

TEST REPORT

Applicant:

INFINIX MOBILITY LIMITED

Address:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL

CENTRE 19-25 SHAN MEI STREET FOTAN NT,

Hong Kong

Equipment Type:

Mobile Phone

Model Name:

X6885

Brand Name:

INFINIX

FCC ID:

2AIZN-X6885

Test Standard:

47 CFR Part 15 Subpart C

ANSI C63.10-2013

Sample Receipt Date:

Apr. 01, 2025

Test Date:

Apr. 08, 2025 - Apr. 11, 2025

Date of Issue:

May 19, 2025

ISSUED BY:

Shanghai Tejet Communications Technology Co., Ltd. Testing Center

Prepared by: Chai Yong

Reviewed by: Huang Chengkun

Approved by: Zhang Yanqing

(Laboratory Manager)

Chai Yong

Huang Chongkun

Shung You ging

Revision History

 Version
 Issue Date

 Rev. 01
 May 19, 2025

Revisions Initial Issue

TABLE OF CONTENTS

1 GENERAL INFORMATION	4
1.1 Test Laboratory	4
1.2 Test Location	4
2 PRODUCT INFORMATION	5
2.1 Applicant Information	5
2.2 Manufacturer Information	5
2.3 Factory Information	5
2.4 General Description for Equipment under Test (EUT)	5
2.5 Technical Information	6
3 SUMMARY OF TEST RESULTS	7
3.1 Test Standards	7
3.2 Verdict	7
3.3 Decision Rule	8
3.4 Test Uncertainty	8
4 GENERAL TEST CONFIGURATIONS	9
4.1 Test Environments	9
4.2 Description of Test Setup	10
5 TEST ITEMS	12
5.1 Antenna Requirements	12
5.2 Emission Bandwidth	13
5.3 Field Strength of Fundamental Emissions and Radiated Emissions	15
5.4 Frequency Tolerance	17
5.5 Conducted Emission	18
ANNEX A TEST RESULT	19

A.1 Emission Bandwidth	19
A.2 Field Strength of Fundamental Emissions	20
A.3 Radiated Emissions	22
A.4 Frequency Stability	27
A.5 Conducted Emissions	29
ANNEX B TEST SETUP PHOTOS	
ANNEX C EUT EXTERNAL PHOTOS	33
ANNEX D FUT INTERNAL PHOTOS	33

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shanghai Tejet Communications Technology Co., Ltd. Testing Center
Address	1-2/F., Building 1, No.222, Xuanlan Road, Xuanqiao, Pudong New
	District, Shanghai, China

1.2 Test Location

Name	Shanghai Tejet Communications Technology Co., Ltd. Testing Center
Location	1-2/F., Building 1, No.222, Xuanlan Road, Xuanqiao, Pudong New
	District, Shanghai, China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a
	accredited testing laboratory. The designation number is CN1352.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	INFINIX MOBILITY LIMITED	
Address	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25	
	SHAN MEI STREET FOTAN NT, Hong Kong	

2.2 Manufacturer Information

Manufacturer INFINIX MOBILITY LIMITED	
Address	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25
	SHAN MEI STREET FOTAN NT, Hong Kong

2.3 Factory Information

Factory	SHENZHEN TECNO TECHNOLOGY CO., LTD.	
Address	101, Building 24, Waijing Industrial Park,Fumin Community, Fucheng	
Address	Street, Longhua District, Shenzhen City, P.R. China	

2.4 General Description for Equipment under Test (EUT)

EUT Name	Mobile Phone
Model Name Under Test	X6885
Series Model Name	N/A
Description of Model	NIA
name differentiation	N/A
Sample No.	SC-SH2530133-S01
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	163.67 mm(L) x 75.87 mm (W)x 6.85 mm(D)
Weight (Approx.)	N/A

2.5 Technical Information

2G Network GSM/GPRS/EDGE 850/1900 MHz
3G Network WCDMA/HSDPA/HSUPA Band 2/4/5
4G Network LTE FDD Band 2/4/5/7
LTE TDD Band 38/41
UL CA:CA_2C/CA_5B/ CA_7C /CA_38C/CA_41C
Bluetooth, 2.4G WIFI, 5G WIFI
NFC, GPS, GLONASS, BDS, Galileo, FM receiver

