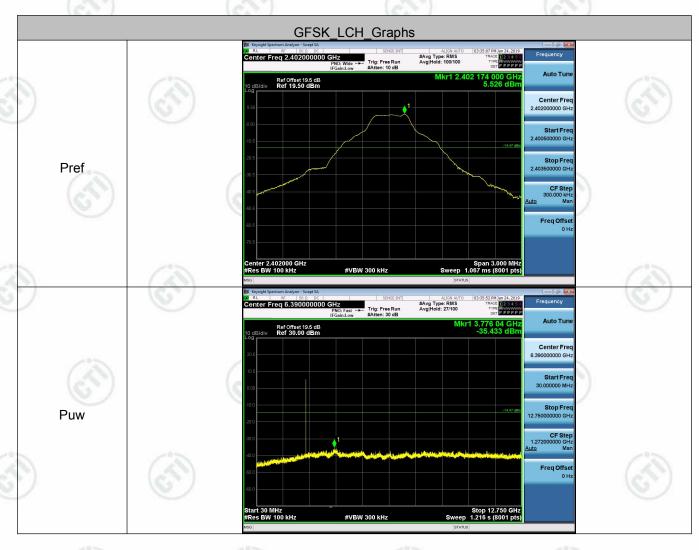
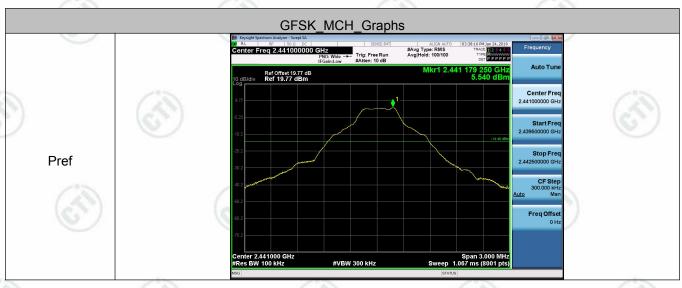


Report No.: EED32L00007201 Page 37 of 85

Appendix G): RF Conducted Spurious Emissions

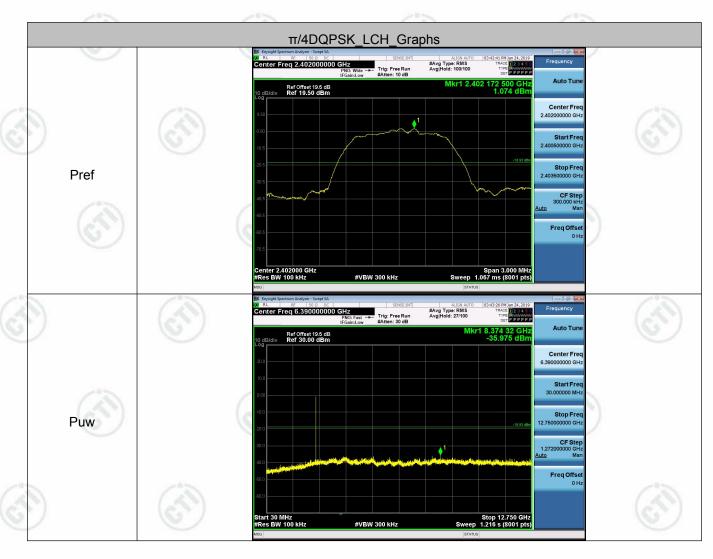
Result Table

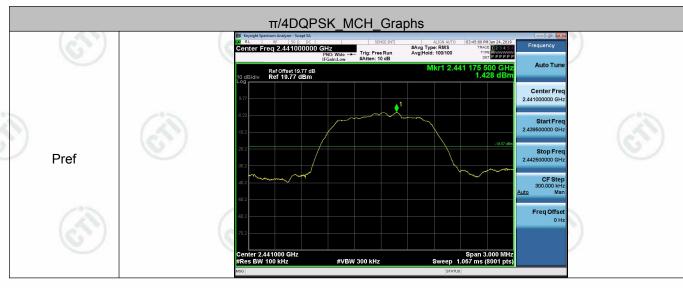

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	5.526	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	5.54	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	5.569	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	1.074	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	1.428	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	0.797	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	1.206	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	1.555	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	0.909	<limit< td=""><td>PASS</td></limit<>	PASS

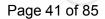


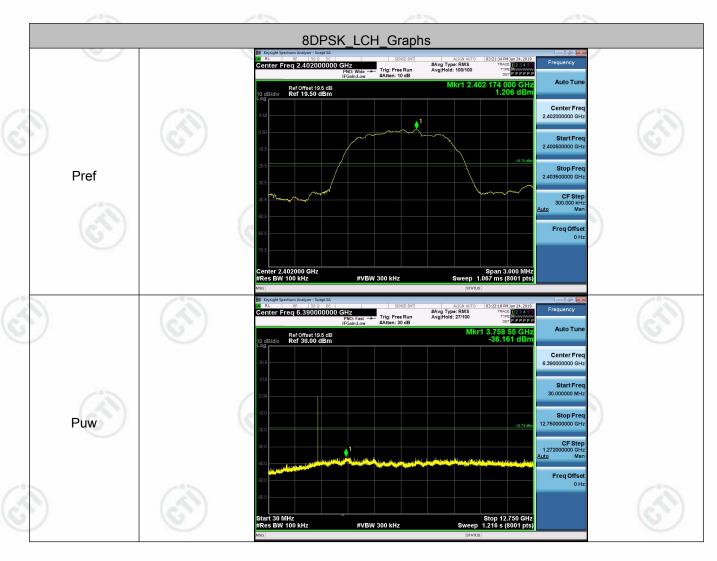
Report No. : EED32L00007201 Page 38 of 85

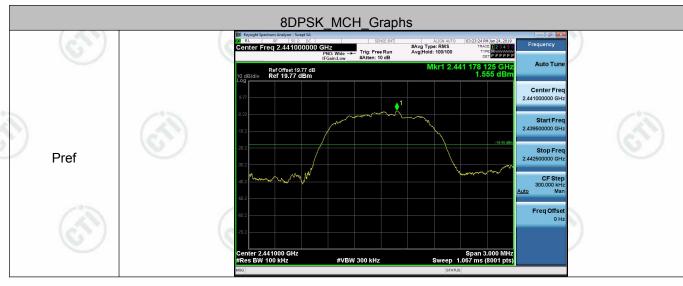
Test Graph

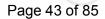








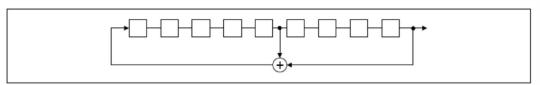




Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

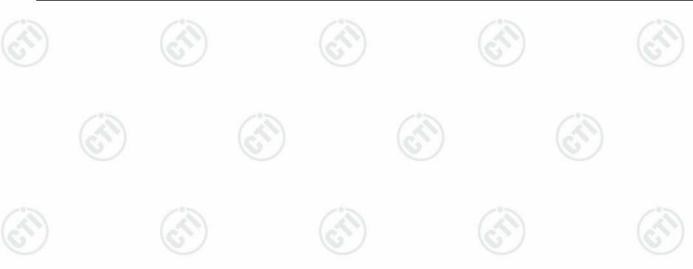
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

