

SAR TEST REPORT

Applicant Snap Inc.

FCC ID 2AIRN-002

Product Wearable video camera

Trademark Spectacles

Model 002

Report No. R1801A0004-S2V5

Issue Date April 4, 2018

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Jiangpeng Lan

Jiang peng Lan

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	ıes	st Laboratory	3
	1.1	Notes of the Test Report	3
	1.2	Test facility	3
	1.3	Testing Location	4
	1.4	Laboratory Environment	4
2	Sta	atement of Compliance	5
3	De	escription of Equipment under Test	6
4	Tes	st Specification, Methods and Procedures	8
5	Ор	perational Conditions during Test	9
	5.1	Measurement Variability	9
	5.2	Test Configuration	9
		5.2.1 Wi-Fi Test Configuration	9
6	SA	AR Measurements System Configuration	11
	6.1	SAR Measurement Set-up	11
	6.2	DASY5 E-field Probe System	12
	6.3	SAR Measurement Procedure	13
7	Ma	ain Test Equipment	15
8	Tis	ssue Dielectric Parameter Measurements & System Verification	16
	8.1	Tissue Verification	16
	8.2	System Performance Check	18
9	No	ormal and Maximum Output Power	20
	9.1	WLAN Mode	20
	9.2	Bluetooth Mode	23
1	0 Me	easured and Reported (Scaled) SAR Results	24
	10.1	EUT Antenna Locations	24
	10.2	Standalone SAR test exclusion considerations	25
	10.3	Measured SAR Results	26
1	1 Me	easurement Uncertainty	31
Α	NNEX	X A: Test Layout	32
Α	NNEX	X B: System Check Results	35
Α	NNEX	X C: Highest Graph Results	43
Α	NNEX	X D: Probe Calibration Certificate (SN: 3677)	51
Α	NNEX	X E: Probe Calibration Certificate (SN: 3898)	62
Α	NNEX	X F: D2450V2 Dipole Calibration Certificate	100
Α	NNEX	X G: D5GHzV2 Dipole Calibration Certificate	108
Δ	NNEX	X H: DAE4 Calibration Certificate	122

C SAR Test Report No: R1801A0004-S2V5

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

FCC SAR Test Report No: R1801A0004-S2V5

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000
Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient poice is absolved and found year les	w and in compliance with requirement of standards

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 2.1: Highest Reported SAR

	Highest Report	ted SAR (W/kg)	
Mode	1g Head SAR (Separation 0mm)	1g Body SAR (Separation 0mm)	
Wi-Fi (2.4G)	0.593	0.538	
Wi-Fi (5G)	1.079	0.987	
Date of Testing:	January 12, 2018 and January 31, 2018 and March 13 2018 and March 27, 2018 ~ March 28, 2018		

Note: The device is in compliance with SAR for Uncontrolled Environment /General Population exposure limits (1.6 W/kg and 4.0 W/kg) specified in ANSI C95.1: 1992/IEEE C95.1: 1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

C SAR Test Report No: R1801A0004-S2V5

3 Description of Equipment under Test

Client Information

Applicant	Snap Inc.
Applicant address	63 Market Street, Venice, CA 90291, USA

General Technologies

Application Purpose:	Original Grant
EUT Stage	Identical Prototype
Model:	002
SN	/
Hardware Version:	/
Software Version:	/
Antenna Type:	Internal Antenna
	EUT Accessory
	Manufacturer: /
Battery	Model: SC03
	Power Rating: DC 3.8V, 96mAh

Report No: R1801A0004-S2V5

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)
ВТ	2.4G	Version 4.2 LE		2402 ~2480
	2.4G	DSSS,OFDM	802.11b/g/n HT20	2412 ~ 2462
	2.46	OFDM	802.11n HT40	2422 ~ 2452
Wi-Fi	5G	OFDM	802.11a/n 20M/40M/	5150 ~ 5350
		OI DIVI	ac 20M/40M/80M	5470 ~ 5850
	Does this dev	vice support MIMO □Yes	⊠No	

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

248227 D01 802.11 Wi-Fi SAR v02r02 447498 D01 General RF Exposure Guidance v06 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 865664 D02 RF Exposure Reporting v01r02

5 Operational Conditions during Test

5.1 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.2 Test Configuration

5.2.1 Wi-Fi Test Configuration

This device is a camera, and Wi-Fi is used either with the device as an access point (AP) or via Wi-Fi Direct to transfer videos from the device to the user's smart phone. It's enabled from the smart phone, and turns off when the transfer is complete.

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations,

Report No: R1801A0004-S2V5 which is tested using the initial test configuration to facilitate test reduction. For other exposure

conditions with a fixed test position, SAR test reduction is determined using only the initial test

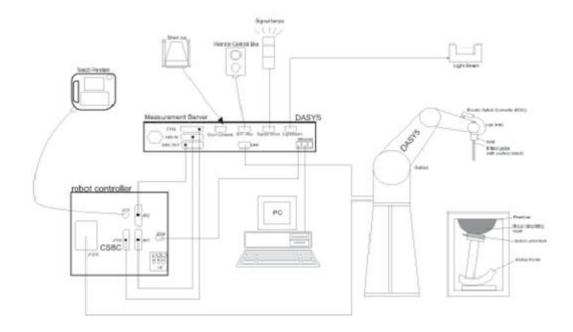
configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg or all required test positions are tested.
 - ♦ For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - ♦ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.



FCC SAR Test Report No: R1801A0004-S2V5

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- > The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- ➤ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- ➤ The phantom, the device holder and other accessories according to the targeted measurement.

CC SAR Test Report No: R1801A0004-S2V5

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better 30%.