The requirement for the following technical information of the EUT was tested in this report:

Modulation Type	ASK
Product Type	☐ Portable
	☐ Fix Location
Frequency Range	13.56 MHz
Receiver Categorization	3
Number of Channel	1
Tested Channel	1
Antenna Type	Coil Antenna

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15 Subpart C	Intentional Radiators
_	ANSI C63.10-2013	American National Standard of Procedures for
2		Compliance Testing of Unlicensed Wireless Devices

3.2 Verdict

No.	Description	FCC Part No.	Test Result	Verdict
1	Antenna Requirement	15.203		Pass Note
2	Emissions Bandwidth	15.215	ANNEX A.1	Pass
3	Field Strength of Fundamental	45 005(a)	ANNEX A.2	Pass
3	Emissions	15.225(a)		
4	Radiated Emissions	15.225(d)	ANNEX A.3	Pass
4 Rau		15.209		
5	Frequency Stability	15.225(e)	ANNEX A.4	Pass
6	Conducted Emission	15.207	ANNEX A.5	Pass

Note: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

3.3 Decision Rule

	No Need
\boxtimes	Use General conformity decision rule (Consider uncertainty or not \boxtimes No \square Yes)
	Use Special Conformity Decision Rule (Consider uncertainty or not □ No □ Yes)

3.4 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

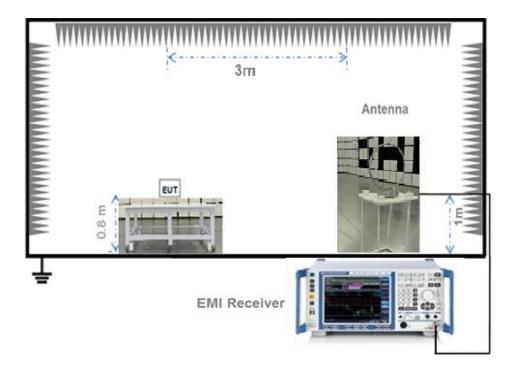
Measurement	Value
Conducted emissions (150 kHz-30 MHz)	2.6 dB
Radiated emissions (9 kHz-30 MHz)	4.3 dB
Radiated emissions (30 MHz-1 GHz)	4.2 dB

Web: www.titcgroup.com Template No.: TRP4-EC-17 V2.0
Add: 1-2/F., Building 1, No.222, Xuanlan Road, Xuanqiao, Pudong New District, Shanghai, China

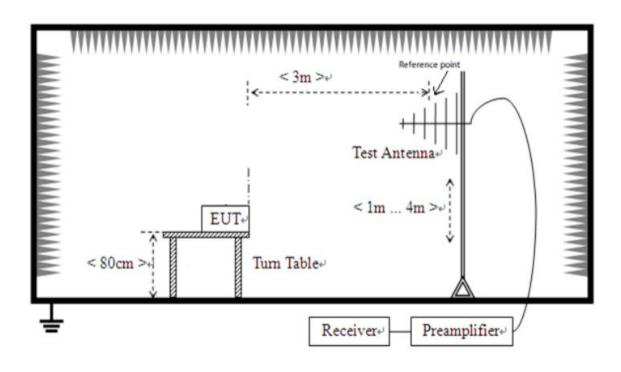
4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:


Relative Humidity	30% to 60%		
Atmospheric Pressure	100 kPa to 102 kPa		
Temperature	NT (Normal Temperature) +21°C to +26°C		
Working Voltage of the EUT	NV (Normal Voltage)	3.92 V	

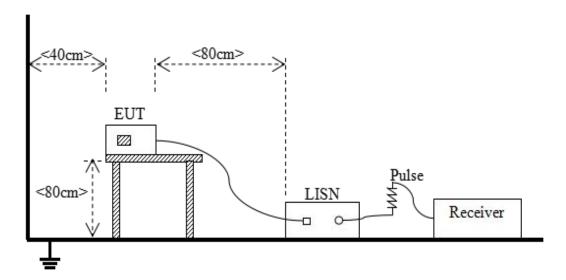
Add: 1-2/F., Building 1, No.222, Xuanlan Road, Xuanqiao, Pudong New District, Shanghai, China


4.2 Description of Test Setup

4.2.1 For Radiated Test (Below 30 MHz)

(Diagram 1)

4.2.2 For Radiated Test (30 MHz-1 GHz)



(Diagram 2)

Tel: 86-21-58180736 Web: www.titcgroup.com E-mail: ks_qc@baluntek.com Template No.: TRP4-EC-17 V2.0

4.2.3 For AC Power Supply Port Test

(Diagram 3)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item
Photo	Please refer EUT internal photos.