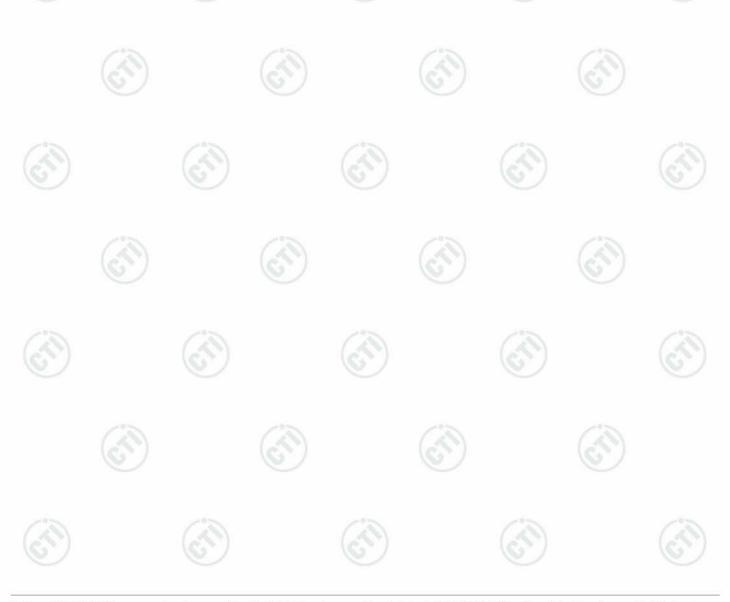
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32L00007201 Page 45 of 85

Appendix I): Antenna Requirement

15.203 requirement:

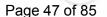

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

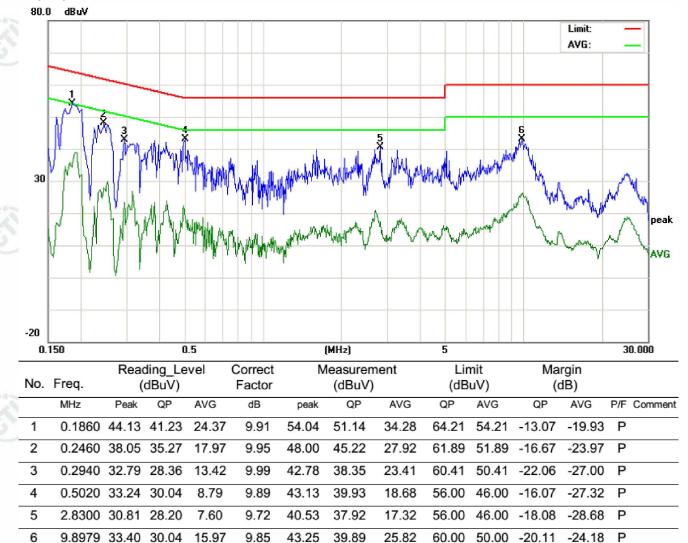
EUT Antenna:

The antenna is FPC antenna and no consideration of replacement. The best case gain of the antenna is 1dBi.


Report No. : EED32L00007201 Page 46 of 85

Appendix J): AC Power Line Conducted Emission

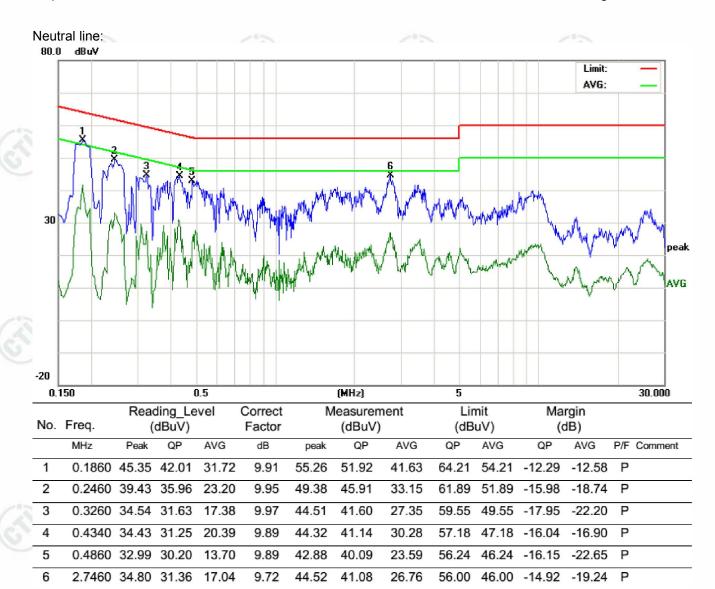
Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturbar		conducted in a shield	ded room.
	2) The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the graph for the unit being measure multiple power cables to a sexceeded.	th provides a $50\Omega/50$ nits of the EUT were round reference pland. A multiple socket	$\mu H + 5\Omega$ linear imp connected to a sec e in the same way a outlet strip was use	edance. The cond LISN 2 s the LISN 1 d to connect
(cit)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangen		
	4) The test was performed wire EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for	e vertical ground refe ed to the horizontal gr the boundary of the	rence plane. The veround reference plar unit under test and	ertical ground ne. The LISN bonded to a
)	plane. This distance was be All other units of the EUT a LISN 2.	etween the closest po	oints of the LISN 1 a	and the EUT.
	5) In order to find the maximun of the interface cables mus conducted measurement.			
Limit:				
		Limit (dBμV)	
	Frequency range (MHz)	Quasi-peak	Average	_0_
	0.15-0.5	66 to 56*	56 to 46*	(41)
	0.5-5	56	46	(0)
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applied.	13	1.5	e range 0.15



Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


Live line:

