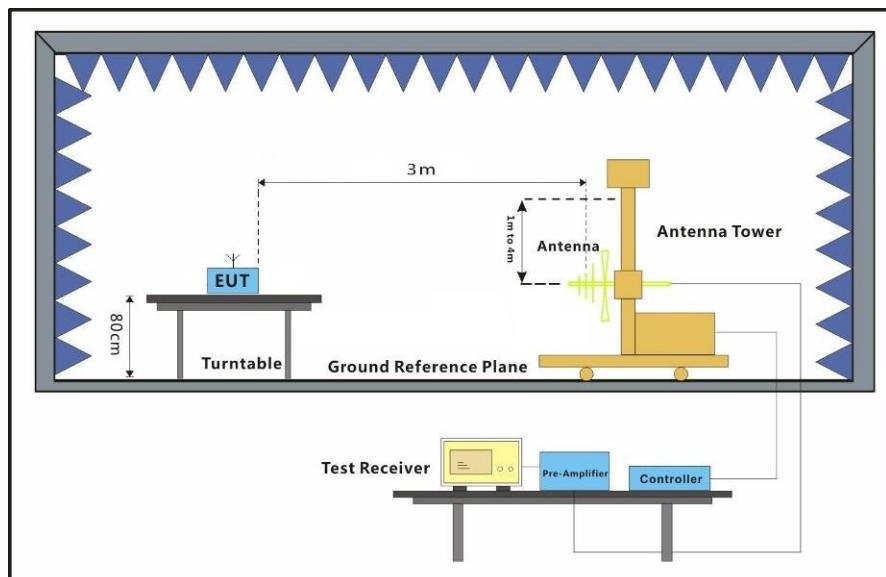
Operating Environment:


Temperature: 24.1 °C Humidity: 59.8 % RH Atmospheric Pressure: 1015 mbar
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

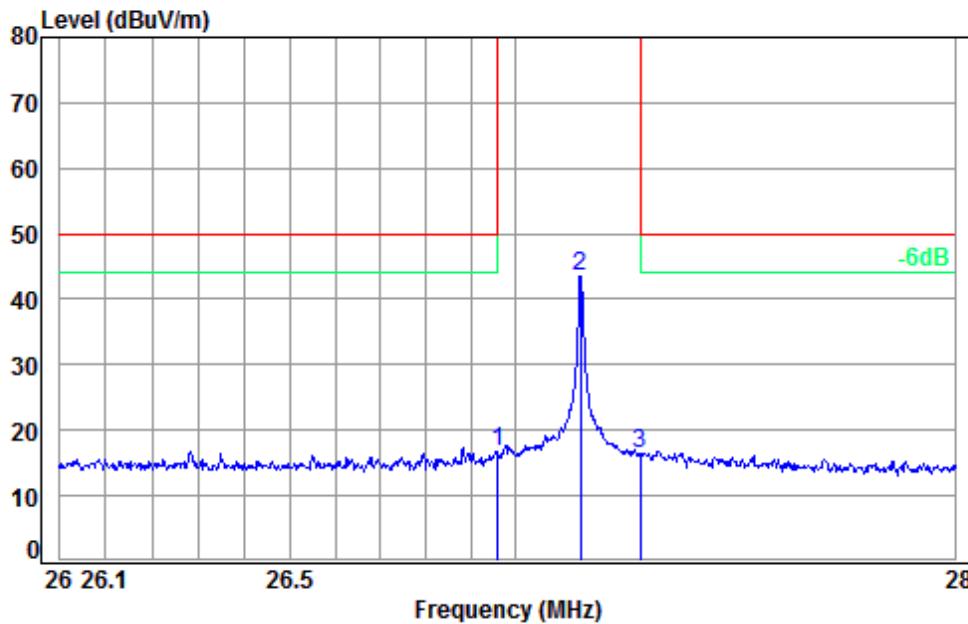
Mode	Frequency (MHz)	-20dB Bandwidth(kHz)	Limit	Conclusion
Tx	27.145	9.28	N/A	Pass


7.2 Field Strength of the Fundamental Signal (15.227(a))

Test Requirement 47 CFR Part 15, Subpart C 15.227(a)
Test Method: ANSI C63.10 (2013) Section 6.4
Measurement Distance: 3m
Limit: ≤ 10000 microvolts/meter at 3 meters, the emission limit is based on measurement instrumentation employing an average Detector: The provisions in § 15.35 for limiting peak emissions apply.

