

TEST REPORT

Applicant Name: Inrico Technologies Co.,Ltd
Address: A1703, Shenzhen National Engineering Laboratory Building,
No. 20 Gaoxin South 7th Road, Shenzhen, China
Report Number: 2401A109741E-RF-00F
FCC ID: 2AIV6-S300PRO

Test Standard (s)

FCC PART 15.225

Sample Description

Product Type: Rugged Smart Device
Model No.: S300 Pro
Multiple Model(s) No.: N/A
Trade Mark: Inrico
Date Received: 2024-12-13
Issue Date: 2025-04-29

Test Result:	Pass▲
--------------	-------

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:Gala Liu

Gala Liu
RF Engineer

Approved By:Nancy Wang

Nancy Wang
RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China
Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	5
TEST METHODOLOGY	5
MEASUREMENT UNCERTAINTY	6
TEST FACILITY	6
SYSTEM TEST CONFIGURATION	7
DESCRIPTION OF TEST CONFIGURATION	7
EUT EXERCISE SOFTWARE	7
EQUIPMENT MODIFICATIONS	7
SUPPORT EQUIPMENT LIST AND DETAILS	7
EXTERNAL I/O CABLE	7
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC§15.203 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	11
ANTENNA CONNECTED CONSTRUCTION	11
FCC§1.1310 & §2.1093- RF EXPOSURE	12
APPLICABLE STANDARD	12
MEASUREMENT RESULT	12
FCC §15.207 - AC LINE CONDUCTED EMISSION	13
APPLICABLE STANDARD	13
EUT SETUP	13
EMI TEST RECEIVER SETUP	13
TEST PROCEDURE	14
FACTOR & OVER LIMIT CALCULATION	14
TEST DATA	14
FCC§15.225, §15.205& §15.209 - RADIATED EMISSIONS TEST	17
APPLICABLE STANDARD	17
EUT SETUP	17
EMI TEST RECEIVER SETUP	18
FACTOR & OVER LIMIT/MARGIN CALCULATION	19
TEST DATA	19
FCC§15.225(E) - FREQUENCY STABILITY	31
APPLICABLE STANDARD	31
TEST PROCEDURE	31
TEST DATA	31
FCC§15.215(C) - 20DBEMISSION BANDWIDTH	33
REQUIREMENT	33
TEST PROCEDURE	33
TEST DATA	34

EUT PHOTOGRAPHS.....	35
TEST SETUP PHOTOGRAPHS.....	36

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401A109741E-RF-00F	Original Report	2025-04-29

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Rugged Smart Device
Tested Model	S300 Pro
Multiple Model(s)	N/A
Frequency Range	13.56 MHz
E-field Strength	70.88dBuV/m@3m
Modulation Technique	ASK
Voltage Range	DC 3.80V from Li-ion Battery or DC 5V from Adapter
Sample serial number	2VVL-1 (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: HJ-0503000-US Input: AC 100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 3.0A, 15.0W

Note: Only the worst case (tested with a representative tag) was recorded in the report.

Objective

This Type approval report is in accordance with Part 2- Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The objective is to determine the compliance of the EUT with FCC rules, section 15.203, 15.205, 15.207, 15.209, 15.215 and 15.225.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter	Uncertainty
Occupied Channel Bandwidth	109.2kHz(k=2, 95% level of confidence)
RF Frequency	56.6Hz(k=2, 95% level of confidence)
AC Power Lines Conducted Emissions	9kHz-150kHz 150kHz-30MHz
	3.63dB(k=2, 95% level of confidence) 3.66dB(k=2, 95% level of confidence)
Radiated Emissions	0.009MHz~30MHz 30MHz~200MHz (Horizontal) 30MHz~200MHz (Vertical) 200MHz~1000MHz (Horizontal) 200MHz~1000MHz (Vertical)
	3.60dB(k=2, 95% level of confidence) 5.32dB(k=2, 95% level of confidence) 5.43dB(k=2, 95% level of confidence) 5.77dB(k=2, 95% level of confidence) 5.73dB(k=2, 95% level of confidence)
Temperature	±1°C
Humidity	±1%
Supply voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

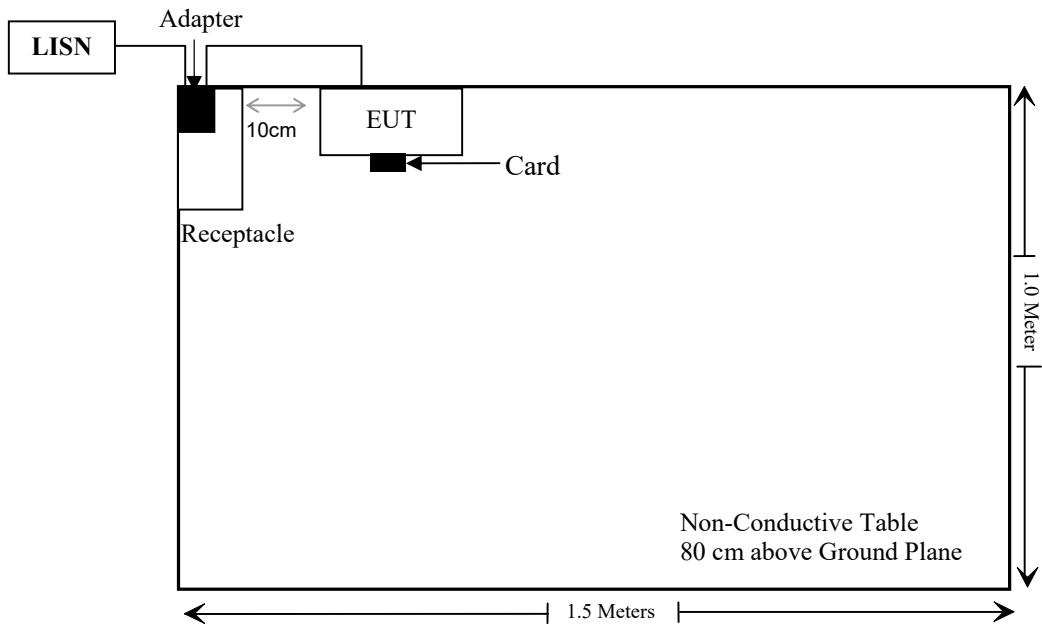
EUT Exercise Software

No Exercise Software was used.