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based

FCC SAR Test Report No: R1801A0004-S2V5 temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure


Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest		
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
probe sensors) to phantom surface		
Maximum probe angle from probe axis to		
phantom surface normal at the	30° ± 1°	20° ± 1°
measurement location		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
	When the x or y dimens	sion of the test device, in
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller
ΔxArea, ΔyArea	than the above, the m	neasurement resolution
	must be ≤ the correspo	nding x or y dimension of
	the test device with at	least one measurement
	point on the	e test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz
Maximum zo	oom scan	spatial resolution:△x _{zoom}	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*
	\triangle	Y zoom	2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*
N.A. series series				3 – 4GHz: ≤4mm
Maximum	Uı	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm
zoom scan				5 – 6GHz: ≤2mm
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm
resolution,	Graded grid	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm
normal to		surface		5 – 6GHz: ≤2mm
phantom surface		$\triangle z_{zoom}(n>1)$: between	<1 F. A.	- (- 1)
Surface		subsequent points		∆z _{zoom} (n-1)
Minimum				3 – 4GHz: ≥28mm
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm
volume				5 – 6GHz: ≥22mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

Report No: R1801A0004-S2V5

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2017-05-20	2018-05-19
Dielectric Probe Kit	HP	85070E	US44020115	2017-05-20	2018-05-19
Power meter	Agilent	E4417A	GB41291714	2017-05-21	2018-05-20
Power sensor	Agilent	N8481H	MY50350004	2017-05-21	2018-05-20
Power sensor	Agilent	E9327A	US40441622	2017-05-20	2018-05-19
Dual directional coupler	Agilent	777D	50146	2017-05-20	2018-05-19
Amplifier	INDEXSAR	IXA-020	0401	2017-05-20	2018-05-19
Wideband radio communication tester	R&S	CMW 500	113645	2017-05-20	2018-05-19
BT Base Station Simulator	R&S	СВТ	100271	2017-05-14	2018-05-13
E-field Probe	SPEAG	EX3DV4	3677	2017-01-23	2018-01-22
E-field Probe	SPEAG	EX3DV4	3898	2017-06-27	2018-06-26
DAE	SPEAG	DAE4	1291	2017-10-31	2018-10-30
Validation Kit 2450MHz	SPEAG	D2450V2	786	2017-08-29	2020-08-28
Validation Kit 5GHz	SPEAG	D5GHzV2	1151	2017-01-05	2020-01-04
Temperature Probe	Tianjin jinming	JM222	AA1009129	2017-05-17	2018-05-16
Hygrothermograph	Anymetr	NT-311	20150731	2017-05-17	2018-05-16
Software for Test	Speag	DASY5	52.8.8.1222	/	/
Software for Tissue	Agilent	85070	E06.01.36	/	/

FCC SAR Test Report Report No: R1801A0004-S2V5

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 Tissue Verification

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance.

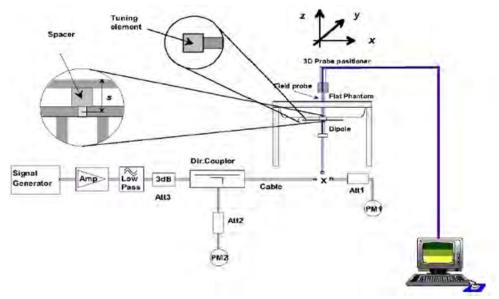
Target values

-	Frequency (MHz)		Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
Head	2450	62.7	0.5			0	0	39.2	1.80
Body	2450	73.2	0.1	0	26.7	0	0	52.7	1.95
Frequ (MF	•	Water (%)	Diethylenglycol monohexylether		Triton X-100		٤r	σ(s/m)	
	5250	65.53		17.24		17	.23	35.9	4.71
Head	5600	65.53	17.24		17.23		35.5	5.07	
	5750	65.53	17.24		17	.23	35.4	5.22	
	5250	72.52	13.74			13.74		48.9	5.36
Body	5600	72.52		13.74		13	.74	48.5	5.77
	5750	72.52		13.74		13	.74	39.2 52.7 ε _r 35.9 35.5 35.4 48.9	5.94

Report No: R1801A0004-S2V5

Measurements results

				Measured	Dielectric	Target D	ielectric	Lir	nit
Frequ	uency	Test Date	Temp	Paran	neters	Parameters		(Within	า ±5%)
(MHz)		Test Date	${\mathbb C}$	٤r	σ(s/m)	٤r	σ(s/m)	Dev	Dev
				C r	0(3/111)	c r	0(3/11)	ε _r (%)	σ(%)
2450	Head	1/12/2018	21.5	38.6	1.81	39.2	1.80	-1.53	0.56
2430	Body	1/31/2018	21.5	52.5	1.98	52.7	1.95	-0.38	1.54
E250	Head	3/27/2018	21.5	35.5	4.80	35.9	4.71	-1.11	1.91
5250	Body	3/27/2018	21.5	48.1	5.32	48.9	5.36	-1.64	-0.75
5600	Head	3/13/2018	21.5	34.5	5.19	35.5	5.07	-2.82	2.37
3000	Body	3/27/2018	21.5	47.8	5.88	48.5	5.77	-1.44	1.91
5750	Head	3/28/2018	21.5	35.0	5.28	35.4	5.22	-1.13	1.15
3730	Body	3/28/2018	21.5	47.6	6.14	48.3	5.94	-1.45	3.37


Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1 System Performance Check setup

Picture 2 Setup Photo

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
	Head	1/5/2017	-24.5	/	48.4	/
Dipole D5GHzV2	Liquid	1/4/2018	-24.2	1.2%	48.7	0.3Ω
SN: 1151 (5250MHz)	Body	1/5/2017	-24.7	/	50.4	/
(020011112)	Liquid	1/4/2018	-24.4	1.2%	49.9	-0.5Ω
	Head	1/5/2017	-22.8	/	55.5	/
Dipole D5GHzV2	Liquid	1/4/2018	-22.4	1.8%	55.2	-0.3Ω
SN: 1151 (5600MHz)	Body	1/5/2017	-23.3	/	57.2	/
,	Liquid	1/4/2018	-23.4	-0.4%	56.8	-0.4Ω
	Head	1/5/2017	-26.5	/	52.4	/
Dipole D5GHzV2	Liquid	1/4/2018	-26.8	-1.1%	52.5	0.1Ω
SN: 1151 (5750MHz)	Body	1/5/2017	-24.9	/	56.0	/
,	Liquid	1/4/2018	-25.2	-1.2%	56.4	0.4Ω