7.2.1 E.U.T. Operation

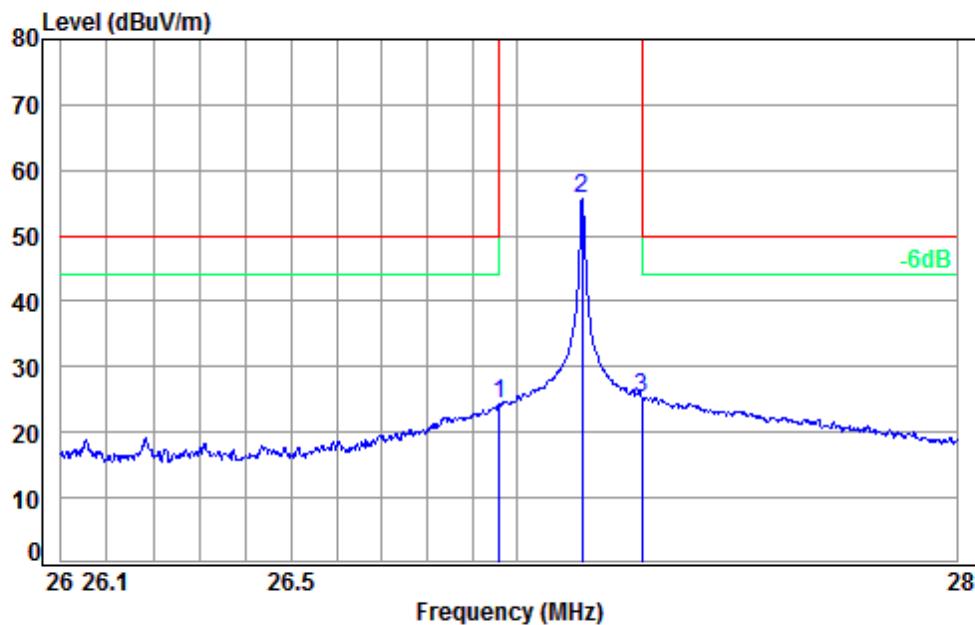
Operating Environment:
Temperature: 25.9 °C Humidity: 51.1 % RH Atmospheric Pressure: 1015 mbar
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.


7.2.2 Test Setup Diagram

7.2.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Mode:a; Polarization:Horizontal


Condition: 3m HORIZONTAL

Job No. : 04606CR

Test mode: TX

	Freq	Cable	Ant	Preamp	Read	Limit	Over	Limit
		Loss	Factor	Factor	Level	Level	Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	26.96	0.60	23.31	27.67	20.39	16.63	50.00	-33.37
2	27.15	0.60	23.22	27.67	47.42	43.57	100.00	-56.43
3	27.28	0.60	23.15	27.67	20.35	16.43	50.00	-33.57

Mode:a; Polarization:Vertical

The test was performed at a 3m test site. According to below formulate and the test data at 3m test distance,

$$L_3 / L_{30} = D_3 / D_{30}$$

Note:

L_3 : Level @ 3m distance. Unit: uV/m;

L_{30} : Level @ 30m distance. Unit: uV/m;

D_3 : 3m distance. Unit: m

D_{30} : 30m distance. Unit: m

The level at 30m test distance is below:

Horizontal

Frequency (MHz)	Level @ 3m (dBuV/m)	Level @ 3m (uV/m)	Level @ 30m (uV/m)	Level @ 30m (dBuV/m)	Limit @ 30m (dBuV/m)	Margin (dB)
26.96	16.63	6.78	0.678	-3.37	30	-33.37
27.15	43.57	150.83	15.083	23.57	80	-56.43
27.28	16.43	6.63	0.663	-3.57	30	-33.57

Vertical

Frequency (MHz)	Level @ 3m (dBuV/m)	Level @ 3m (uV/m)	Level @ 30m (uV/m)	Level @ 30m (dBuV/m)	Limit @ 30m (dBuV/m)	Margin (dB)
26.96	24.42	16.63	1.663	4.42	30	-25.28
27.15	55.62	603.95	60.395	35.62	80	-44.38
27.28	25.36	18.54	1.854	5.36	30	-24.64

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor
- 2) The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.