 Tel: 86-21-58180736
 E-mail: ks_qc@baluntek.com
 Page No. 12 / 34

 Web: www.titcgroup.com
 Template No.: TRP4-EC-17 V2.0

5.2 Emission Bandwidth

5.2.1 Definition

15.215(c);

Intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

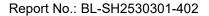
- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

5.2.2 Test Setup

See section 4.1.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.


5.2.3 Test Procedure

The 20dB bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while the EUT is operating in transmission mode.

Use the following spectrum analyzer settings:

Span = between 2 to 5 times the OBW

RBW = 1% to 5% the OBW

VBW ≥ 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

The 99% emission bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while the EUT is operating in transmission mode.

Use the following spectrum analyzer settings:

Span = between 1.5 to 5 times the OBW

RBW = 1% to 5% OBW

VBW ≥ 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.2.4 Test Result

Please refer to ANNEX A.1

5.3 Field Strength of Fundamental Emissions and Radiated Emissions

5.3.1 Limit

FCC §15.225(a), (b), (c)

According to FCC section 15.225, for <30 MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the center of the loop. The measuring bandwidth was set to 10 kHz. (Note: During testing the receive antenna was rotated about its axis to maximize the emission from the EUT)

There was no detected Restricted bands and Radiated spurious emission below 30MHz. The 30m limit was converted to 3m Limit using square factor(x) as it was found by measurements as follows; 3 m Limit($dB\mu V/m$) = $20log(X)+40log(30/3)=20log(15848)+40log(30/3)=124dB\mu V$

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency range	Field Strength@30m		Field Strength@10m	Field Strength@3m
(MHz)	μV/m	dBµV/m	dBµV/m	dBµV/m
Below 13.110	30	29.5	48.58	69.5
13.110 ~ 13.410	106	40.5	59.58	80.5
13.410 ~ 13.553	334	50.5	69.58	90.5
13.553 ~13.567	15848	84	103.08	124
13.567 ~ 13.710	334	50.5	69.58	90.5
13.710 ~14.010	106	40.5	59.58	80.5
Above 14.010	30	29.5	48.58	69.5

NOTE:

- 1. Field Strength ($dB\mu V/m$) = 20*log[Field Strength ($\mu V/m$)].
- 2. In the emission tables above, the tighter limit applies at the band edges.

FCC §15.225(d)

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- 2. For above 1000 MHz, limit field strength of harmonics: 54dBμV/m@3m (AV) and 74dBμV/m@3m (PK).

5.3.2 Test Setup

See section 4.1.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented. The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.3.4 Test Result

Please refer to ANNEX A.2 and A.3

NOTE:

1. Results $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

The reading level is calculated by software which is not shown in the sheet

- 2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) Amplifier Gain (dB)
- 3. Over limit = Results Limit.

5.4 Frequency Tolerance

5.4.1 Limit

FCC §15.225(e)

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of −20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4.2 Test Setup

See section 4.1.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

- 1. The test is performed in a Temperature Chamber.
- 2. The EUT is configured as MS + DC Power Supply.

5.4.4 Test Result

Please refer to ANNEX A.4.

5.5 Conducted Emission

5.5.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dBµV)		
	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
0.50 - 30	60	50	

5.5.2 Test Setup

See section 4.1.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.5.4 Test Result

Please refer to ANNEX A.5.

NOTE:

1. Results $(dB\mu V)$ = Reading $(dB\mu V)$ + Factor (dB)

The reading level is calculated by software which is not shown in the sheet

- 2. Factor = Insertion loss + Cable loss
- 3. Over limit = Results Limit.