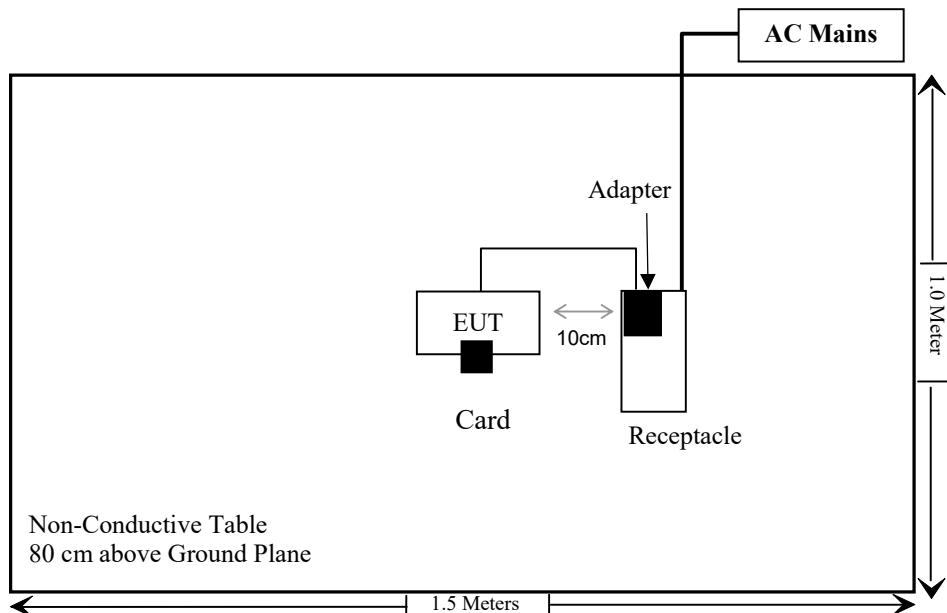
Equipment Modifications

No modification on the EUT.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
OUPU	Receptacle	PDU-OP1606K	6971041358020
Unknown	Card	Unknown	Unknown

External I/O Cable


Cable Description	Length (m)	From Port	To
Un-shielding Detachable USB Cable	1.0	EUT	Adapter
Un-shielded Un-detachable AC Cable	1.0	Receptacle	LISN/AC Mains

Block Diagram of Test Setup

For Conducted Emission:

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§1.1310 & §2.1093	RF Exposure	Compliant
§15.207	AC Line Conducted Emission	Compliant
§15.225 §15.209§15.205	Radiated Emission Test	Compliant
§15.225(e)	Frequency Stability	Compliant
§15.215(c)	20dB Emission Bandwidth	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emissions Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/12/04	2025/12/03
Rohde & Schwarz	LISN	ENV216	101613	2024/12/04	2025/12/03
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20
Unknown	CE Cable	Unknown	UF A210B-1-0720-504504	2024/05/21	2025/05/20
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
Radiated Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Frequency Stability					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03
BACL	Temperature & Humidity Chamber	BTH-150-40	30145	2024/12/06	2025/12/05
instek	DC Power Supply	GPS-3030DD	EM832096	NCR	NCR
Fluke	Digital Multimeter	287	19000011	2024/05/21	2025/05/20

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connected Construction

The EUT has one internal antenna arrangement for NFC which was permanently attached; fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC§1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to KDB447498 D01 General RF Exposure Guidance v06: 4.3. General SAR test exclusion guidance

c) For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):

- 1) For *test separation distances* > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by $[1 + \log(100/f_{(MHz)})]$
- 2) For *test separation distances* ≤ 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$
- 3) SAR measurement procedures are not established below 100 MHz

Measurement Result

For NFC, the power of EUT: E Field@3m is 70.88dB_uV/m = -24.32dBm (0.004mW)

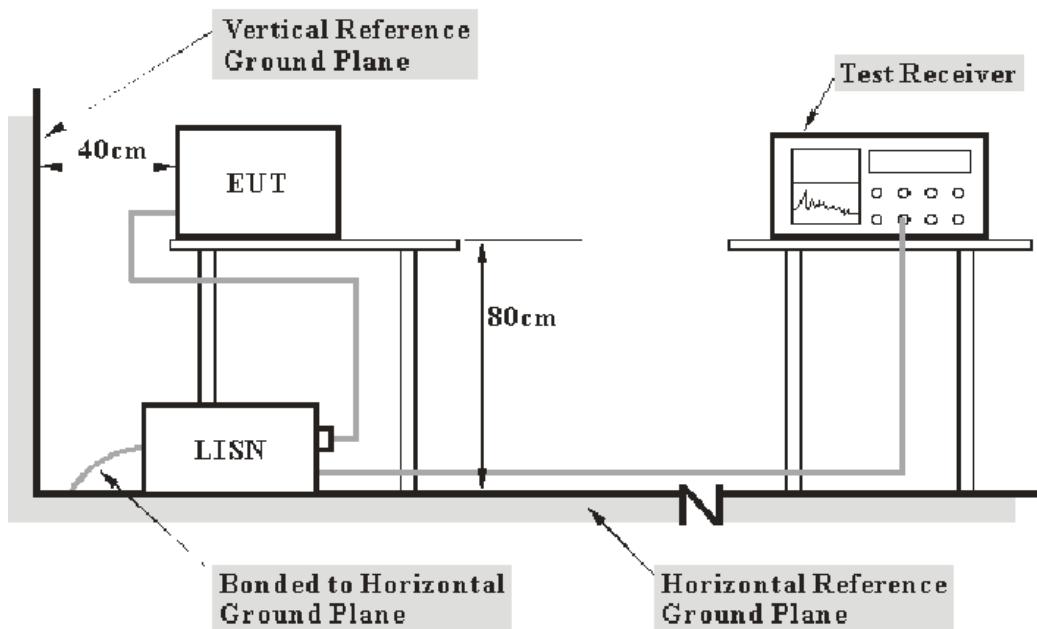
Note: $E[\text{dB}\mu\text{V}/\text{m}] = \text{EIRP}[\text{dBm}] + 95.2$ for $d = 3$ m.

SAR test exclusion threshold for NFC(13.56MHz) separation distance < 50 mm

$$= [474 * (1 + \log(100/f_{(MHz)}))] / 2$$

$$= 443 \text{mW}$$

$$> 0.004 \text{mW}$$


Result: Compliant.