7.3 Radiated Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.227(b) & C 15.209

Test Method: ANSI C63.10 (2013) Section 6.4&6.5

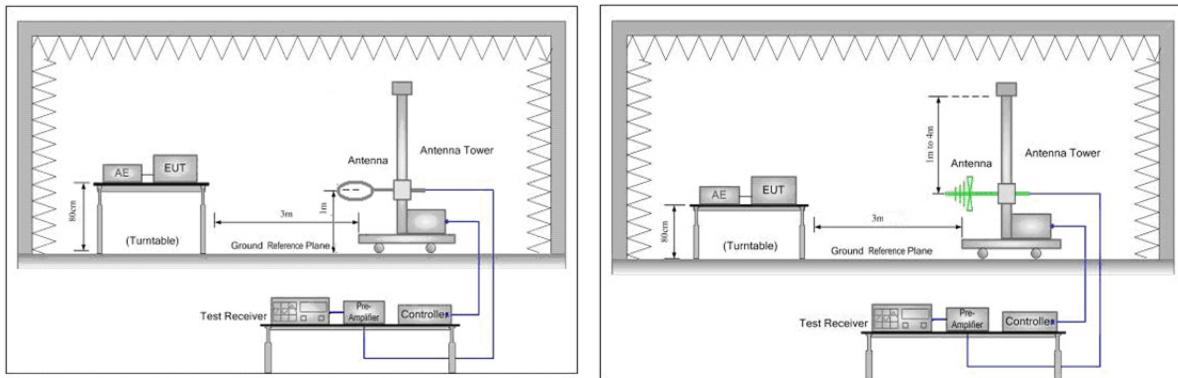
Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz and 110-490kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

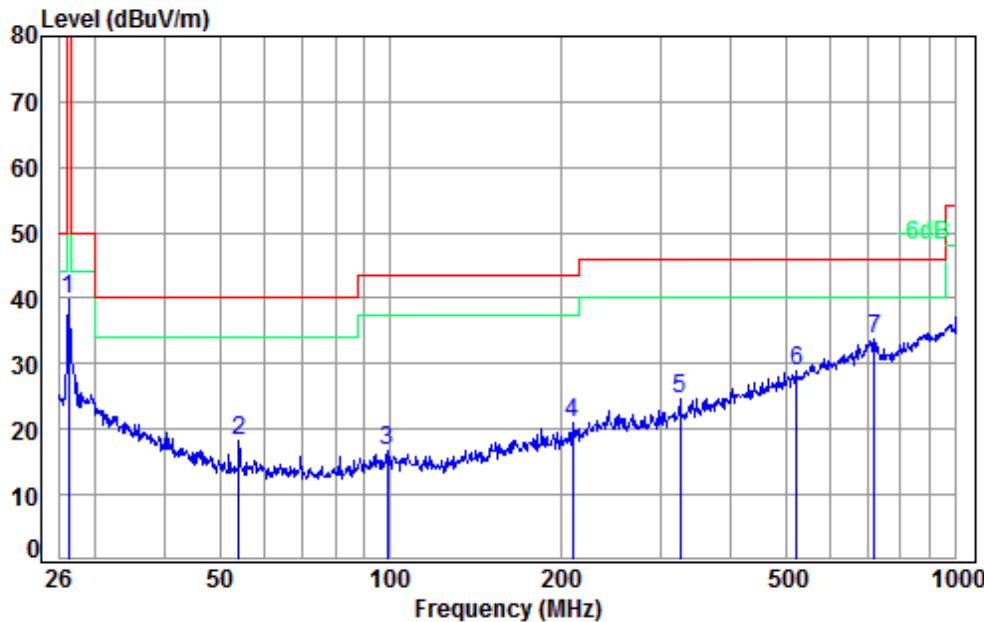

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for above 1000MHz. Radiated emission limits above 1000MHz is based on measurements employing an average detector.