ANNEX A TEST RESULT

A.1 Emission Bandwidth

Sample No.	SC-SH2530133-S01	Temperature	23.2°C
Humidity	46%RH	Test Voltage	AC 120V/50Hz
Test Engineer	Hao Longda	Test Date	2025.04.11

Test Data

Frequency	Emission Bandwidth(20dB down)	Occupied Bandwidth(99%)
(MHz)	(kHz)	(kHz)
13.56	65.90	85.084

Test plots

Emission Bandwidth & 99% Occupied Bandwidth

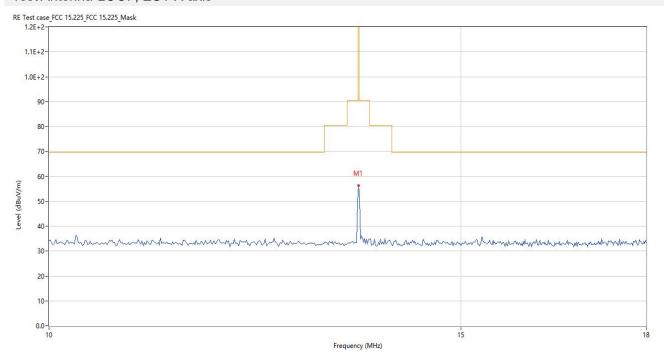
Equipment Information						
Description	Manufacturer	Model	Equipment No.	Cal. Date	Cal. Due	Use
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2025.02.12	2026.02.11	\boxtimes
Test Antenna-	SCHWARZBECK	FMZB	BH-EMC-L067	2024.03.11	2027.03.10	
Loop	SCHWARZBECK	1519B	BH-EIVIC-LUU7	2024.03.11	2027.03.10	
Anechoic	Vi∐ong	9m*6m*6m	BH-EMC-L001	2024.04.18	2027.04.17	
Chamber	YiHeng		DH-EIVIC-LUUT	2024.04.10	2021.04.17	

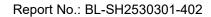
Tel: 86-21-58180736 Web: www.titcgroup.com Template No.: TRP4-EC-17 V2.0

E-mail: ks_qc@baluntek.com Page No. 19 / 34

A.2 Field Strength of Fundamental Emissions

Note: Field Strength of Fundamental Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.


Sample No.	SC-SH2530133-S01	Temperature	21.5°C
Humidity	52%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Hao Longda	Test Date	2025.04.08


Test Data

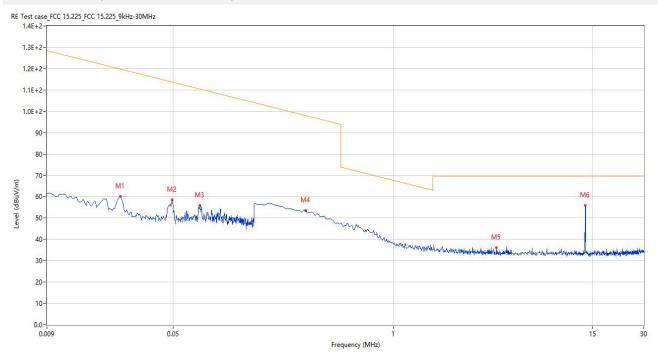
Field Strength of Fundamental Emissions Value							
Frequency (MHz)	Detector	Field Strength (dBµV/m)	Limit @3m (dBµV/m)	EUT	Margin (dB)		
13.562	PEAK	56.20	124.0	X axis	67.80		

Test Plot

Test Antenna-LOOP, EUT X axis

Equipment Information									
Description	Manufacturer	Model	Equipment No.	Cal. Date	Cal. Due	Use			
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2025.02.12	2026.02.11	\boxtimes			
Test Antenna-	SCHWARZBECK	FMZB 1519B	BH-EMC-L067	2024.03.11	2027.03.10	\boxtimes			
Loop	SCHWARZBECK								
Anechoic	Villana	0m*6m*6m	PH EMC LOO1	2024.04.18	2027.04.17				
Chamber	YiHeng	9m*6m*6m	BH-EMC-L001	2024.04.10	2021.04.17				
Description	Manufacturer	Name	Version		1	Use			
Test Software	BALUN	BL410-E	V21.919		1	\square			

A.3 Radiated Emissions


Note 1: This frequency which near 13.560 MHz with circle should be ignored because they are NFC carrier frequency.