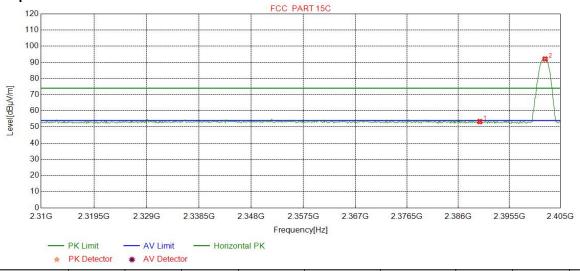
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32L00007201 Page 49 of 85

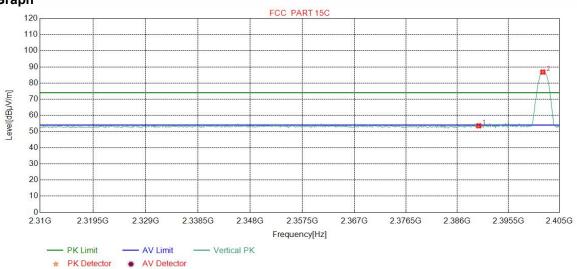
Appendix K): Restricted bands around fundamental frequency (Radiated)

3.32						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Alexand 40U	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	re as below:				
	a. The EUT was placed of at a 3 meter semi-anec determine the position of the EUT was set 3 meters was mounted on the top of the antenna height is with determine the maximum polarizations of the antenna was tuned table was turned from the antenna was tuned table was turned from the Eut-receiver system and width with Maximum for the entermine the maximum for the test-receiver system and width with Maximum for the entermine the system of the test-receiver system and with the entermine the frequency to show combands. Save the spectra for lowest and highest of the entermine the position of the entermine the maximum polarizations of the entermine the entermine the maximum polarizations of the entermine the entermine the maximum polarizations of the entermine the	hoic camber. The of the highest rad ters away from the pof a variable-he varied from one man value of the field enna are set to make to heights from 10 degrees to 360 m was set to Peaum Hold Mode. End of the restricted pliance. Also meaum analyzer plotechannel	e table wa liation. he interfer eight anter heter to for d strength hake the na was arran meter to degrees to k Detect ed band co asure any	ence-receinna tower. Four meters Four meters Four meters Four meters Four meters Four find the Four	above the grant and vent. worst case are and the rotate maximum reards of the content of the co	, whic ound t ertical ad the ading.
	g. Different between above to fully Anechoic Chammeter (Above 18GHz the b. Test the EUT in the lite. The radiation measurer Transmitting mode, and j. Repeat above procedure.	e is the test site, ber and change f ne distance is 1 m owest channel, t nents are perforn d found the X axis	form table neter and the Highe ned in X, s positioni	0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse cas	CT.
Limit:	Frequency	Limit (dBµV/n	n @3m)	Rei	mark	
	30MHz-88MHz	40.0	,	4	eak Value	
	88MHz-216MHz	43.5		<u> </u>	eak Value	
	216MHz-960MHz		Quasi-peak Value			
		46.0		Quasi-peak Value		
	960MHz-1GHz	54.0		_		
	960MHz-1GHz		(6	Quasi-pe		
		54.0	6	Quasi-pe Averag	eak Value	



Test plot as follows:

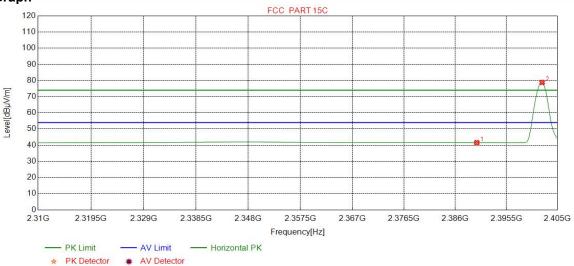
Mode:	GFSK	Channel:	2402
Remark:	Peak	9	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.21	53.39	74.00	20.61	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	88.94	92.08	74.00	-18.08	Pass	Horizontal

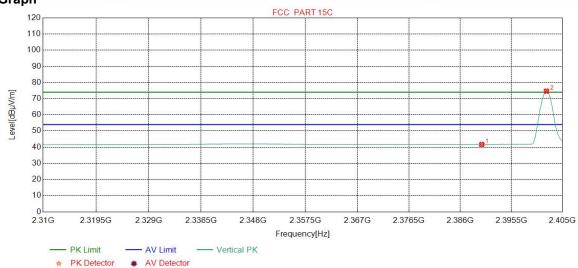
Mode:	GFSK	Channel:	2402
Remark:	Peak	(6)) (

Test Graph


_	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	50.36	53.54	74.00	20.46	Pass	Vertical
0	2	2401.9086	32.26	13.31	-42.43	83.64	86.78	74.00	-12.78	Pass	Vertical

Page	51	of	85
------	----	----	----

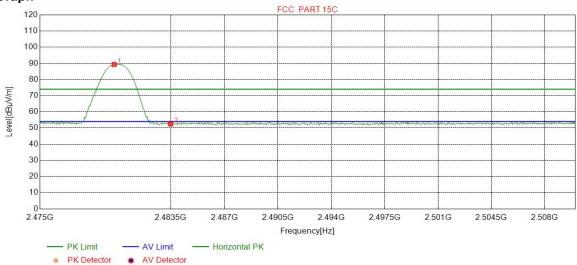
Mode:	GFSK	Channel:	2402
Remark:	AV	37)	


Test Graph

Ant Cable Pream Margin Freq. Reading Level Limit Factor NO Result loss gain Polarity [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 32.25 13.37 -42.44 41.58 54.00 12.42 **Pass** 1 38.40 Horizontal 2 **Pass** 2402.1464 32.26 13.31 -42.43 75.70 78.84 54.00 -24.84 Horizontal

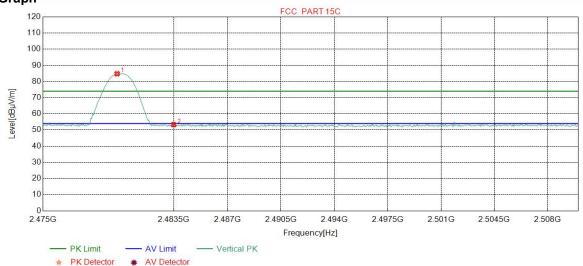
Mode:	GFSK	-0-	Channel:	2402
Remark:	AV			A /

Test Graph


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2390.0000	32.25	13.37	-42.44	38.49	41.67	54.00	12.33	Pass	Vertical
4	2	2402.0275	32.26	13.31	-42.43	71.55	74.69	54.00	-20.69	Pass	Vertical

