

## RF Exposure Requirement

### 1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

#### LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency Range (MHz)                                     | Electric Field Strength(V/m) | Magnetic Field Strength (A/m) | Power Density (mW/cm <sup>2</sup> ) | Average Time (Minutes) |
|-----------------------------------------------------------|------------------------------|-------------------------------|-------------------------------------|------------------------|
| (A) Limits for Occupational/ Control Exposures            |                              |                               |                                     |                        |
| 300-1500                                                  | -                            | -                             | F/300                               | 6                      |
| 1500-100,000                                              | -                            | -                             | 5                                   | 6                      |
| (B) Limits for General Population/ Uncontrolled Exposures |                              |                               |                                     |                        |
| 300-1500                                                  | -                            | -                             | F/1500                              | 6                      |
| 1500-100,000                                              | -                            | -                             | 1                                   | 30                     |

F= Frequency in MHz

Formula

Transmission formula:  $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot r^2)$

Where

$P_d$  = power density in  $\text{mW/cm}^2$

$P_{out}$  = output power to antenna in mW

G = gain of antenna in linear scale

$\pi$  = 3.1416

R = distance between observation point and center of the radiator in cm

$P_d$  is the limit of MPE,  $1 \text{ mW/cm}^2$ . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

### 2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 23°C and 42% RH.

### 3. Test Result of RF Exposure Evaluation

| Channel | Frequency (MHz) | Output Power (dBm) | Output Power (mW) |
|---------|-----------------|--------------------|-------------------|
| 1       | <b>2401</b>     | <b>4.28</b>        | <b>2.68</b>       |
| 40      | 2440            | 2.33               | 1.71              |
| 80      | 2480            | -3.42              | 0.45              |

### 4. MPE Calculation

The Max Conducted Peak Output Power is 2.68mW in lowest channel  
The Antenna Gain is -0.83dBi.

For FCC:

According to the formula  $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot r^2)$

$$((2.68 \cdot (-0.83)) / (4 \cdot 3.14 \cdot 0.25)) = -0.708$$

| Frequency Band(MHz) | Maximum RF Power(mW) | Power Density at R = 0.5cm(mW/cm <sup>2</sup> ) |
|---------------------|----------------------|-------------------------------------------------|
| 2401-2480           | 2.68                 | -0.708                                          |

Note:

The power density  $P_d$  (4th column) at a distance of 0.5 cm calculated from the transmission formula is far below the limit of 1 mW/cm<sup>2</sup>.