FCC §15.207 - AC LINE CONDUCTED EMISSION

Applicable Standard

FCC§15.207

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW
150 kHz – 30MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

$$\text{Factor} = \text{LISN VDF} + \text{Cable Loss}$$

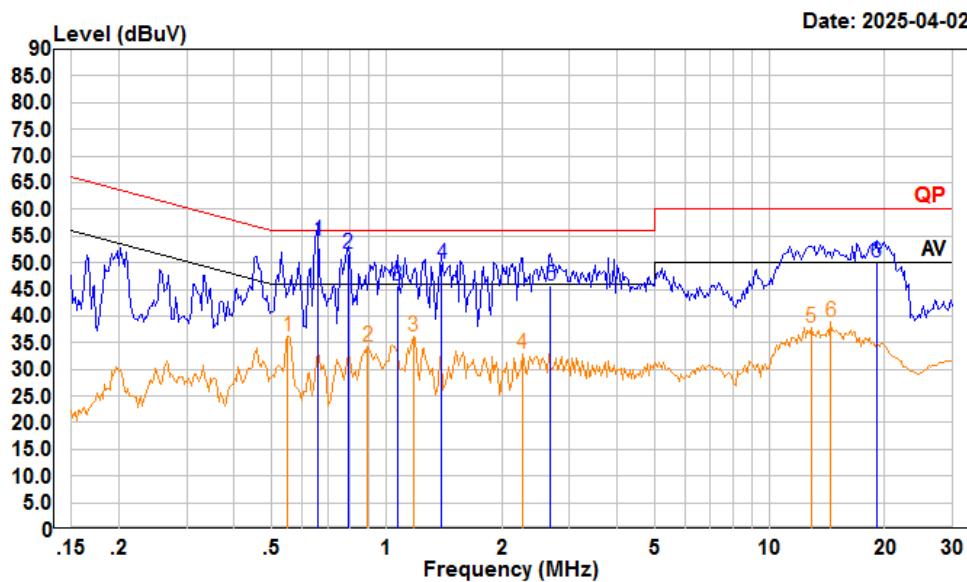
The “**Over limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

$$\text{Over Limit} = \text{Level} - \text{Limit}$$

$$\text{Level} = \text{Read Level} + \text{Factor}$$

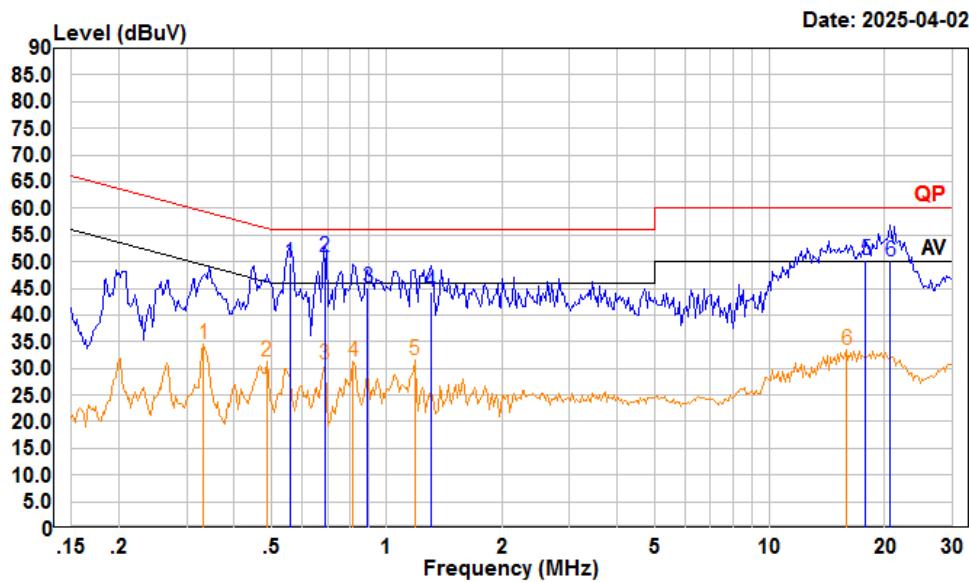
Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

Test Data


Environmental Conditions

Temperature:	21.5 °C
Relative Humidity:	46 %
ATM Pressure:	101.2 kPa

The testing was performed by Macy Shi on 2025-04-02.


Test mode: Transmitting

AC 120 V/60 Hz, Line

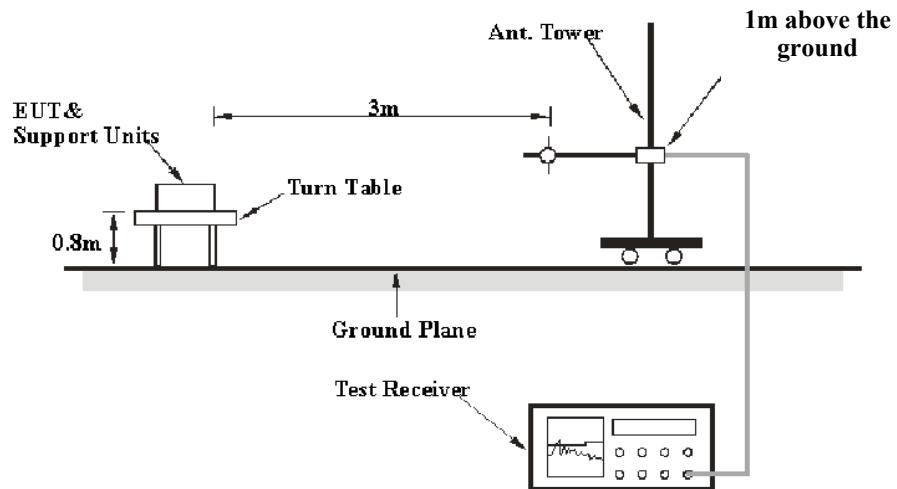
Freq	Read		LISN	Cable	Limit	Over	Remark	
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.661	33.10	54.07	10.83	10.14	56.00	-1.93	QP
2	0.792	30.80	51.72	10.80	10.12	56.00	-4.28	QP
3	1.065	24.80	45.57	10.65	10.12	56.00	-10.43	QP
4	1.388	28.90	49.89	10.84	10.15	56.00	-6.11	QP
5	2.678	24.50	45.69	11.02	10.17	56.00	-10.31	QP
6	19.021	29.09	50.15	10.88	10.18	60.00	-9.85	QP
	Read		LISN	Cable	Limit	Over		
Freq	Level	Level	Factor	Loss	Line	Limit	Remark	
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.552	15.42	36.17	10.62	10.13	46.00	-9.83	Average
2	0.890	13.47	34.27	10.70	10.10	46.00	-11.73	Average
3	1.172	15.21	36.06	10.71	10.14	46.00	-9.94	Average
4	2.261	11.69	32.93	11.06	10.18	46.00	-13.07	Average
5	12.852	17.36	37.88	10.30	10.22	50.00	-12.12	Average
6	14.440	18.27	38.79	10.30	10.22	50.00	-11.21	Average