Page 52	of 85
---------	-------

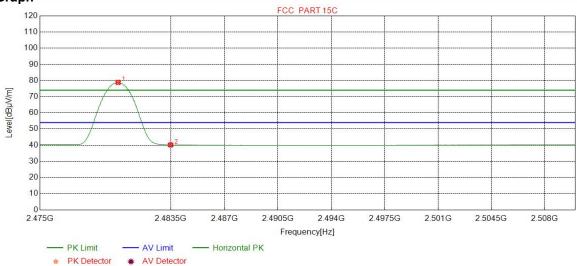
Mode:	GFSK	Channel:	2480
Remark:	Peak	(6,2)	(6,2)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8185	32.37	13.39	-42.39	85.96	89.33	74.00	-15.33	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.24	52.60	74.00	21.40	Pass	Horizontal

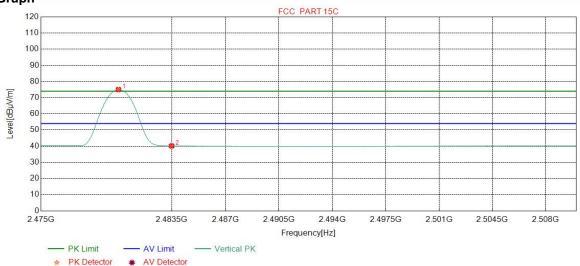
Mode:	GFSK	-	Channel:	2480
Remark:	Peak			A /

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8185	32.37	13.39	-42.39	81.45	84.82	74.00	-10.82	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.97	53.33	74.00	20.67	Pass	Vertical

Page 53 of 85

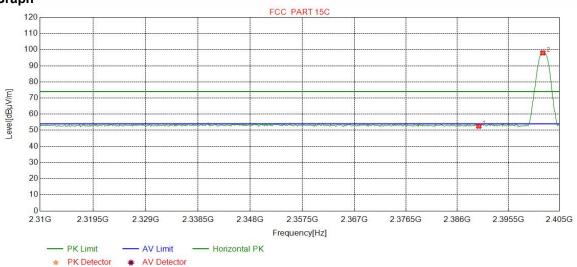
Mode:	GFSK	Channel:	2480
Remark:	AV		


Test Graph

Ant Cable Pream Margin Freq. Reading Level Limit Factor NO loss gain Result Polarity $[dB\mu V]$ [MHz] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2480.0814 32.37 13.39 -42.40 75.50 78.86 54.00 -24.86 **Pass** 1 Horizontal 2 2483.5000 -42.40 **Pass** 32.38 13.38 36.81 40.17 54.00 13.83 Horizontal

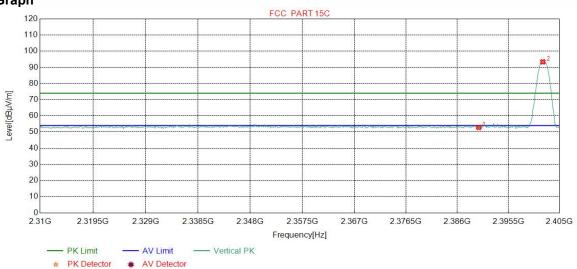
Mode:	GFSK	-0-	Channel:	2480
Remark:	AV			A /

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	71.70	75.07	54.00	-21.07	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.78	40.14	54.00	13.86	Pass	Vertical

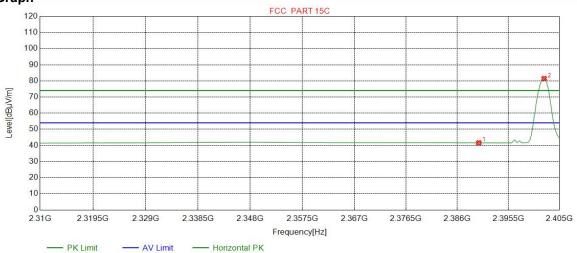
Mode:	π/4 DQPSK	Channel:	2402
Remark:	Peak	(0,0)	(0,)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.39	52.57	74.00	21.43	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	94.84	97.98	74.00	-23.98	Pass	Horizontal

Mode:	π/4 DQPSK	Channel:	2402
Remark:	Peak	(25)) (,

Test Graph

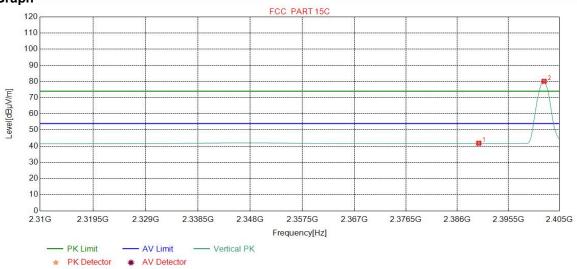

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	49.64	52.82	74.00	21.18	Pass	Vertical
9	2	2401.9086	32.26	13.31	-42.43	90.27	93.41	74.00	-19.41	Pass	Vertical

_		-	
Page	55	Ωf	85
i ayc	-	O.	$^{\circ}$

Mode:	π/4 DQPSK	Channel:	2402
Remark:	AV	(0,0)	(0,)

Test Graph

→ PK Limit → AV Limit → Horizontal PK

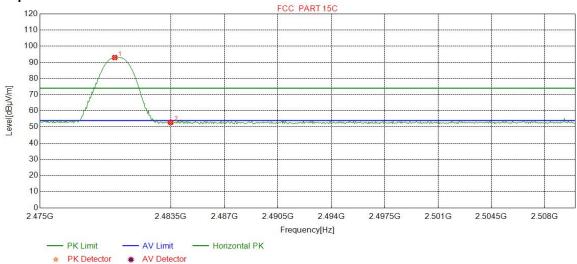

→ PK Detector → AV Detector

Ant Cable Pream → PK Limit → Horizontal PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.45	41.63	54.00	12.37	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	78.29	81.43	54.00	-27.43	Pass	Horizontal

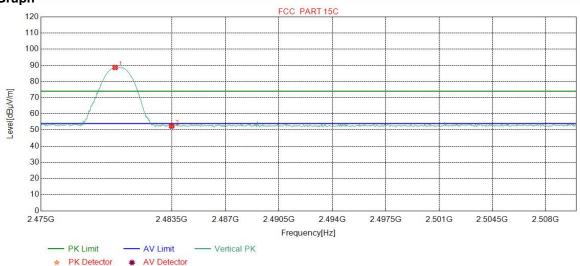
Mode:	π/4 DQPSK	100	Channel:	2402
Remark:	AV	(2/2)		()

Test Graph


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Vertical
6	2	2402.1464	32.26	13.31	-42.43	77.00	80.14	54.00	-26.14	Pass	Vertical