System Check results

-	uency Hz)	Test Date	Temp ℃	250mW/ 100mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
2450	Head	1/12/2018	21.5	13.70	54.80	52.60	4.18	1
2430	Body	1/31/2018	21.5	12.50	50.00	50.80	-1.57	2
5050	Head	3/27/2018	21.5	7.76	77.60	78.40	-1.02	3
5250	Body	3/27/2018	21.5	7.46	74.60	75.60	-1.32	4
F600	Head	3/13/2018	21.5	7.94	79.40	81.50	-2.58	5
5600	Body	3/27/2018	21.5	8.04	80.40	80.20	0.25	6
E7E0	Head	3/28/2018	21.5	7.72	77.20	80.50	-4.10	7
5750	Body	3/28/2018	21.5	7.15	71.50	74.60	-4.16	8
Note:	Target \	/alues used de	rive from	the calibration	n certificate Da	ata Storage	and Evalua	ation.

SAR Test Report No: R1801A0004-S2V5

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 WLAN Mode

Wi-Fi 2.4G	Channel	Frequency (MHz)	Average Conducted Power (dBm) for Data Rates (bps)	Tune-up Limit (dBm)
Mode		, ,	1M	
	1	2412	12.65	13.00
802.11b	6	2437	12.30	13.00
	11	2462	11.84	13.00
Mode	Channel	Frequency (MHz)	6M	Tune-up Limit (dBm)
	1	2412	11.79	13.00
802.11g	6	2437	11.56	13.00
	11	2462	11.13	13.00
Mode	Channel	Frequency (MHz)	6.5M	Tune-up Limit (dBm)
000 44:-	1	2412	12.15	13.00
802.11n	6	2437	11.93	13.00
(HT20)	11	2462	11.41	13.00
Mode	Channel	Frequency (MHz)	13.5M	Tune-up Limit (dBm)
000.44	3	2422	12.13	13.00
802.11n (HT40)	6	2437	11.62	13.00
(1140)	9	2452	12.35	13.00
Note: The Po	wer provided	by customers		

Wi-Fi 5G	Channel	Frequency (MHz)	Average Conducted Power (dBm) Data Rate (bps)	Tune-up Limit (dBm)	
Mode		(1711 12)	6M	Limit (dbin)	
	36	5180	9.40	10.00	
	40	5200	9.41	10.00	
000 446	44	5220	9.43	10.00	
802.11a	48	5240	9.30	10.00	
	52	5260	9.17	10.00	
	56	5280	8.71	10.00	

FCC SAR Test Report

	-CC SAR Test R	eport	кероп но	: R1801A0004-52V5
	60	5300	8.72	10.00
	64	5320	8.59	10.00
	100	5500	8.48	10.00
	116	5580	9.46	10.00
	132	5660	9.32	10.00
	140	5700	9.35	10.00
	149	5745	8.31	10.00
	157	5785	8.53	10.00
	165	5825	8.87	10.00
Mode	Channel	Frequency (MHz)	MCS0	Tune-up Limit (dBm)
	36	5180	9.05	10.00
	40	5200	9.11	10.00
	44	5220	9.18	10.00
	48	5240	9.11	10.00
	52	5260	8.84	10.00
	56	5280	8.44	10.00
	60	5300	8.48	10.00
802.11n	64	5320	8.33	10.00
(HT20)	100	5500	8.27	10.00
	116	5580	9.33	10.00
	132	5660	9.21	10.00
	140	5700	9.15	10.00
	149	5745	9.68	10.00
	157	5785	8.85	10.00
	165	5825	8.64	10.00
Mode	Channel	Frequency (MHz)	MCS0	Tune-up Limit (dBm)
	38	5190	9.50	10.00
	46	5230	9.32	10.00
	54	5270	8.80	10.00
	62	5310	8.74	10.00
802.11n	102	5510	8.24	10.00
(HT40)	110	5550	9.31	10.00
	118	5590	9.36	10.00
	134	5670	9.67	10.00
	151	5755	9.44	10.00
	159	5795	9.09	10.00

FCC SAR Test Report

	CC SAR TEST R	_		T
Mode	Channel	Frequency (MHz)	MCS0	Tune-up Limit (dBm)
	36	5180	9.03	10.00
	40	5200	9.12	10.00
	44	5220	9.17	10.00
	48	5240	9.10	10.00
	52	5260	8.82	10.00
	56	5280	8.41	10.00
000 44	60	5300	8.45	10.00
802.11ac (HT20)	64	5320	8.35	10.00
(1120)	100	5500	8.23	10.00
	116	5580	9.30	10.00
	132	5660	9.14	10.00
	140	5700	9.08	10.00
	149	5745	9.53	10.00
	157	5785	8.57	10.00
	165	5825	8.46	10.00
Mode	Channel	Frequency (MHz)	MCS0	Tune-up Limit (dBm)
	38	5190	9.11	10.00
	46	5230	9.02	10.00
	54	5270	8.37	10.00
	62	5310	8.58	10.00
802.11ac	102	5510	8.27	10.00
(HT40)	110	5550	9.18	10.00
	118	5590	9.32	10.00
	134	5670	9.31	10.00
	151	5755	9.24	10.00
	159	5795	8.77	10.00
Mode	Channel	Frequency	MCS0	Tune-up
ivioue	Charmer	(MHz)	IVIOSU	Limit (dBm)
	42	5210	9.22	10.00
802.11ac	58	5290	8.20	10.00
(HT80)	106	5530	9.15	10.00
(55)	122	5610	9.87	10.00
	155	5775	9.66	10.00
Note. The Pov	wer provided	by customers		

Report No: R1801A0004-S2V5

9.2 Bluetooth Mode

	C	onducted Power(dBr	n)	Tungun				
ВТ	Ch	Tune-up Limit (dBm)						
	Ch 0/2402 MHz	2402 MHz Ch 39/2441 MHz Ch 78/2480 MHz						
GFSK	8.99	9.00	8.48	9.50				
π/4DQPSK	8.30	8.35	7.82	9.50				
8DPSK	7.36	7.37	6.78	8.50				
BLE	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz	Tune-up Limit (dBm)				
GFSK	-2.66	-2.55	-2.42	-1.00				

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

The Antenna Locations diagram is detailed in SAR Test Setup and Antenna Locations FCC.