AC 120V/ 60 Hz, Neutral

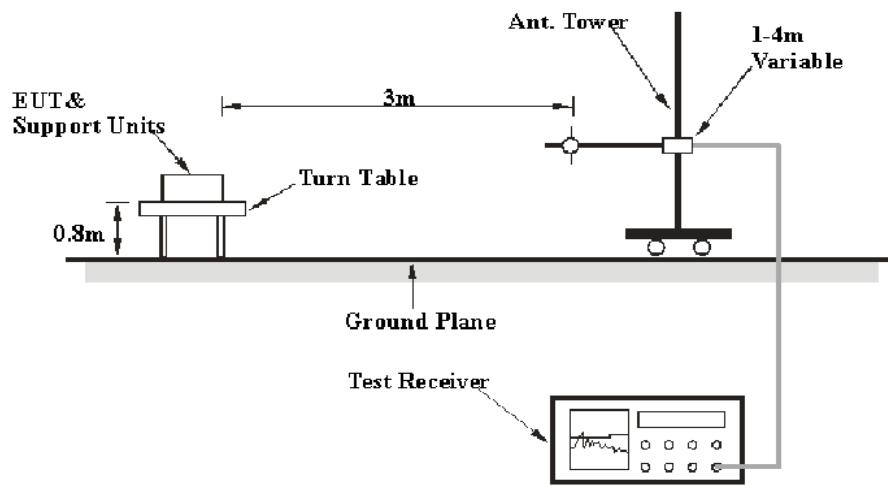
Condition: Neutral
 Project : 2401A109741E-RF
 tester : Macy.shi Note:Transmitting
 Setting : RBW:9kHz

	Freq	Read		LISN	Cable	Limit	Over	Remark
		MHz	dBuV	dBuV	dB	dB	dBuV	
1	0.558	29.20	49.86	10.53	10.13	56.00	-6.14	QP
2	0.690	29.99	50.74	10.60	10.15	56.00	-5.26	QP
3	0.890	24.31	45.14	10.73	10.10	56.00	-10.86	QP
4	1.303	23.50	44.41	10.76	10.15	56.00	-11.59	QP
5	17.849	29.41	50.38	10.78	10.19	60.00	-9.62	QP
6	20.704	28.90	50.14	11.07	10.17	60.00	-9.86	QP
Read								
	Freq	LISN		Cable	Limit	Over	Remark	
		MHz	dBuV	dBuV	dB	dBuV		
1	0.332	13.79	34.54	10.63	10.12	49.40	-14.86	Average
2	0.486	10.61	31.25	10.51	10.13	46.23	-14.98	Average
3	0.690	10.09	30.84	10.60	10.15	46.00	-15.16	Average
4	0.817	10.58	31.39	10.69	10.12	46.00	-14.61	Average
5	1.184	10.71	31.63	10.78	10.14	46.00	-14.37	Average
6	15.885	12.82	33.49	10.46	10.21	50.00	-16.51	Average

FCC§15.225, §15.205& §15.209 - RADIATED EMISSIONS TEST**Applicable Standard**


As per FCC Part 15.225

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.


(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

EUT Setup**9 kHz-30MHz:**

Note: Antenna is set up at 1m during test for below 30MHz.

30MHz-1GHz:

The radiated emission tests were performed in the 3-meter chamber a test site, using the setup accordance with the ANSI C63.10-2020.

EMI Test Receiver Setup

According to FCC Rules, 47 CFR 15.33, the EUT emissions were investigated up to 1000 MHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
	300 Hz	1 kHz	/	PK	Peak
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
	10 kHz	30 kHz	/	PK	Peak
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
	100 kHz	300 kHz	/	PK	Peak

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform QP/Average measurement.

Factor & Over Limit/Margin Calculation

The Level is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

$$\text{Level} = \text{Read Level} + \text{Factor}$$

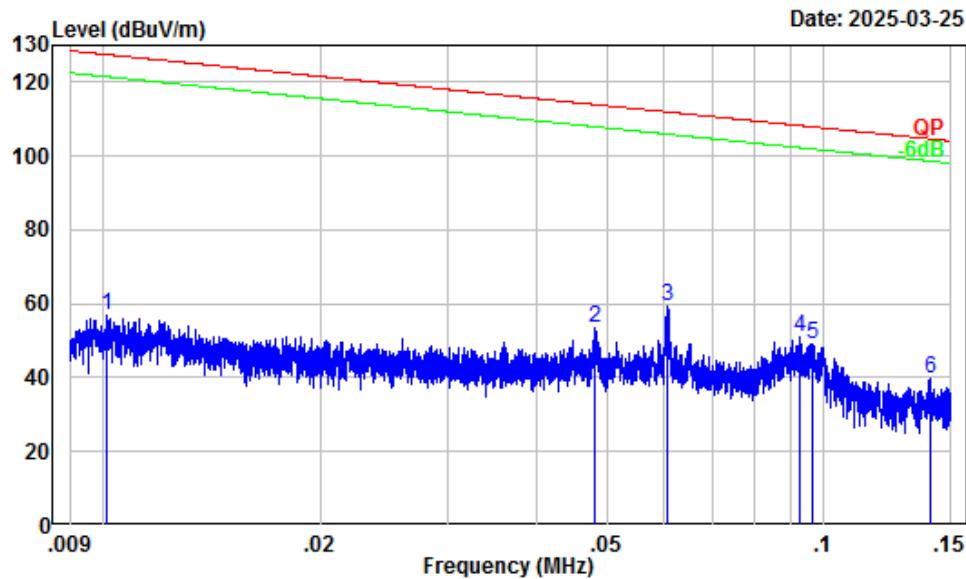
The “Over Limit” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