Page 56 of 85

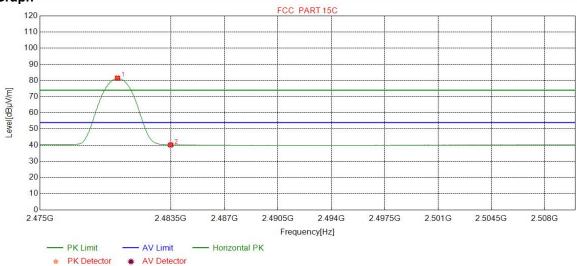
1	Mode:	π/4 DQPSK	Channel:	2480
A	Remark:	Peak	37)	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8623	32.37	13.39	-42.39	89.65	93.02	74.00	-19.02	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.52	52.88	74.00	21.12	Pass	Horizontal

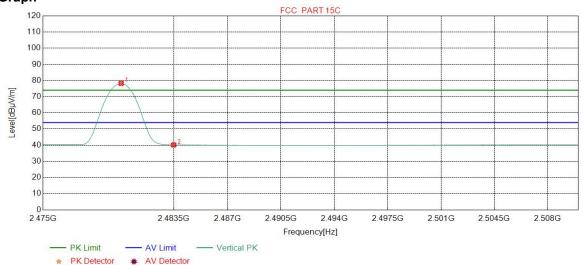
Mode:	π/4 DQPSK	Channel:	2480
Remark:	Peak		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8185	32.37	13.39	-42.39	85.34	88.71	74.00	-14.71	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.09	52.45	74.00	21.55	Pass	Vertical

Page 57 of 85

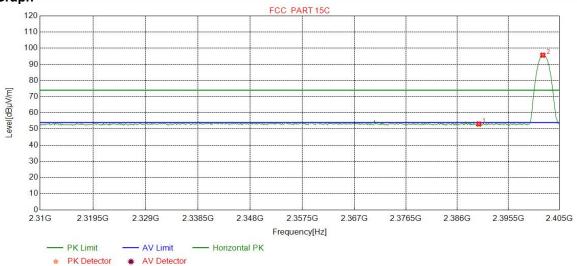
1	Mode:	π/4 DQPSK	Channel:	2480
V	Remark:	AV	37)	(0,0)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	78.15	81.52	54.00	-27.52	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.80	40.16	54.00	13.84	Pass	Horizontal

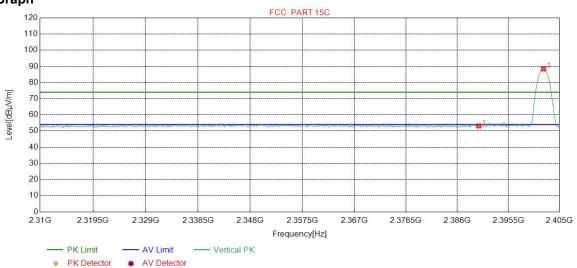
Mode:	π/4 DQPSK	Channel:	2480
Remark:	AV		\

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	74.88	78.24	54.00	-24.24	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.80	40.16	54.00	13.84	Pass	Vertical

Page	58 of	85
------	-------	----

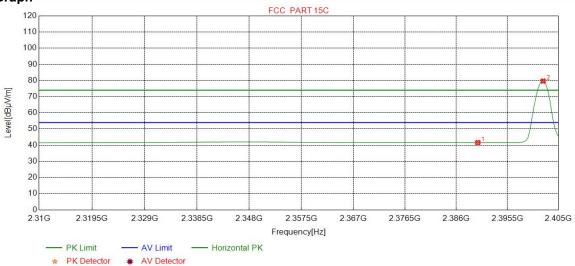
Mode:	8DPSK	Channel:	2402
Remark:	Peak	(0,0)	


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.90	53.08	74.00	20.92	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	92.55	95.69	74.00	-21.69	Pass	Horizontal

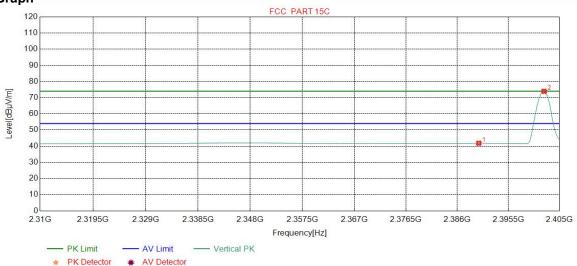
Mode:	8DPSK	-0-	Channel:	2402
Remark:	Peak			A /

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.96	53.14	74.00	20.86	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	85.29	88.43	74.00	-14.43	Pass	Vertical

Page	59	of	85
------	----	----	----

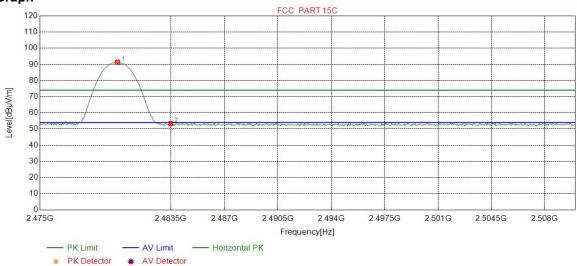
Mode:	8DPSK	Channel:	2402
Remark:	AV		(0,2)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	76.54	79.68	54.00	-25.68	Pass	Horizontal

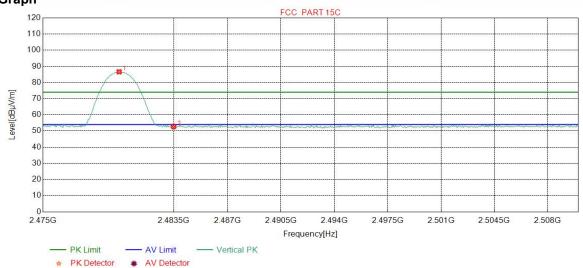
Mode:	8DPSK	-0-	Channel:	2402
Remark:	AV			A /

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	70.81	73.95	54.00	-19.95	Pass	Vertical

Page 60 of 85

Mode:	8DPSK	Channel:	2480
Remark:	Peak		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	87.94	91.31	74.00	-17.31	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.00	53.36	74.00	20.64	Pass	Horizontal

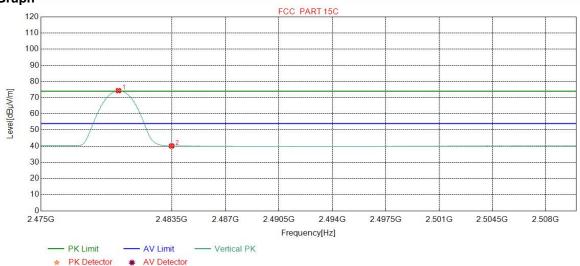
Mode:	8DPSK	-0-	Channel:	2480
Remark:	Peak			A /