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 25.9 °C Humidity: 51 % RH Atmospheric Pressure: 1015 mbar
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

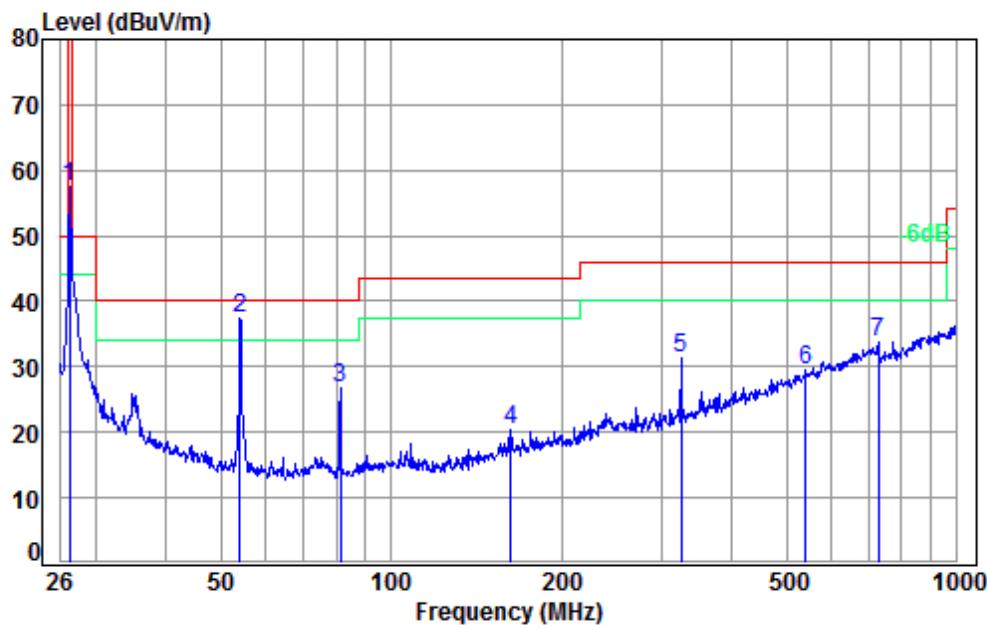


7.3.3 Measurement Procedure and Data

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground for below 1GHz at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Mode:a; Polarization:Horizontal


Condition: 3m HORIZONTAL

Job No. : 04606CR

Test mode: TX

Freq	Cable	Ant	Preamp	Read	Limit	Over		
	Loss	Factor	Factor	Level				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	27.07	0.60	23.26	27.67	43.66	39.85	100.00	-60.15
2	54.15	0.80	13.76	27.58	31.32	18.30	40.00	-21.70
3	98.88	1.19	13.90	27.51	29.26	16.84	43.50	-26.66
4	210.47	1.46	16.87	27.53	30.22	21.02	43.50	-22.48
5	326.13	1.99	20.41	27.60	29.97	24.77	46.00	-21.23
6	524.14	2.62	25.12	27.83	29.07	28.98	46.00	-17.02
7 pp	717.40	2.96	28.01	27.53	30.28	33.72	46.00	-12.28

Mode:a; Polarization:Vertical

Condition: 3m Vertical

Job No. : 04606CR

Test mode: TX

Freq	Cable Loss	Ant Factor	Preamp Factor	Read Level		Limit Line	Over Line	Over Limit
				MHz	dB	dB/m	dB	dBuV/m
1	27.07	0.60	23.26	27.67	61.37	57.56	100.00	-42.44
2 pp	54.15	0.80	13.76	27.58	50.51	37.49	40.00	-2.51
3	81.49	1.10	12.17	27.50	40.92	26.69	40.00	-13.31
4	163.02	1.34	15.56	27.52	30.88	20.26	43.50	-23.24
5	326.13	1.99	20.41	27.60	36.54	31.34	46.00	-14.66
6	541.65	2.64	25.48	27.80	29.06	29.38	46.00	-16.62
7	727.95	2.98	28.08	27.51	30.10	33.65	46.00	-12.35