		Overall (Length:	x Width x High): 137mm x	140mm x	50mm					
Distance of the Antenna to the EUT surface											
Antonno	Back Side	Back Side	Back Side	F (0:1 (0:1		Dialet Cide	Top Cido	D # 011			
Antenna	(Close)	(Open Outside)	(Open Inside)	Front Side	Left Side	Right Side	Top Side	Bottom Side			
BT/Wi-Fi	<25mm	>25mm	<25mm	<25mm	>25mm	<25mm	<25mm	<25mm			
Antenna	\2311111	/25111111	<u> </u>	<25mm	≥25mm	<25mm	<25mm	<25mm			
	Positions for SAR tests										
BT/Wi-Fi	Voc	NI/A	Vaa	Vaa	NI/A	Voc	Vas	Vaa			
Antenna	Yes	N/A	Yes	Yes	N/A	Yes	Yes	Yes			

Note: 1. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg (for 1g SAR) or \leq 2 W/kg (for 10g SAR) then testing at the other channels is not required for such test configuration(s).

2. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

C SAR Test Report No: R1801A0004-S2V5

10.2 Standalone SAR test exclusion considerations

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- > f(GHz) is the RF channel transmit frequency in GHz
- > Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

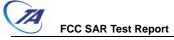
Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Distance (mm)	MAX Power (dBm)	Frequency (MHz)	Ratio	Evaluation
Bluetooth	5	9.50	2480	2.81	No

10.3 Measured SAR Results

Table 1: Wi-Fi (2.4G)

Test Position	Cover Type	Channel/ Frequency (MHz)	Mode 802.11b	Duty Cycle	Tune-up limit (dBm)	Conducted Power (dBm)	Drift (dB)	Area Scan Max.SAR (W/Kg)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Plot No.
				F	lead SAR	(Distance 0n	nm)					
Back Side (Close)	standard	1/2412	DSSS	99.12%	13.00	12.65	0.024	0.238	0.256	1.08	0.277	/
Back Side (Open Inside)	standard	1/2412	DSSS	99.12%	13.00	12.65	0.000	0.001	0.001	1.08	0.001	/
Front Side	standard	1/2412	DSSS	99.12%	13.00	12.65	-0.023	0.433	0.424	1.08	0.460	/
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Side	standard	1/2412	DSSS	99.12%	13.00	12.65	0.035	0.495	0.547	1.08	0.593	9
Top Side	standard	1/2412	DSSS	99.12%	13.00	12.65	0.025	0.039	0.041	1.08	0.044	/
Bottom Side	standard	1/2412	DSSS	99.12%	13.00	12.65	0.029	0.015	0.010	1.08	0.011	/
				В	ody SAR	(Distance 0n	nm)					•
Back Side (Close)	standard	1/2412	DSSS	99.12%	13.00	12.65	0.032	0.222	0.238	1.08	0.258	/
Back Side (Open Inside)	standard	1/2412	DSSS	99.12%	13.00	12.65	0.011	0.001	0.001	1.08	0.001	/
Front Side	standard	1/2412	DSSS	99.12%	13.00	12.65	-0.009	0.395	0.387	1.08	0.419	/
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Side	standard	1/2412	DSSS	99.12%	13.00	12.65	0.042	0.450	0.496	1.08	0.538	10
Top Side	standard	1/2412	DSSS	99.12%	13.00	12.65	0.033	0.046	0.047	1.08	0.051	/
Bottom Side	standard	1/2412	DSSS	99.12%	13.00	12.65	0.037	0.024	0.020	1.08	0.022	/
Note: 1 The v	alue with b	luo color is th	o mavimu	m SAD V	/alue of oa	ch toet hand						


Note: 1. The value with blue color is the maximum SAR Value of each test band.

^{2.} Initial test configuration is 802.11b mode, since the highest maximum output power.

	MAX Adjusted SAR										
Mode	Test	Channel/	MAX Reported	802.11b	Tune-up	Scaling	Adjusted SAR _{1g}				
Wode	Position	Frequency(MHz)	SAR _{1g} (W/kg)	Tune-up limit (dBm)	limit (dBm)	Factor	(W/kg)				
802.11g	Right Side	1/2412	0.593	13.00	13.00	1.00	0.593				
802.11n HT20	Right Side	1/2412	0.593	13.00	13.00	1.00	0.593				
802.11n HT40	Right Side	1/2412	0.593	13.00	13.00	1.00	0.593				

Note: SAR is not required for other modes when the highest reported SAR for initial test

configuration is adjusted by the ratio of specified maximum output power and the adjusted SAR is \leqslant 1.2 W/kg.