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9499	32.37	13.39	-42.39	83.30	86.67	74.00	-12.67	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.40	52.76	74.00	21.24	Pass	Vertical

Page 61 of 85

1	Mode:	8DPSK	Channel:	2480
A	Remark:	AV		


Test Graph

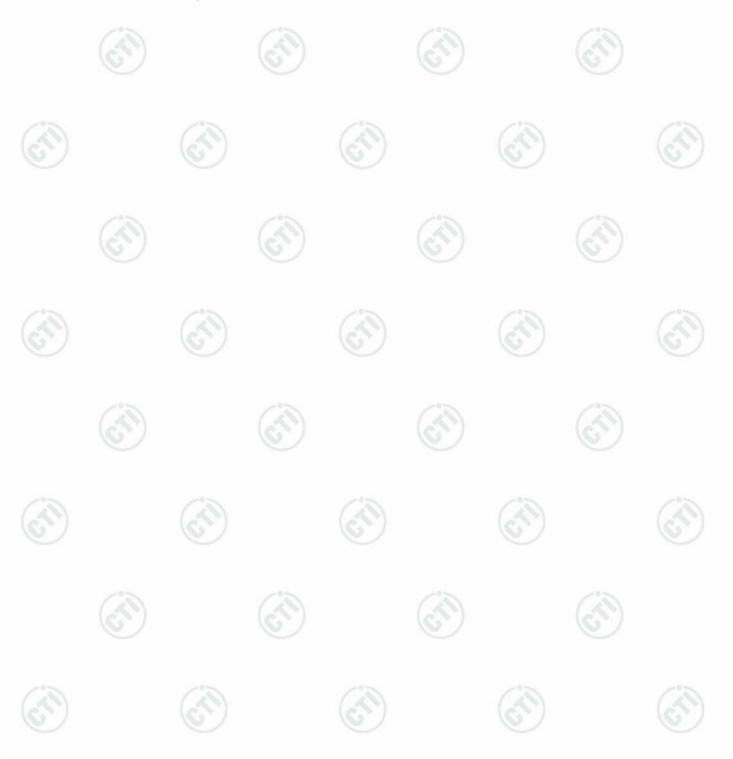
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	74.20	77.57	54.00	-23.57	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.83	40.19	54.00	13.81	Pass	Horizontal

Mode:	8DPSK	-0-	Channel:	2480
Remark:	AV			A /

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2480.0375	32.37	13.39	-42.39	70.99	74.36	54.00	-20.36	Pass	Vertical
6	2	2483.5000	32.38	13.38	-42.40	36.77	40.13	54.00	13.87	Pass	Vertical

Report No.: EED32L00007201 Page 62 of 85


Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00007201 Page 63 of 85

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

L	ir	n	it	:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	- CON-	30
1.705MHz-30MHz	30	- (<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 23°C Humid.: 54% Press.: 101kPa

Report No. : EED32L00007201 Page 64 of 85

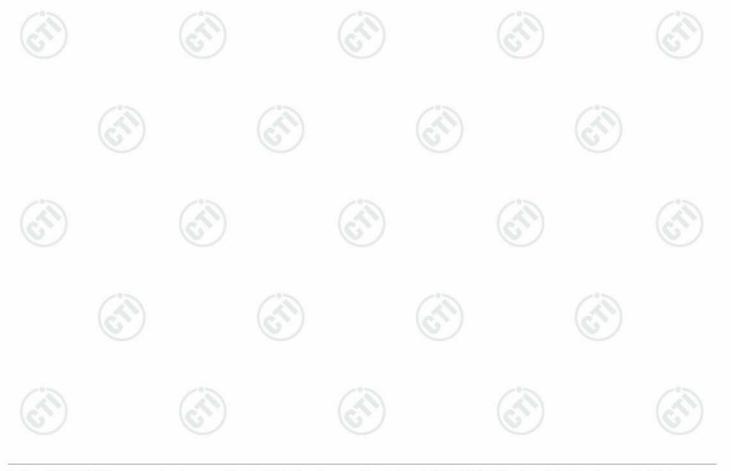
Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Mode	e:		GFSK				Channel:		2480	
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
Ž	1	31.6492	10.57	0.64	-32.13	46.00	25.08	40.00	14.92	Pass	Horizontal
5	2	75.4005	7.97	1.01	-32.05	45.36	22.29	40.00	17.71	Pass	Horizontal
	3	145.2475	7.38	1.42	-32.00	46.67	23.47	43.50	20.03	Pass	Horizontal
	4	208.8859	11.13	1.71	-31.94	46.17	27.07	43.50	16.43	Pass	Horizontal
	5	649.9890	19.40	3.10	-32.07	43.17	33.60	46.00	12.40	Pass	Horizontal
	6	988.1648	22.63	3.77	-30.80	36.62	32.22	54.00	21.78	Pass	Horizontal

Mode	e:		GFSK				Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	31.8432	10.57	0.64	-32.12	44.40	23.49	40.00	16.51	Pass	Vertical
2	76.3706	7.79	1.02	-32.06	45.31	22.06	40.00	17.94	Pass	Vertical
3	118.9579	9.38	1.29	-32.07	47.80	26.40	43.50	17.10	Pass	Vertical
4	378.0708	14.92	2.31	-31.88	45.45	30.80	46.00	15.20	Pass	Vertical
5	649.9890	19.40	3.10	-32.07	42.70	33.13	46.00	12.87	Pass	Vertical
6	932.3842	22.29	3.66	-31.33	35.96	30.58	46.00	15.42	Pass	Vertical

Mode	e:		π/4DQPS	K			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	30.6791	10.53	0.63	-32.12	45.94	24.98	40.00	15.02	Pass	Horizontal
2	75.1095	8.03	1.01	-32.06	45.57	22.55	40.00	17.45	Pass	Horizontal
3	145.4415	7.39	1.42	-32.00	47.47	24.28	43.50	19.22	Pass	Horizontal
4	208.8859	11.13	1.71	-31.94	46.41	27.31	43.50	16.19	Pass	Horizontal
5	649.9890	19.40	3.10	-32.07	43.30	33.73	46.00	12.27	Pass	Horizontal