The test was performed at a 3m test site. According to below formulate and the test data at 3m test distance,

$$L_3 / L_{30} = D_3 / D_{30}$$

Note:

L_3 : Level @ 3m distance. Unit: uV/m;

L_{30} : Level @ 30m distance. Unit: uV/m;

D_3 : 3m distance. Unit: m

D_{30} : 30m distance. Unit: m

The level at 30m test distance is below:

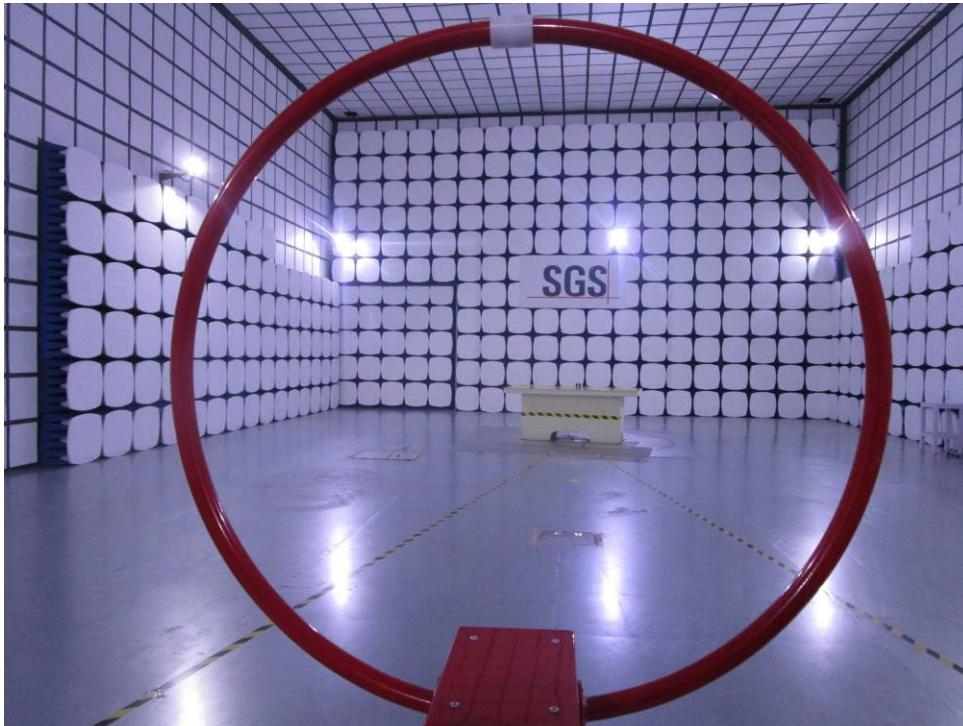
Horizontal

Frequency (MHz)	Level @ 3m (dBuV/m)	Level @ 3m (uV/m)	Level @ 30m (uV/m)	Level @ 30m (dBuV/m)	Limit @ 30m (dBuV/m)	Margin (dB)
27.07	39.85	98.29	9.829	19.85	80	-60.15