$$\text{Over Limit} = \text{Level} - \text{Limit}$$

Test Data

Environmental Conditions

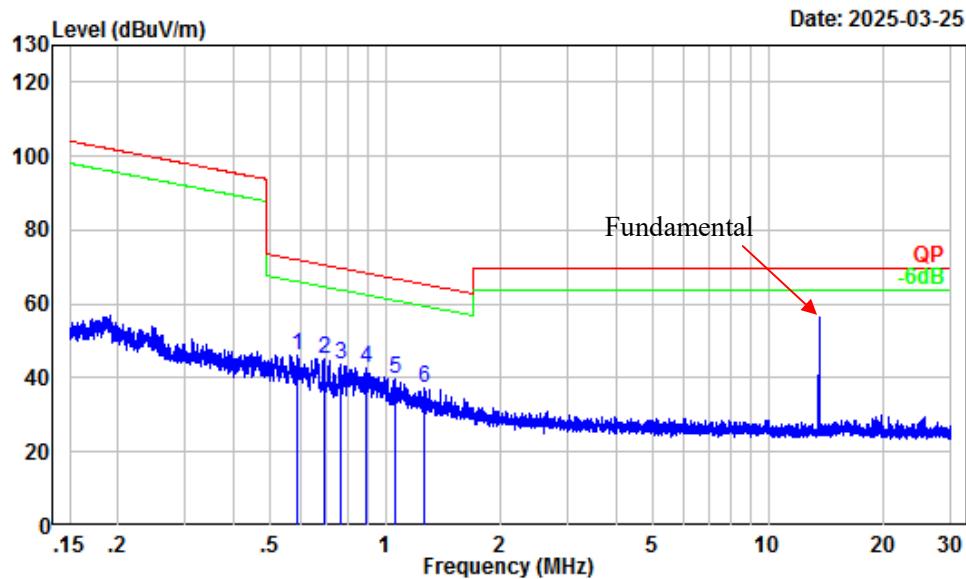
Temperature:	24.6 °C
Relative Humidity:	43 %
ATM Pressure:	100.4 kPa


The testing was performed by Alex Yan on 2025-03-25.

Test mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case of X-axis orientation were recorded)

1) Spurious Emissions (9 kHz~30 MHz):

Part 15 Section 15.31(f)(2) (9kHz-30MHz)
Limit @ 3m=Limit @ 300m-40*log(3(m)/300(m))
Limit @ 3m=Limit @ 30m-40*log(3(m)/30(m))


Ground-parallel
9 kHz~150 kHz

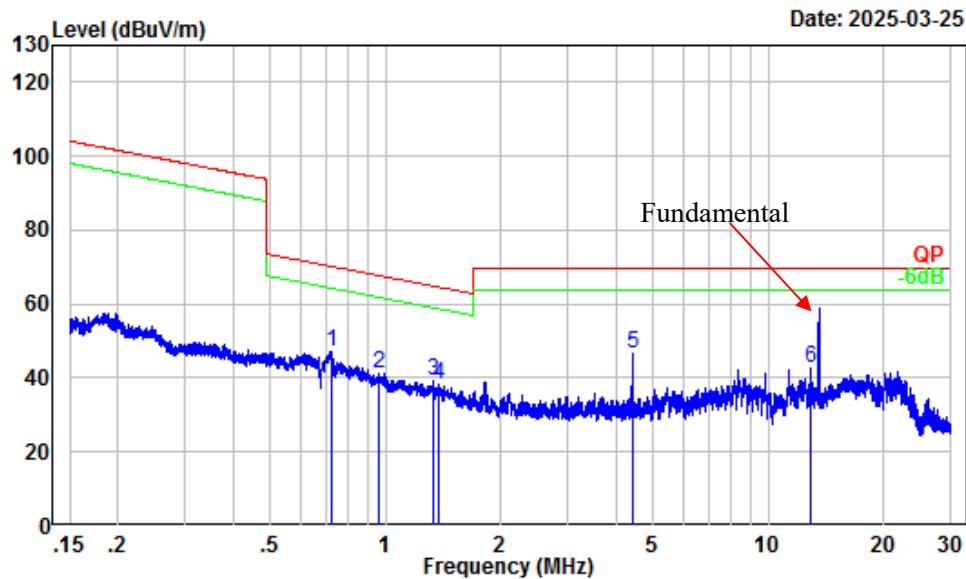
Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Note : Ground-Parallel
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	32.27	24.69	56.96	127.48	-70.52	Peak
2	0.05	26.59	26.94	53.53	113.94	-60.41	Peak
3	0.06	25.32	34.16	59.48	111.93	-52.45	Peak
4	0.09	22.52	28.54	51.06	108.28	-57.22	Peak
5	0.10	22.26	26.87	49.13	107.93	-58.80	Peak
6	0.14	19.60	20.15	39.75	104.64	-64.89	Peak

150 kHz~30 MHz

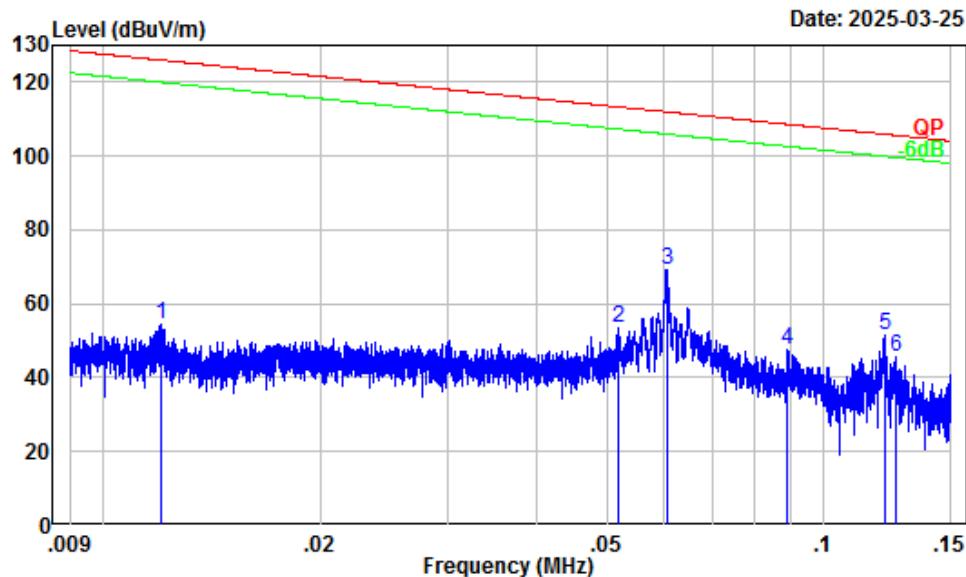
Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Note : Ground-Parallel
Tester : Alex Yan