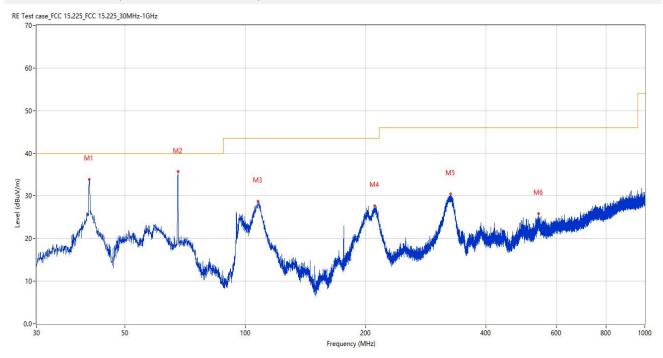
Note 2: All Radiated Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.

Sample No.	SC-SH2530133-S01	Temperature	21.5°C
Humidity	52%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Hao Longda	Test Date	2025.04.08

The Data and Plots (9 kHz ~ 30 MHz)(at 3m chamber)

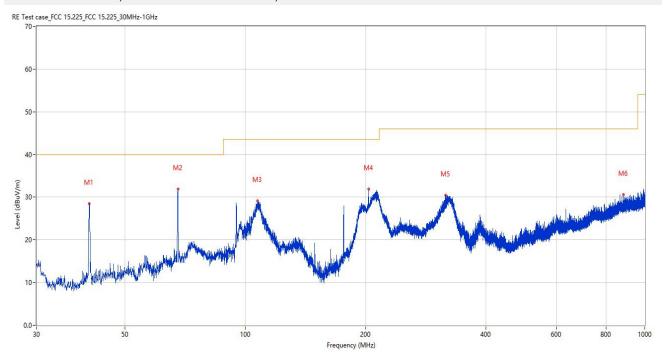
Below 30 MHz, Test Antenna LOOP, EUT X axis

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	0.025	60.17	19.35	119.8	59.63	Peak	101.00	100	Vertical	Pass
2	0.049	58.50	19.21	113.8	55.30	Peak	104.00	100	Vertical	Pass
3	0.072	55.95	19.16	110.5	54.55	Peak	108.00	100	Vertical	Pass
4	0.304	53.49	18.99	98.0	44.51	Peak	109.00	100	Vertical	Pass
5	4.054	36.06	19.41	69.5	33.44	Peak	291.00	100	Vertical	Pass
6	13.556	55.83	19.21	69.5	13.67	Peak	115.00	100	Vertical	N/A



Equipment Information									
Description	Manufacturer	Model	Equipment No	Cal. Date	Cal. Due	Use			
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2025.02.12	2026.02.11	\boxtimes			
Test Antenna- Loop	SCHWARZBECK	FMZB 1519B	BH-EMC-L067	2024.03.11	2027.03.10	\boxtimes			
Anechoic Chamber	YiHeng	9m*6m*6m	BH-EMC-L001	2024.04.18	2027.04.17				
Description	Manufacturer	Name	Version	,	ĺ	Use			
Test Software	BALUN	BL410-E	V21.919		1	\square			

Test Data and Plots (30 MHz ~ 10th Harmonic)


30 MHz to 1 GHz, Test Antenna Vertical, EUT X axis

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	40.670	33.90	-25.71	40.0	6.10	Peak	247.00	100	Vertical	Pass
2	67.782	35.67	-28.24	40.0	4.33	Peak	138.00	100	Vertical	Pass
3	107.551	28.73	-26.38	43.5	14.77	Peak	181.00	100	Vertical	Pass
4	211.002	27.63	-26.37	43.5	15.87	Peak	131.00	200	Vertical	Pass
5	326.529	30.39	-22.53	46.0	15.61	Peak	114.00	100	Vertical	Pass
6	541.626	25.86	-17.09	46.0	20.14	Peak	119.00	100	Vertical	Pass