Vertical

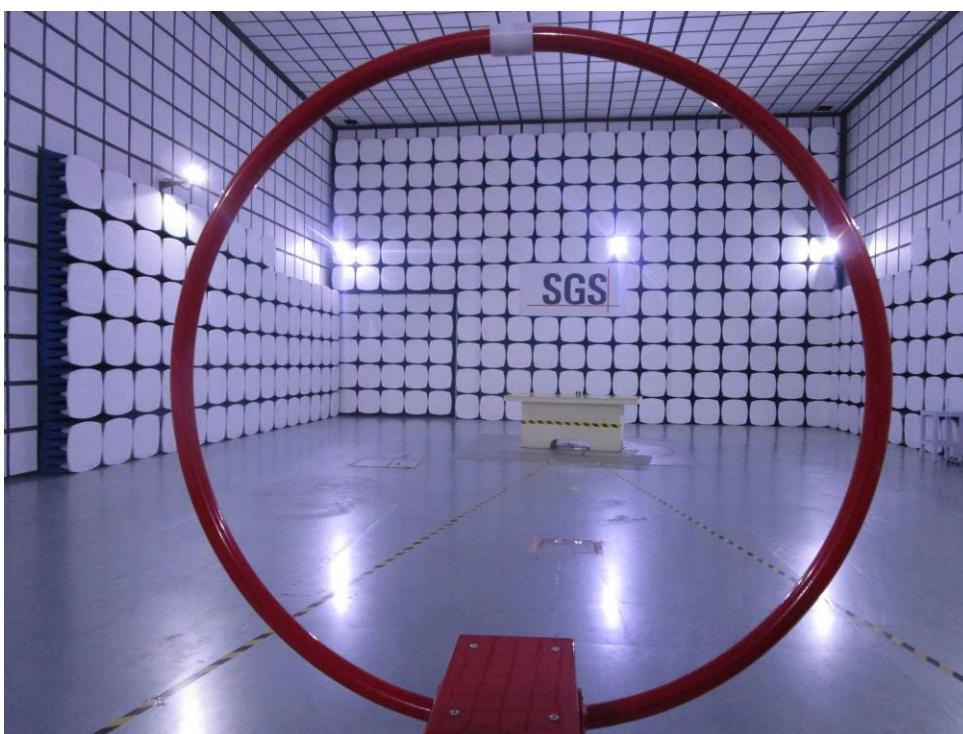
Frequency (MHz)	Level @ 3m (dBuV/m)	Level @ 3m (uV/m)	Level @ 30m (uV/m)	Level @ 30m (dBuV/m)	Limit @ 30m (dBuV/m)	Margin (dB)
27.07	57.56	755.09	75.51	37.56	80	-42.44

Remark:

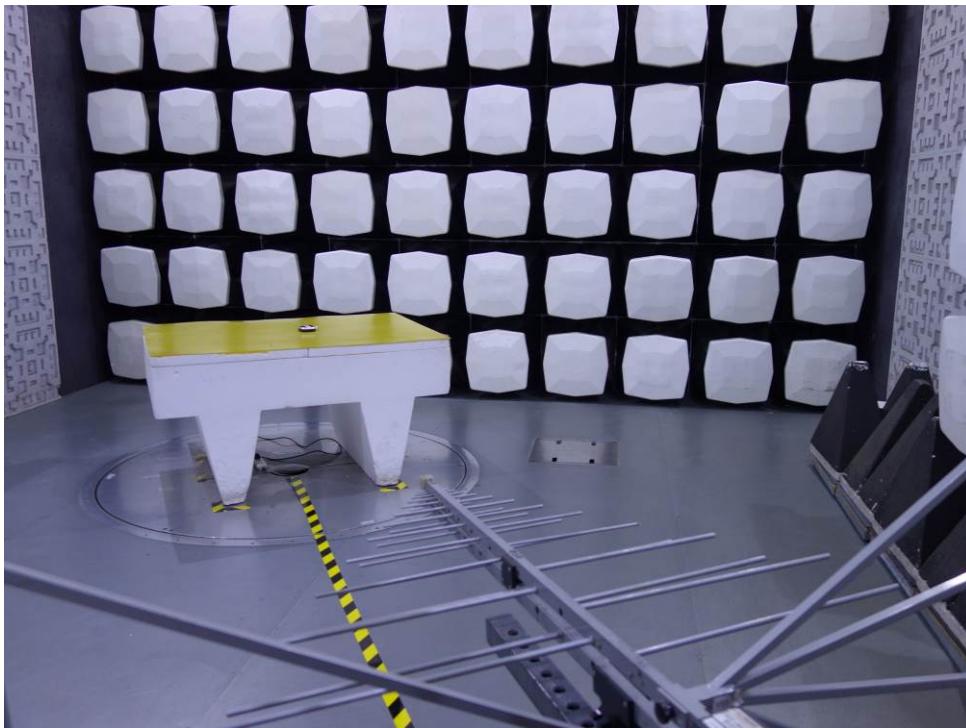

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 1GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


8 Photographs

8.1 Field Strength of the Fundamental Signal (15.227(a)) Test Setup



8.2 Radiated Emissions Test Setup

9k-30MHz

30MHz-1GHz

8.3 EUT Constructional Details (EUT Photos)

Please refer to external and internal photos for details.

- End of the Report -