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB
1	0.59	5.28	41.04	46.32	72.14	-25.82	Peak
2	0.69	4.06	41.19	45.25	70.77	-25.52	Peak
3	0.77	3.09	40.35	43.44	69.81	-26.37	Peak
4	0.89	2.01	40.60	42.61	68.49	-25.88	Peak
5	1.06	1.04	38.65	39.69	66.99	-27.30	Peak
6	1.26	0.47	36.76	37.23	65.41	-28.18	Peak


Perpendicular
9 kHz~150 kHz

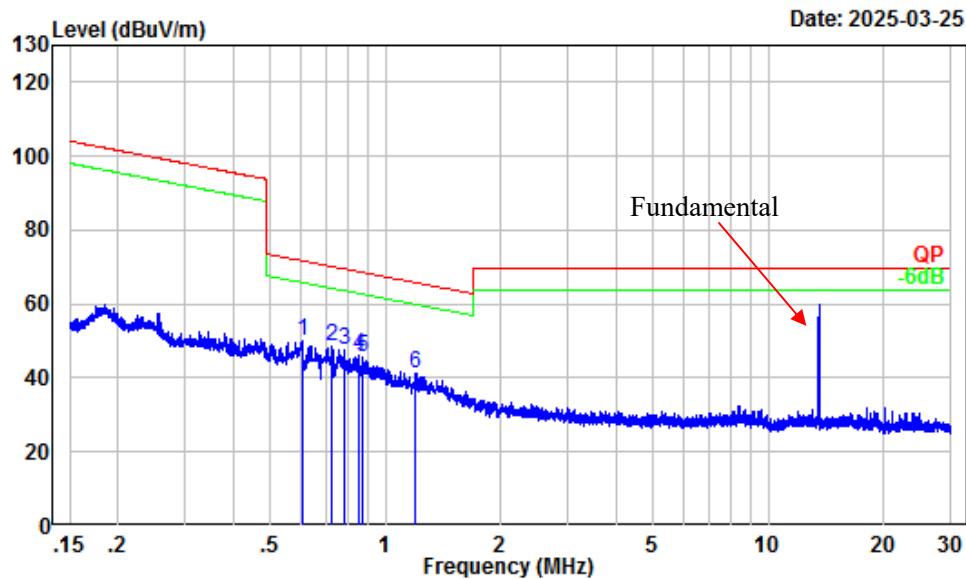
Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Note : Perpendicular
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.02	29.83	23.22	53.05	120.37	-67.32	Peak
2	0.05	26.62	24.20	50.82	114.00	-63.18	Peak
3	0.06	25.36	29.71	55.07	111.98	-56.91	Peak
4	0.09	22.54	24.89	47.43	108.30	-60.87	Peak
5	0.10	22.07	23.60	45.67	107.69	-62.02	Peak
6	0.12	20.75	27.44	48.19	105.94	-57.75	Peak


150 kHz~30 MHz

Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Note : Perpendicular
Tester : Alex Yan

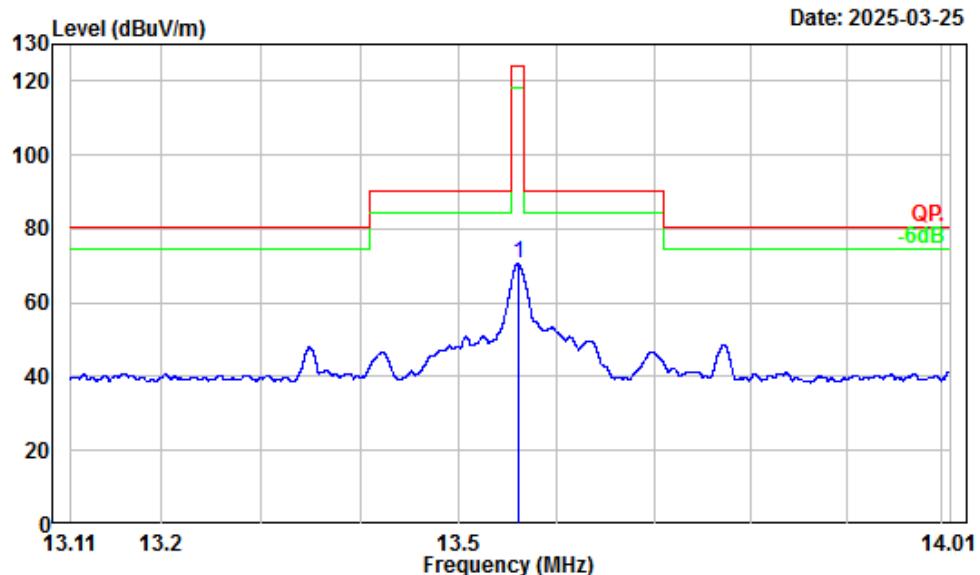
Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	0.72	3.67	43.29	46.96	70.37	-23.41	Peak
2	0.96	1.51	39.66	41.17	67.85	-26.68	Peak
3	1.34	0.26	39.00	39.26	64.90	-25.64	Peak
4	1.38	0.13	38.01	38.14	64.60	-26.46	Peak
5	4.41	-2.74	49.38	46.64	69.54	-22.90	Peak
6	12.89	-2.76	45.32	42.56	69.54	-26.98	Peak


Parallel
9 kHz~150 kHz

Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Note : Parallel
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	31.92	22.45	54.37	126.01	-71.64	Peak
2	0.05	26.20	27.41	53.61	113.29	-59.68	Peak
3	0.06	25.34	43.97	69.31	111.95	-42.64	Peak
4	0.09	22.76	25.00	47.76	108.60	-60.84	Peak
5	0.12	20.75	30.69	51.44	105.93	-54.49	Peak
6	0.13	20.48	25.32	45.80	105.62	-59.82	Peak