Table 2: Wi-Fi (5G, U-NII-1)

Per 248227, for band U-NII-1 and U-NII-2A, when the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

Test Position	Cover Type	Channel/ Frequency (MHz)	Mode 802.11n HT40	Duty Cycle	Tune-up limit (dBm)	Conducted Power (dBm)	Drift (dB)	Area Scan Max.SAR (W/Kg)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Plot No.	
	Head SAR (Distance 0mm)												
Back Side (Close)	standard	38/5190	OFDM	90.68%	10.00	9.50	0.032	0.028	0.029	1.24	0.035	/	
Back Side (Open Inside)	standard	38/5190	OFDM	90.68%	10.00	9.50	0.000	0.002	0.004	1.24	0.005	/	
Frant Cida	-tll	38/5190	OFDM	90.68%	10.00	9.50	0.013	0.771	0.835	1.24	1.033	11	
Front Side	standard	46/5230	OFDM	90.68%	10.00	9.32	0.071	0.644	0.716	1.29	0.923	/	
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Right Side	standard	38/5190	OFDM	90.68%	10.00	9.50	-0.053	0.431	0.583	1.24	0.722	/	
Top Side	standard	38/5190	OFDM	90.68%	10.00	9.50	0.118	0.119	0.107	1.24	0.132	/	
Bottom Side	standard	38/5190	OFDM	90.68%	10.00	9.50	0.066	0.014	0.014	1.24	0.017	/	
Front Side	Repeated	38/5190	OFDM	90.68%	10.00	9.50	-0.060	0.766	0.820	1.24	1.015	/	
				Вос	dy SAR (D	istance 0mm)						
Back Side (Close)	standard	38/5190	OFDM	90.68%	10.00	9.50	0.025	0.036	0.037	1.24	0.045	/	
Back Side (Open Inside)	standard	38/5190	OFDM	90.68%	10.00	9.50	0.000	0.001	0.002	1.24	0.002	/	
Front Side	standard	38/5190	OFDM	90.68%	10.00	9.50	0.058	0.732	0.784	1.24	0.970	12	
1 Torit Olde	Standard	46/5230	OFDM	90.68%	10.00	9.32	-0.040	0.628	0.711	1.29	0.917	/	
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Right Side	standard	38/5190	OFDM	90.68%	10.00	9.50	0.008	0.502	0.520	1.24	0.643	/	
Top Side	standard	38/5190	OFDM	90.68%	10.00	9.50	-0.105	0.116	0.105	1.24	0.130	/	
Bottom Side	standard	38/5190	OFDM	90.68%	10.00	9.50	0.127	0.024	0.024	1.24	0.029	/	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

^{2.} Initial test configuration is 802.11n HT40 mode, since the highest maximum output power.

Measurement Variability									
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio					
Front Side	38/5190	0.835	0.820	1.02					

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

FCC SAR Test Report No: R1801A0004-S2V5

Table 3: Wi-Fi (5G, U-NII-2C)

Test Position	Cover Type	Channel/ Frequency (MHz)	Mode 802.11n HT40	Duty Cycle	Tune-up limit (dBm)	Conducted Power (dBm)	Drift (dB)	Area Scan Max.SAR (W/Kg)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Plot No.
	Head SAR (Distance 0mm)											
Back Side (Close)	standard	134/5670	OFDM	90.68%	10.00	9.67	-0.062	0.043	0.029	1.19	0.034	/
Back Side (Open Inside)	standard	134/5670	OFDM	90.68%	10.00	9.67	0.000	0.002	0.003	1.19	0.004	/
		134/5670	OFDM	90.68%	10.00	9.67	0.031	1.180	0.907	1.19	1.079	13
Front Side	standard	118/5590	OFDM	90.68%	10.00	9.36	0.024	0.977	0.816	1.28	1.043	/
		102/5510	OFDM	90.68%	10.00	8.24	-0.008	0.812	0.650	1.65	1.075	/
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Side	standard	134/5670	OFDM	90.68%	10.00	9.67	-0.044	0.729	0.624	1.19	0.742	/
Top Side	standard	134/5670	OFDM	90.68%	10.00	9.67	0.021	0.040	0.066	1.19	0.079	/
Bottom Side	standard	134/5670	OFDM	90.68%	10.00	9.67	0.060	0.013	0.026	1.19	0.031	/
Front Side	Repeated	134/5670	OFDM	90.68%	10.00	9.67	0.020	1.060	0.886	1.19	1.054	/
				Вос	dy SAR (D	istance 0mm)					
Back Side (Close)	standard	134/5670	OFDM	90.68%	10.00	9.67	-0.031	0.044	0.033	1.19	0.039	/
Back Side (Open Inside)	standard	134/5670	OFDM	90.68%	10.00	9.67	0.000	0.001	0.001	1.19	0.002	/
	standard	134/5670	OFDM	90.68%	10.00	9.67	0.049	0.726	0.830	1.19	0.987	14
Front Side		118/5590	OFDM	90.68%	10.00	9.36	-0.005	0.603	0.712	1.28	0.910	/
		102/5510	OFDM	90.68%	10.00	8.24	0.090	0.570	0.562	1.65	0.929	/
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Side	standard	134/5670	OFDM	90.68%	10.00	9.67	0.032	0.586	0.503	1.19	0.598	/
Top Side	standard	134/5670	OFDM	90.68%	10.00	9.67	0.097	0.042	0.062	1.19	0.074	/
Bottom Side	standard	134/5670	OFDM	90.68%	10.00	9.67	0.057	0.020	0.031	1.19	0.037	/

Note: 1. The value with blue color is the maximum SAR Value of each test band.

^{2.} Initial test configuration is 802.11n HT40 mode, since the highest maximum output power.

Measurement Variability									
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio					
Front Side	134/5670	0.907	0.886	1.02					

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

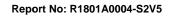
Table 4: Wi-Fi (5G, U-NII-3)