30 MHz to 1 GHz, Test Antenna Horizontal, EUT X axis

No.	Frequency	Results	Factor	Limit	Margin	Detector	Table	Height	Antenna	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(Degree)	(cm)		
1	40.670	28.45	-25.71	40.0	11.55	Peak	132.00	200	Horizontal	Pass
2	67.782	31.88	-28.24	40.0	8.12	Peak	175.00	200	Horizontal	Pass
3	107.260	29.10	-26.36	43.5	14.40	Peak	229.00	200	Horizontal	Pass
4	203.388	31.96	-26.23	43.5	11.54	Peak	291.00	200	Horizontal	Pass
5	316.878	30.43	-22.88	46.0	15.57	Peak	114.00	100	Horizontal	Pass
6	884.570	30.63	-9.77	46.0	15.37	Peak	5.00	100	Horizontal	Pass

Radiated Emissions									
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use			
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2025.02.12	2026.02.11	\boxtimes			
Test Antenna- Bi-Log	SCHWARZBECK	VULB 9163	BH-EMC-L132	2024.03.11	2027.03.10				
Anechoic Chamber	YiHeng	9m*6m*6m	BH-EMC-L001	2024.04.18	2027.04.17	\boxtimes			
Description	Manufacturer	Name		Vers	sion	Use			
Test Software	BALUN	BL	410-E	V21.919		\boxtimes			

A.4 Frequency Stability

Note 1: Because the 85%(3.332V) of the rated supply voltage value exceeds the cut-off voltage lower(3.45V) limit of the manufacturer, the cut-off voltage of EUT is test here.

Note 2: The operating temperature range of the EUT is -20°C to 55°C.

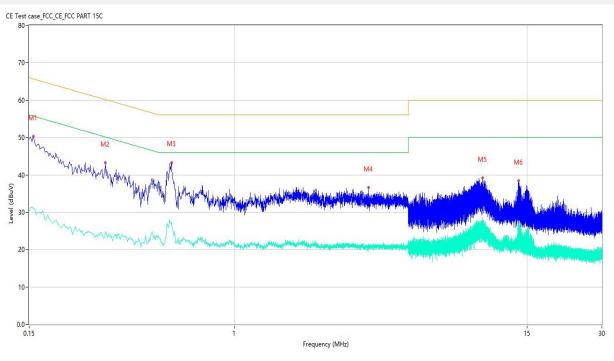
Sample No.	SC-SH2530133-S01	Temperature	21.5°C
Humidity	52%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Hao Longda	Test Date	2025.04.08

OPERATING FREQUENCY:	13560000 Hz
REFERENCE VOLTAGE:	3.92 V
DEVIATION LIMIT:	±0.01%

	Test Conditions				
VOLTAGE (%)	Power	Temperatur	Frequency(Hz)	Deviation(%)	Verdict
	(VDC)	e (°C)			
100		-20	13560025	0.000184	
100		-10	13560000	0.000000	
100		0	13560000	0.000000	
100		+10	13560000	0.000000	
100	0.00	+20	13559792	-0.001534	
100	3.92	+25	13559792	-0.001534	
100		+30	13560025	0.000184	Pass
100		+40	13559792	-0.001534	F 455
100		+50	13560000	0.000000	
100		+55	13560025	0.000184	
MAX(Battery	3.332	+20	13559792	-0.001534	
End Point, 85)	3.332	+20	13339792	-0.001554	
MIN(Battery End Point, 115)	4.53	+20	13560000	0.000000	

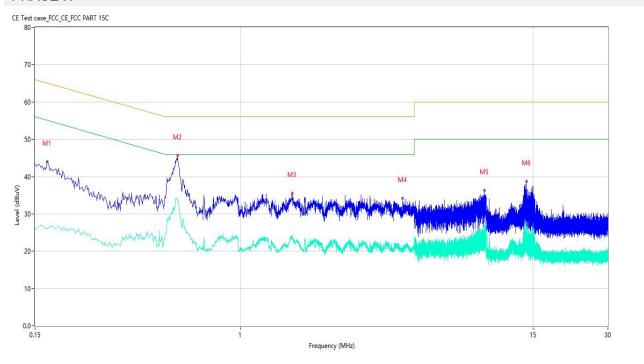
	Equipment Information								
Description	Manufacturer	Model	Equipment No.	Cal. Date	Cal. Due	Use			
EMI Receiver	KEYSIGHT	N9038A	BH-EMC-L127	2025.02.12	2026.02.11				
Test Antenna- Loop	SCHWARZBECK	FMZB 1519B	BH-EMC-L067	2024.03.11	2027.03.10	\boxtimes			
Temperature Chamber	YOMA	DTL-0035	TJ8980-012	2024.04.12	2025.04.12	\boxtimes			
Anechoic Chamber	YiHeng	9m*6m*6m	BH-EMC-L001	2024.04.18	2027.04.17	\boxtimes			