						200		A 10 mg		20%		
	Mode	e:		π/4DQPS	K		Channel:			2402		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
Ī	1	32.0372	10.58	0.64	-32.12	44.73	23.83	40.00	16.17	Pass	Vertical	
ĺ	2	73.6544	8.31	0.99	-32.06	45.22	22.46	40.00	17.54	Pass	Vertical	
Ī	3	119.1519	9.34	1.29	-32.06	47.68	26.25	43.50	17.25	Pass	Vertical	
	4	376.6157	14.89	2.31	-31.89	50.39	35.70	46.00	10.30	Pass	Vertical	
ĺ	5	649.9890	19.40	3.10	-32.07	43.50	33.93	46.00	12.07	Pass	Vertical	
	6	995.6346	22.67	3.79	-30.72	35.79	31.53	54.00	22.47	Pass	Vertical	



Page	65	٥f	85

М	ode:		8DPSK				Channel:		2441	
N	O Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	30.0000	10.50	0.63	-32.12	46.84	25.85	40.00	14.15	Pass	Horizontal
2	76.8557	7.70	1.02	-32.07	45.39	22.04	40.00	17.96	Pass	Horizontal
3	146.6057	7.43	1.43	-32.00	47.41	24.27	43.50	19.23	Pass	Horizontal
	208.8859	11.13	1.71	-31.94	46.19	27.09	43.50	16.41	Pass	Horizontal
5	649.9890	19.40	3.10	-32.07	42.26	32.69	46.00	13.31	Pass	Horizontal
6	999.5150	22.70	3.80	-30.68	37.72	33.54	54.00	20.46	Pass	Horizontal
						/ "		/ 5		

Mode	e:		8DPSK				Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	32.2312	10.59	0.64	-32.12	44.61	23.72	40.00	16.28	Pass	Vertical
2	124.8755	8.47	1.31	-32.04	48.56	26.30	43.50	17.20	Pass	Vertical
3	336.0656	13.99	2.18	-31.79	45.14	29.52	46.00	16.48	Pass	Vertical
4	380.1080	14.96	2.32	-31.89	45.18	30.57	46.00	15.43	Pass	Vertical
5	649.9890	19.40	3.10	-32.07	43.03	33.46	46.00	12.54	Pass	Vertical
6	892.9983	22.02	3.59	-31.62	36.85	30.84	46.00	15.16	Pass	Vertical

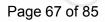
Remark: All the channels are tested, only the worst data were reported.

Page 66 of 85

Transmitter Emission above 1GHz

Mode	e:		GFSK				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1797.0797	30.36	3.31	-42.70	57.39	48.36	74.00	25.64	Pass	Н	PK
2	4333.8889	34.27	4.47	-40.86	50.38	48.26	74.00	25.74	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	44.70	43.09	74.00	30.91	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	45.41	46.51	74.00	27.49	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	45.00	48.51	74.00	25.49	Pass	V	PK
6	12010.0000	39.31	7.60	-41.21	43.79	49.49	74.00	24.51	Pass	Н	PK
7	1132.8133	28.03	2.65	-42.78	59.63	47.53	74.00	26.47	Pass	Н	PK
8	2588.7589	32.54	4.10	-42.34	55.25	49.55	74.00	24.45	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	46.11	44.50	74.00	29.50	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	44.28	45.38	74.00	28.62	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	45.04	48.55	74.00	25.45	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	44.80	50.50	74.00	23.50	Pass	V	PK

Mode) :		GFSK				Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1998.0998	31.69	3.47	-42.62	58.37	50.91	74.00	23.09	Pass	Н	PK
2	4341.6894	34.28	4.49	-40.87	50.22	48.12	74.00	25.88	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	45.09	43.80	74.00	30.20	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.91	44.38	45.74	74.00	28.26	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	44.77	48.57	74.00	25.43	Pass	V	PK
6	12205.0000	39.42	7.67	-41.16	45.64	51.57	74.00	22.43	Pass	Н	PK
7	2598.1598	32.56	4.10	-42.34	55.78	50.10	74.00	23.90	Pass	Н	PK
8	4882.0000	34.50	4.81	-40.60	44.66	43.37	74.00	30.63	Pass	V	PK
9	5303.7536	34.80	4.84	-40.58	50.52	49.58	74.00	24.42	Pass	V	PK
10	7323.0000	36.42	5.85	-40.91	46.30	47.66	74.00	26.34	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	44.57	48.37	74.00	25.63	Pass	V	PK
12	12205.0000	39.42	7.67	-41.16	44.10	50.03	74.00	23.97	Pass	V	PK



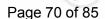
Mode	e:		GFSK				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1123.4123	28.02	2.62	-42.76	56.35	44.23	74.00	29.77	Pass	Н	PK
2	4338.4392	34.27	4.48	-40.86	51.95	49.84	74.00	24.16	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	46.01	44.80	74.00	29.20	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	45.00	46.57	74.00	27.43	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	44.71	48.79	74.00	25.21	Pass	V	PK
6	12400.0000	39.54	7.86	-41.12	46.79	53.07	74.00	20.93	Pass	Н	PK
7	1596.6597	29.04	3.07	-42.90	59.14	48.35	74.00	25.65	Pass	Н	PK
8	2591.9592	32.55	4.10	-42.34	56.42	50.73	74.00	23.27	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	45.71	44.50	74.00	29.50	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	45.24	46.81	74.00	27.19	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	43.80	47.88	74.00	26.12	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	45.30	51.58	74.00	22.42	Pass	V	PK

Mode	e:		π /4DQ	PSK			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1794.4794	30.34	3.31	-42.70	57.72	48.67	74.00	25.33	Pass	Н	PK
2	2970.9971	33.15	4.46	-42.13	50.77	46.25	74.00	27.75	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	46.02	44.41	74.00	29.59	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	45.99	47.09	74.00	26.91	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	44.80	48.31	74.00	25.69	Pass	V	PK
6	12010.0000	39.31	7.60	-41.21	44.38	50.08	74.00	23.92	Pass	Н	PK
7	1596.4596	29.04	3.07	-42.90	59.33	48.54	74.00	25.46	Pass	Н	PK
8	2590.9591	32.55	4.10	-42.35	55.12	49.42	74.00	24.58	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	47.93	46.32	74.00	27.68	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	48.91	50.01	74.00	23.99	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	46.37	49.88	74.00	24.12	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	44.34	50.04	74.00	23.96	Pass	V	PK