Report No: R1801A0004-S2V5

	Table 4. Wi-11 (36, 0-1411-3)												
Test Position	Cover Type	Channel/ Frequency (MHz)	Mode 802.11n HT20	Duty Cycle	Tune-up limit (dBm)	Conducted Power (dBm)	Drift (dB)	Area Scan Max.SAR (W/Kg)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Plot No.	
	Head SAR (Distance 0mm)												
Back Side (Close)	standard	149/5745	OFDM	93.46%	10.00	9.68	0.032	0.049	0.043	1.15	0.050	/	
Back Side	atau I		140/5745	OFDM	02.469/	10.00	9.68	0.000	0.002	0.002	1 15	0.003	,
(Open Inside)	standard	149/5745	OLDINI	93.46%	10.00	9.00	0.000	0.002	0.002	1.15	0.003	,	
		165/5825	OFDM	93.46%	10.00	8.64	-0.055	0.506	0.670	1.46	0.981	/	
Front Side	standard	157/5785	OFDM	93.46%	10.00	8.85	0.009	0.548	0.704	1.39	0.982	/	
		149/5745	OFDM	93.46%	10.00	9.68	0.077	0.601	0.859	1.15	0.989	/	
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Right Side		165/5825	OFDM	93.46%	10.00	8.64	0.063	0.501	0.610	1.46	0.893	/	
	standard	1575785	OFDM	93.46%	10.00	8.85	0.108	0.530	0.762	1.39	1.063	/	
		149/5745	OFDM	93.46%	10.00	9.68	-0.163	0.679	0.925	1.15	1.065	15	
Top Side	standard	149/5745	OFDM	93.46%	10.00	9.68	0.171	0.122	0.112	1.15	0.129	/	
Bottom Side	standard	149/5745	OFDM	93.46%	10.00	9.68	0.001	0.008	0.024	1.15	0.028	/	
Right Side	Repeated	149/5745	OFDM	93.46%	10.00	9.68	0.014	0.677	0.903	1.15	1.040	/	
				Boo	y SAR (Di	istance 0mm)						
Back Side (Close)	standard	149/5745	OFDM	93.46%	10.00	9.68	0.010	0.053	0.048	1.15	0.056	/	
Back Side (Open Inside)	standard	149/5745	OFDM	93.46%	10.00	9.68	0.000	0.001	0.001	1.15	0.001	/	
		165/5825	OFDM	93.46%	10.00	8.64	0.044	0.541	0.550	1.46	0.805	/	
Front Side	standard	1575785	OFDM	93.46%	10.00	8.85	0.030	0.610	0.624	1.39	0.870	/	
		149/5745	OFDM	93.46%	10.00	9.68	0.010	0.743	0.758	1.15	0.873	/	
Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Right Side	standard	165/5825	OFDM	93.46%	10.00	8.64	0.095	0.533	0.540	1.46	0.790	/	
		1575785	OFDM	93.46%	10.00	8.85	-0.067	0.650	0.672	1.39	0.937	/	
		149/5745	OFDM	93.46%	10.00	9.68	-0.046	0.707	0.816	1.15	0.940	16	
Top Side	standard	149/5745	OFDM	93.46%	10.00	9.68	0.118	0.117	0.108	1.15	0.125	/	
Bottom Side	standard	149/5745	OFDM	93.46%	10.00	9.68	-0.036	0.018	0.032	1.15	0.037	/	

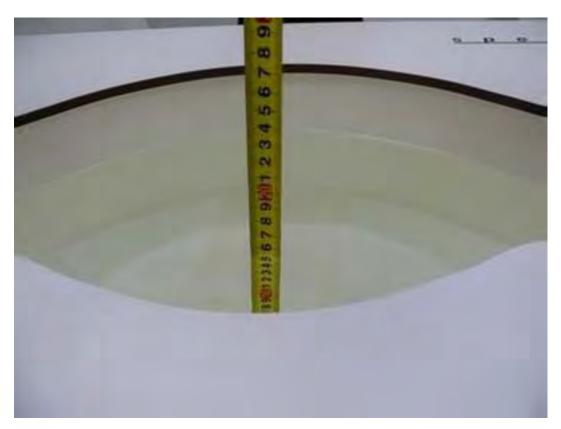
Note: 1. The value with blue color is the maximum SAR Value of each test band.

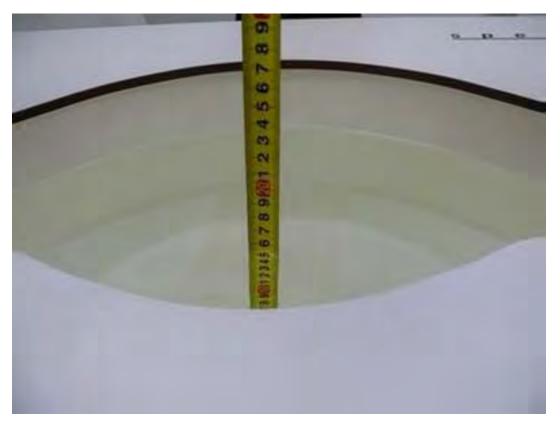
^{2.} Initial test configuration is 802.11n HT20 mode, since the highest maximum output power.


Measurement Variability									
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio					
Right Side	149/5745	0.925	0.903	1.02					

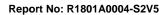
Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

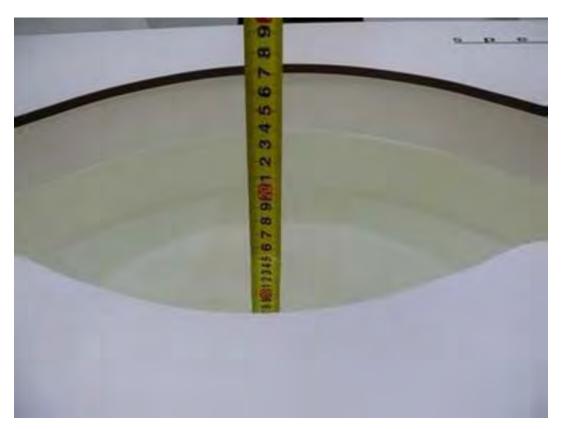
11 Measurement Uncertainty

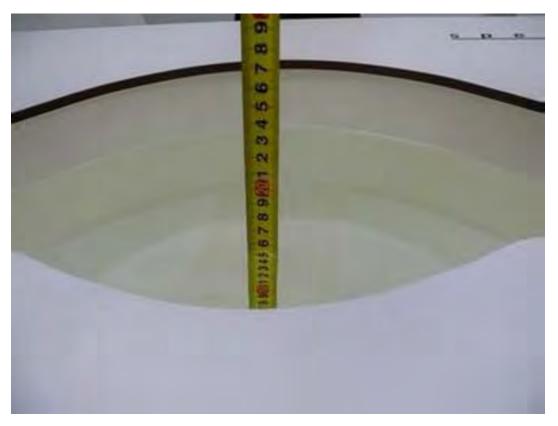

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval.