A.5 Conducted Emissions


Note 1: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

Sample No.	SC-SH2530133-S01	Temperature	22.3°C
Humidity	51%RH	Test Voltage	AC 120V/60Hz
Test Engineer	Wu Dejun	Test Date	2025.04.08

Test Data and Plots


PHASE L

No.	Frequency	Results	Factor	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.156	50.25	9.83	65.67	15.42	Peak	L	Pass
1**	0.156	31.03	9.83	55.67	24.64	AV	L	Pass
2	0.304	43.22	9.77	60.13	16.91	Peak	L	Pass
2**	0.304	24.70	9.77	50.13	25.43	AV	L	Pass
3	0.560	43.29	9.75	56.00	12.71	Peak	L	Pass
3**	0.560	27.28	9.75	46.00	18.72	AV	L	Pass
4	3.470	36.62	9.62	56.00	19.38	Peak	L	Pass
4**	3.470	21.03	9.62	46.00	24.97	AV	L	Pass
5	9.974	39.12	9.16	60.00	20.88	Peak	L	Pass
5**	9.974	26.81	9.16	50.00	23.19	AV	L	Pass
6	13.916	38.43	8.98	60.00	21.57	Peak	L	Pass
6**	13.916	27.66	8.98	50.00	22.34	AV	L	Pass

PHASE N

No.	Frequency	Results	Factor	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)	(dB)	(dBuV)	(dB)			
1	0.168	44.02	9.73	65.06	21.04	Peak	N	Pass
1**	0.168	26.06	9.73	55.06	29.00	AV	N	Pass
2	0.560	45.65	9.74	56.00	10.35	Peak	N	Pass
2**	0.560	33.86	9.74	46.00	12.14	AV	N	Pass
3	1.618	35.56	9.75	56.00	20.44	Peak	N	Pass
3**	1.618	23.72	9.75	46.00	22.28	AV	N	Pass
4	4.488	34.22	9.63	56.00	21.78	Peak	N	Pass
4**	4.488	21.27	9.63	46.00	24.73	AV	N	Pass
5	9.588	36.28	9.20	60.00	23.72	Peak	N	Pass
5**	9.588	26.49	9.20	50.00	23.51	AV	N	Pass
6	14.134	38.73	9.01	60.00	21.27	Peak	N	Pass
6**	14.134	25.62	9.01	50.00	24.38	AV	N	Pass

Equipment Information								
Description	Manufacturer	Model	Equipment No.	Cal. Date	Cal. Due	Use		
EMI Receiver	KEYSIGHT	N9038A	TJEMC144	2025.02.12	2026.02.11	\boxtimes		
LISN	SCHWARZBECK	NSLK 8127	BH-EMC-L011	2025.02.11	2026.02.10	\boxtimes		
10dB Limiter	SCHWARZBECK	VTSD 9561-F	BH-EMC-L014	2025.02.11	2026.02.10	\boxtimes		
Shielded Room	YiHeng	5m*4m*3.2m	BH-EMC-L006	2024.02.22	2027.02.21			
Description	Manufacturer	N	ame	Version		Use		
Test Software	BALUN	BL ₄	410-E	V19.618		\boxtimes		

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SH2530301-AE1.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SH2530301-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SH2530301-AI.PDF".

Ti Group

Statement

1. The Testing Center guarantees the scientificity, accuracy and impartiality of the test, and is responsible

for all the information in the report, except the information provided by the customer. The customer is

responsible for the impact of the information provided on the validity of the results.

2. For the report with Accreditation Symbol, the items marked with "☆" are not within the accredited

scope.

3. This report is invalid if it is altered, without the signature of the testing and approval personnel, or

without the test report stamp.

4. The test data and results are only valid for the tested samples provided by the customer.

5. This report shall not be partially reproduced without the written permission of the Testing Center.

6. Any objection shall be raised to the Testing Center within 30 days after receiving the report.

-- END OF REPORT--