Page 68 of 85

	100			100		100			100		
Mode	e:		π /4DQ	PSK			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1596.2596	29.04	3.07	-42.90	55.27	44.48	74.00	29.52	Pass	Н	PK
2	4340.3894	34.28	4.49	-40.87	51.91	49.81	74.00	24.19	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	44.91	43.62	74.00	30.38	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.91	45.94	47.30	74.00	26.70	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	44.83	48.63	74.00	25.37	Pass	V	PK
6	12205.0000	39.42	7.67	-41.16	45.03	50.96	74.00	23.04	Pass	Н	PK
7	1598.6599	29.05	3.07	-42.90	59.15	48.37	74.00	25.63	Pass	Н	PK
8	2599.1599	32.56	4.10	-42.34	55.31	49.63	74.00	24.37	Pass	V	PK
9	4882.0000	34.50	4.81	-40.60	45.22	43.93	74.00	30.07	Pass	V	PK
10	7323.0000	36.42	5.85	-40.91	45.80	47.16	74.00	26.84	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	43.88	47.68	74.00	26.32	Pass	V	PK
12	12205.0000	39.42	7.67	-41.16	45.09	51.02	74.00	22.98	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	43.88	47.68	74.00	26.32	Pass	V	Pl

Mode	e:		π /4DQ	PSK			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1794.6795	30.34	3.31	-42.70	57.20	48.15	74.00	25.85	Pass	Н	PK
2	3007.1505	33.20	4.92	-42.12	51.29	47.29	74.00	26.71	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	45.48	44.27	74.00	29.73	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	44.70	46.27	74.00	27.73	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	44.16	48.24	74.00	25.76	Pass	V	PK
6	12400.0000	39.54	7.86	-41.12	45.48	51.76	74.00	22.24	Pass	Н	PK
7	2193.1193	31.97	3.65	-42.52	56.40	49.50	74.00	24.50	Pass	Н	PK
8	2590.5591	32.54	4.10	-42.34	54.91	49.21	74.00	24.79	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	46.56	45.35	74.00	28.65	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	45.24	46.81	74.00	27.19	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	44.11	48.19	74.00	25.81	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	45.85	52.13	74.00	21.87	Pass	V	PK


		-	
Page	ഭവ	Λf	ᄋᇊ
raue	US	OI.	oo

				100					100		
Mode:			8DPSK				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1799.6800	30.38	3.32	-42.71	58.26	49.25	74.00	24.75	Pass	Н	PK
2	3282.7689	33.31	4.54	-41.95	50.51	46.41	74.00	27.59	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	44.86	43.25	74.00	30.75	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	44.68	45.78	74.00	28.22	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	45.62	49.13	74.00	24.87	Pass	V	PK
6	12010.0000	39.31	7.60	-41.21	45.73	51.43	74.00	22.57	Pass	Н	PK
7	1075.8076	27.98	2.54	-42.70	60.64	48.46	74.00	25.54	Pass	Н	PK
8	4804.0000	34.50	4.55	-40.66	45.55	43.94	74.00	30.06	Pass	V	PK
9	5301.1534	34.80	4.84	-40.58	51.43	50.49	74.00	23.51	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	45.92	47.02	74.00	26.98	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	44.46	47.97	74.00	26.03	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	43.62	49.32	74.00	24.68	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	43.62	49.32	74.00	24.68	Pass	V	PK

Mode:			8DPSK				Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1791.6792	30.33	3.31	-42.72	58.68	49.60	74.00	24.40	Pass	Н	PK
2	2951.1951	33.12	4.40	-42.14	50.89	46.27	74.00	27.73	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	45.19	43.90	74.00	30.10	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.91	44.57	45.93	74.00	28.07	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	44.81	48.61	74.00	25.39	Pass	V	PK
6	12205.0000	39.42	7.67	-41.16	44.79	50.72	74.00	23.28	Pass	Н	PK
7	1890.2890	30.98	3.41	-42.67	56.47	48.19	74.00	25.81	Pass	Н	PK
8	3376.3751	33.35	4.54	-41.89	52.89	48.89	74.00	25.11	Pass	V	PK
9	4882.0000	34.50	4.81	-40.60	44.91	43.62	74.00	30.38	Pass	V	PK
10	7323.0000	36.42	5.85	-40.91	45.54	46.90	74.00	27.10	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	44.82	48.62	74.00	25.38	Pass	V	PK
12	12205.0000	39.42	7.67	-41.16	44.85	50.78	74.00	23.22	Pass	V	PK

Mode:			8DPSK				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1799.2799	30.38	3.32	-42.72	57.07	48.05	74.00	25.95	Pass	Н	PK
2	1994.8995	31.67	3.46	-42.61	56.18	48.70	74.00	25.30	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	44.77	43.56	74.00	30.44	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	44.39	45.96	74.00	28.04	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	44.17	48.25	74.00	25.75	Pass	V	PK
6	12400.0000	39.54	7.86	-41.12	45.70	51.98	74.00	22.02	Pass	Н	PK
7	1084.2084	27.98	2.54	-42.70	60.25	48.07	74.00	25.93	Pass	Н	PK
8	1594.6595	29.02	3.07	-42.89	61.00	50.20	74.00	23.80	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	46.35	45.14	74.00	28.86	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	44.38	45.95	74.00	28.05	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	44.03	48.11	74.00	25.89	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	44.84	51.12	74.00	22.88	Pass	V	PK

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32L00007201 Page 71 of 85

PHOTOGRAPHS OF TEST SETUP

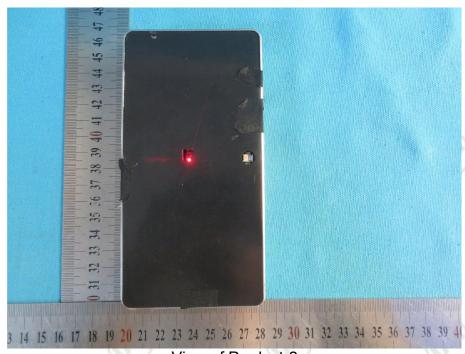
Test model No.: C800

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

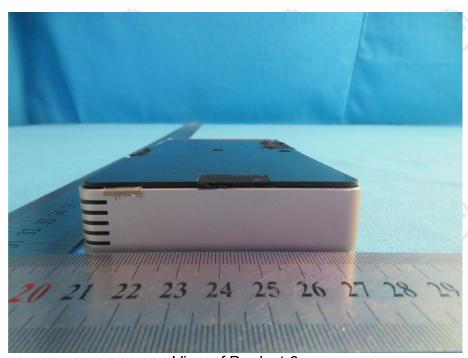
Conducted Emissions Test Setup


Report No.: EED32L00007201 Page 73 of 85

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: C800

View of Product-1



View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