ANNEX A: Test Layout




Picture 3: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)


Picture 4: Liquid depth in the flat Phantom (5250 MHz, 15.3cm depth)

Picture 5: Liquid depth in the flat Phantom (5600 MHz, 15.3cm depth)

Picture 6: Liquid depth in the flat Phantom (5750 MHz, 15.0cm depth)

FCC SAR Test Report No: R1801A0004-S2V5

ANNEX B: System Check Results

Plot 1 System Performance Check at 2450 MHz Head TSL DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 1/12/2018

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

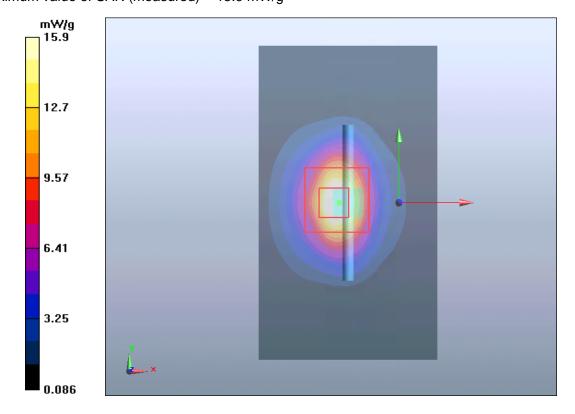
DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.90, 7.90, 7.90); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/gMaximum value of SAR (measured) = 15.9 mW/g

FCC SAR Test Report No: R1801A0004-S2V5

Plot 2 System Performance Check at 2450 MHz Body TSL DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 1/31/2018

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\epsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

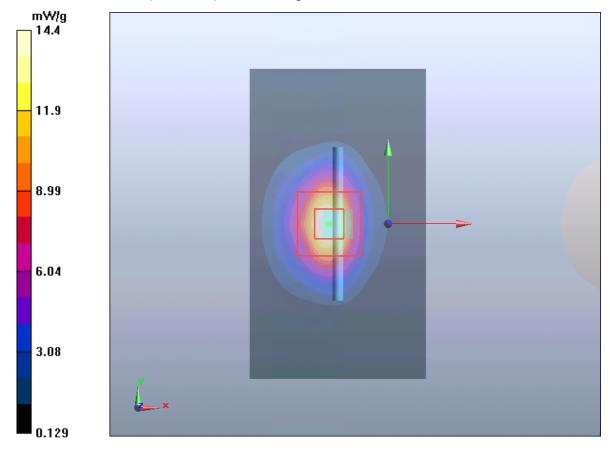
DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(7.85, 7.85, 7.85); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g Maximum value of SAR (measured) = 14.4 mW/g

Plot 3 System Performance Check at 5250 MHz Head TSL DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 3/27/2018

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.80 \text{ mho/m}$; $\epsilon_r = 35.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(5.62, 5.62, 5.62); Calibrated: 6/27/2017;

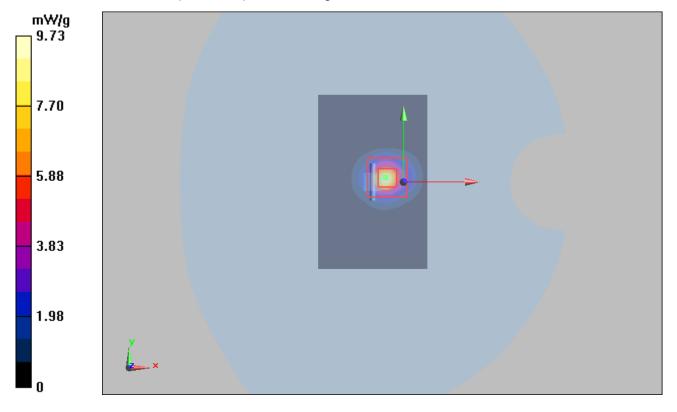
Electronics: DAE4 Sn1291; Calibrated: 10/31/2017

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=1.000mm, dy=1.000mm

Maximum value of SAR (interpolated) = 9.10 mW/g


d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 33.6 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 52.2 W/kg

SAR(1 g) = 7.76 mW/g; SAR(10 g) = 2.23 mW/g

Maximum value of SAR (measured) = 9.73 mW/g

Plot 4 System Performance Check at 5250 MHz Body TSL DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 3/27/2018

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; $\sigma = 5.32 \text{ mho/m}$; $\epsilon_r = 48.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

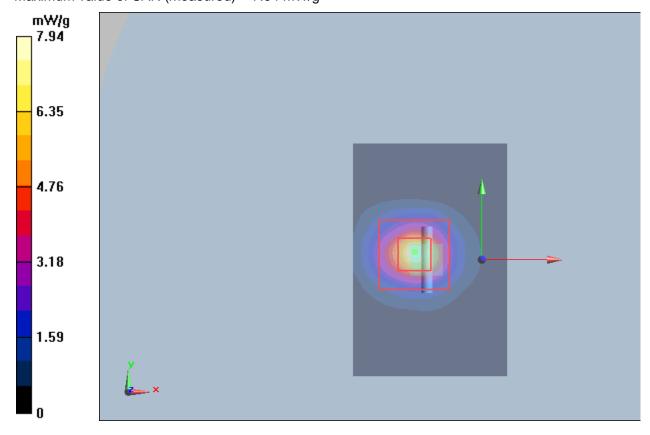
DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(5.13, 5.13, 5.13); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 7.69 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 36.3 V/m; Power Drift = 0.0277 dB

Peak SAR (extrapolated) = 47.7 W/kg

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.26 mW/gMaximum value of SAR (measured) = 7.94 mW/g

Plot 5 System Performance Check at 5600 MHz Head TSL

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 3/13/2018

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.19 \text{ mho/m}$; $\epsilon_r = 34.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