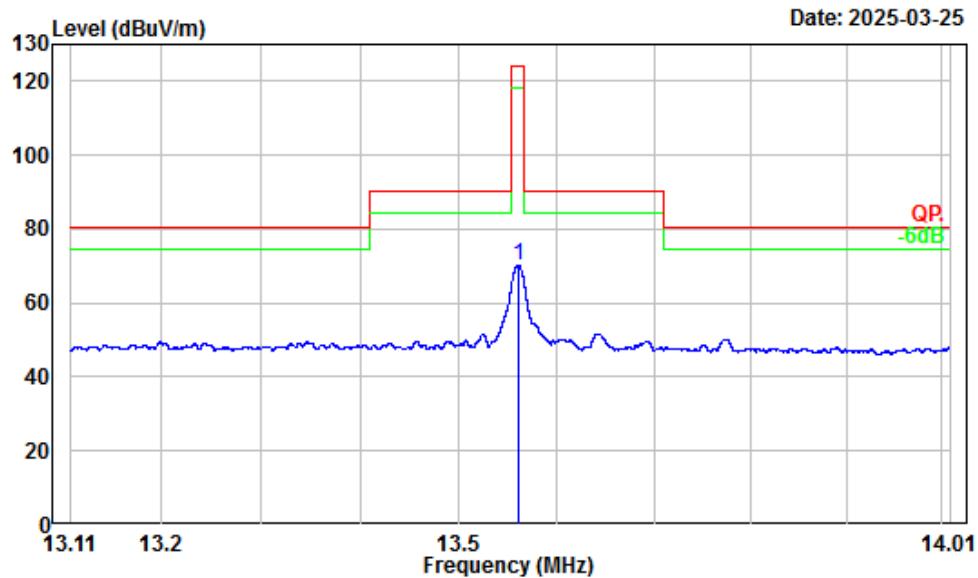
150 kHz~30 MHz



Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Note : Parallel
Tester : Alex Yan

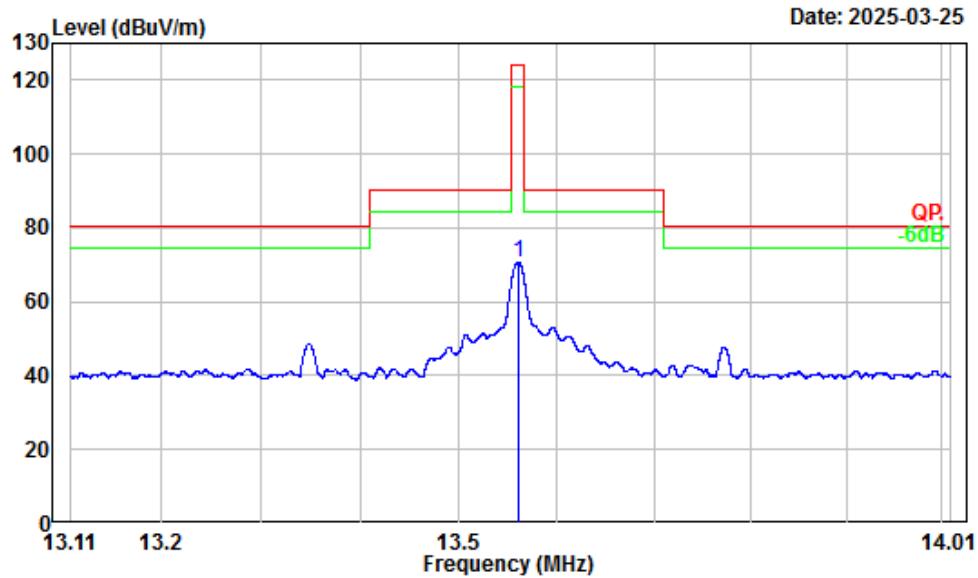
Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	0.61	5.10	44.79	49.89	71.92	-22.03	Peak
2	0.73	3.61	44.87	48.48	70.31	-21.83	Peak
3	0.78	2.96	44.45	47.41	69.69	-22.28	Peak
4	0.85	2.33	43.76	46.09	68.92	-22.83	Peak
5	0.88	2.13	43.35	45.48	68.65	-23.17	Peak
6	1.19	0.66	40.66	41.32	65.90	-24.58	Peak

2) Emission Mask & Fundamental:


Ground-parallel

Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Note : Ground-Parallel
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Limit Line	Over Limit	Remark
1			13.56 dB/m	73.19 dB _{uV}	70.47 dB _{uV/m}	124.00 dB _{uV/m}	-53.53 dB Peak


Perpendicular

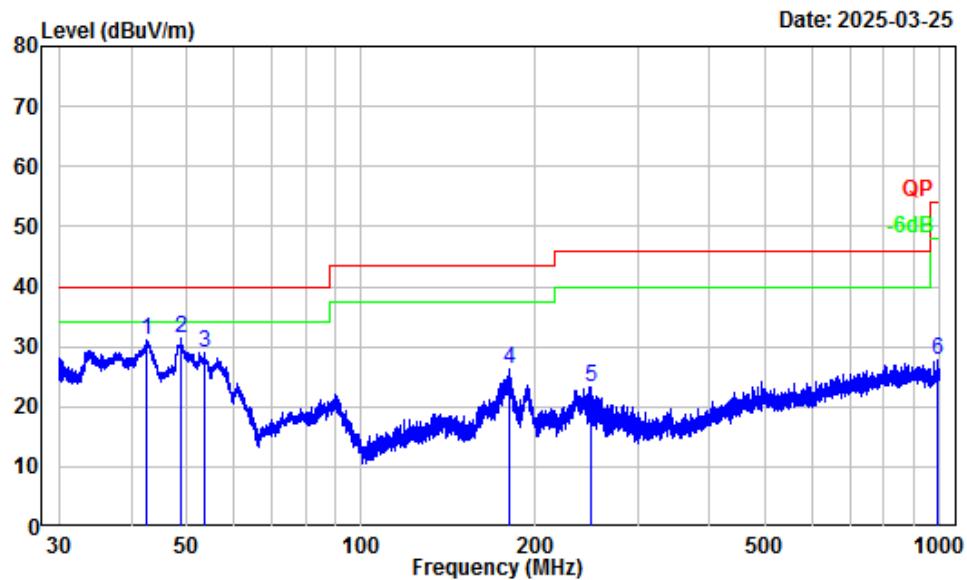
Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Note : Perpendicular
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
1	13.56	-2.72	72.89	70.17	124.00	-53.83	Peak

Parallel

Site : Chamber A
Condition : 3m
Project Number : 2401A109741E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Note : Parallel
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
1	13.56	-2.72	73.60	70.88	124.00	-53.12	Peak


3) Spurious Emissions (30 MHz~1GHz):

Horizontal

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2401A109741E-RF
Test Mode : NFC Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Alex Yan

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _{uV}	dB _{uV/m}		
1	177.35	-13.50	42.08	28.58	43.50	-14.92	Peak
2	193.35	-13.91	40.79	26.88	43.50	-16.62	Peak
3	214.61	-14.19	41.20	27.01	43.50	-16.49	Peak
4	227.89	-13.94	42.44	28.50	46.00	-17.50	Peak
5	254.28	-13.08	47.07	33.99	46.00	-12.01	Peak
6	280.64	-11.23	39.83	28.60	46.00	-17.40	Peak

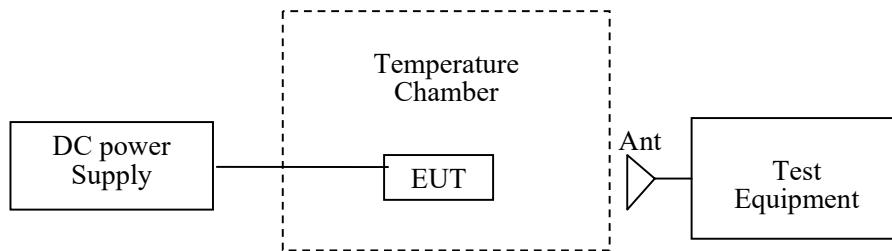
Vertical

Site : Chamber A
Condition : 3m Vertical
Project Number : 2401A109741E-RF
Test Mode : NFC Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Alex Yan

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dB _{uV}	dB _{uV/m}		
1	42.62	-14.31	45.50	31.19	40.00	-8.81	Peak
2	48.69	-17.61	48.93	31.32	40.00	-8.68	Peak
3	53.53	-18.32	47.21	28.89	40.00	-11.11	Peak
4	179.94	-13.65	39.76	26.11	43.50	-17.39	Peak
5	249.75	-13.09	36.47	23.38	46.00	-22.62	Peak
6	989.10	-0.59	28.27	27.68	54.00	-26.32	Peak

FCC§15.225(e) - FREQUENCY STABILITY

Applicable Standard


The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to $+50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and inductive antenna was connected to a Spectrum Analyzer. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	24.6 °C
Relative Humidity:	43 %
ATM Pressure:	100.4 kPa

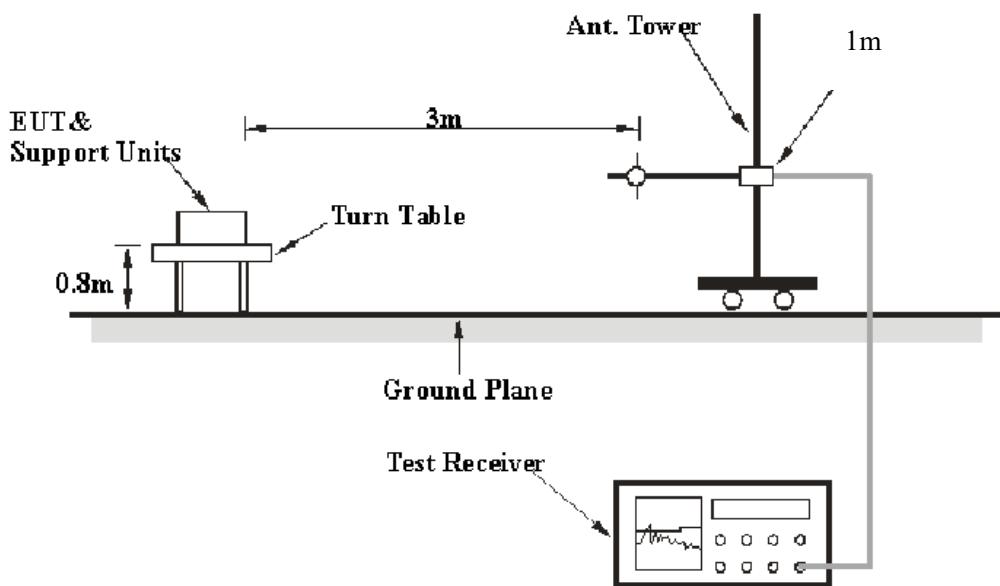
The testing was performed by Alex Yan on 2025-03-25.

Test Mode: Transmitting

Test Result: Pass

Voltage Supply (V _{DC})	Temperature (°C)	Measured Frequency (MHz)	Frequency Error (%)	Part 15.225 Limit (%)
3.8	-20	13.56018	0.0013	±0.01
	-10	13.56011	0.0008	±0.01
	0	13.56019	0.0014	±0.01
	10	13.56023	0.0017	±0.01
	20	13.56021	0.0015	±0.01
	30	13.56017	0.0013	±0.01
	40	13.56016	0.0012	±0.01
	50	13.56025	0.0018	±0.01
3.4	20	13.56028	0.0021	±0.01
4.4	20	13.56016	0.0012	±0.01

Note: the extreme voltage was declared by the applicant.


FCC§15.215(c) - 20dB EMISSION BANDWIDTH

Requirement

Per 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

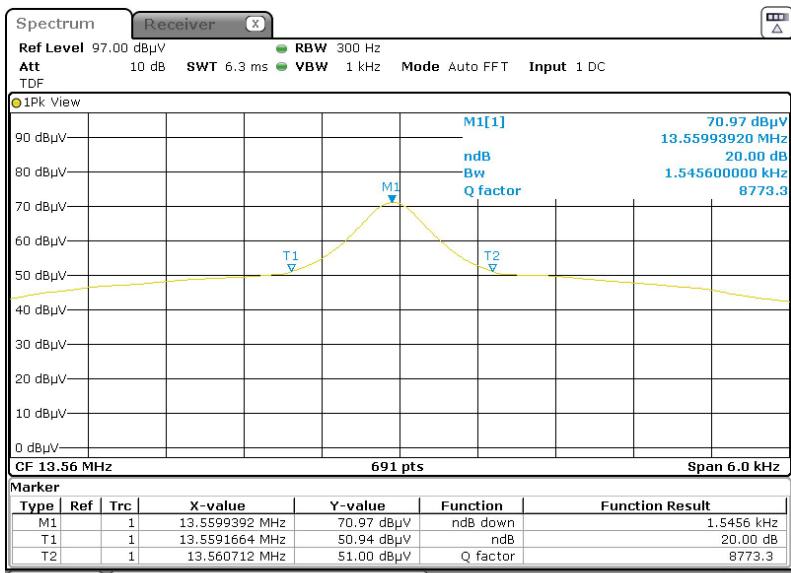
Test Procedure

Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

Test Data

Environmental Conditions

Temperature:	24.6 °C
Relative Humidity:	43 %
ATM Pressure:	100.4 kPa


The testing was performed by Alex Yan on 2025-03-30.

Test Mode: Transmitting

Test Result: Pass

Test Frequency (MHz)	20dB Bandwidth (kHz)
13.56	1.546

20 dB Emission Bandwidth

EUT PHOTOGRAPHS

Please refer to the attachment 2401A109741E-RF External photo and 2401A109741E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401A109741E-RFD Test Setup photo.

******* END OF REPORT *******