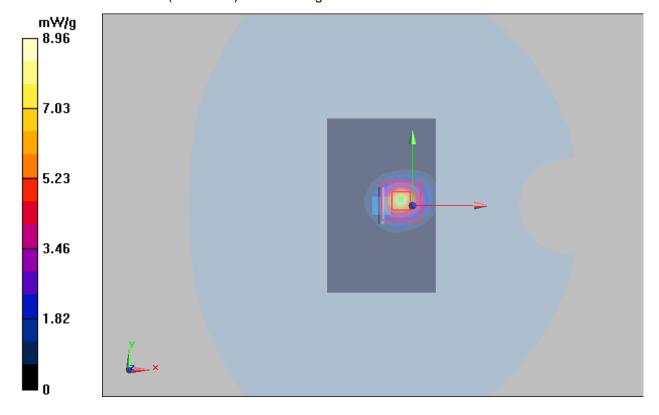
Probe: EX3DV4 - SN3898; ConvF(5.03, 5.03, 5.03); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=1.000mm, dy=1.000mm


Maximum value of SAR (interpolated) = 8.31 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 23.1 V/m; Power Drift = 0.044 dB Peak SAR (extrapolated) = 23.4 W/kg

SAR(1 g) = 7.94 mW/g; SAR(10 g) = 2.29 mW/g

Maximum value of SAR (measured) = 8.96 mW/g

Plot 6 System Performance Check at 5600 MHz Body TSL DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 3/27/2018

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.88 \text{ mho/m}$; $\epsilon_r = 47.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

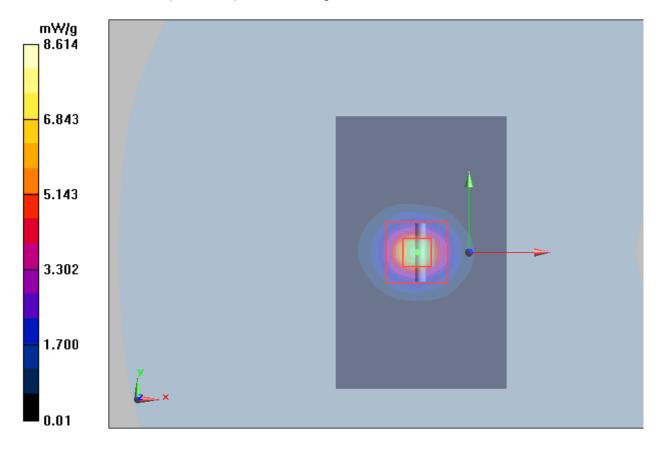
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(4.14, 4.14, 4.14); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 7.8 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 38.12 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 22.67 W/kg

SAR(1 g) = 8.04 mW/g; SAR(10 g) = 2.21 mW/g

Maximum value of SAR (measured) = 8.614 mW/g

Plot 7 System Performance Check at 5750 MHz Head TSL DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 3/28/2018

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 5.28 \text{ mho/m}$; $\varepsilon_r = 35$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(5.18, 5.18, 5.18); Calibrated: 6/27/2017;

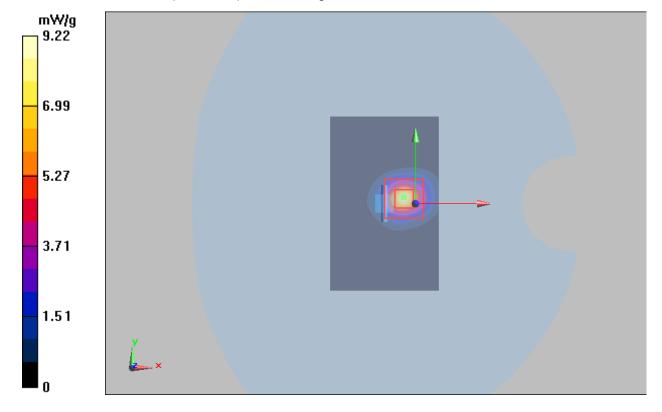
Electronics: DAE4 Sn1291; Calibrated: 10/31/2017

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

$\textbf{d=10mm, Pin=100mW/Area Scan (61x101x1):} \ \ Measurement \ grid: \ dx=1.000mm, \ dy=1.000mm$

Maximum value of SAR (interpolated) = 8.25 mW/g


d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 23.1 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 22.9 W/kg

SAR(1 g) = 7.72 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 9.22 mW/g

Plot 8 System Performance Check at 5750 MHz Body TSL DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 3/28/2018

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; $\sigma = 6.14 \text{ mho/m}$; $\varepsilon_r = 47.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

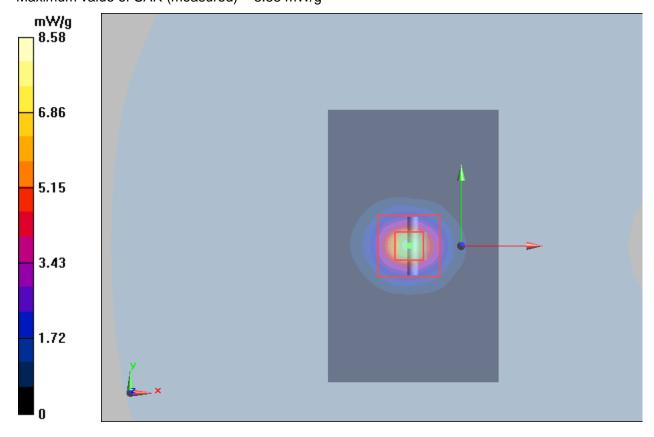
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(4.50, 4.50, 4.50); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=1.000mm, dy=1.000mm


Maximum value of SAR (interpolated) = 7.84 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 38 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 7.15 mW/g; SAR(10 g) = 1.99 mW/g Maximum value of SAR (measured) = 8.58 mW/g

ANNEX C: Highest Graph Results

Plot 9 802.11b Right Side Low (Head)

Date: 1/12/2018

Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 39.308$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

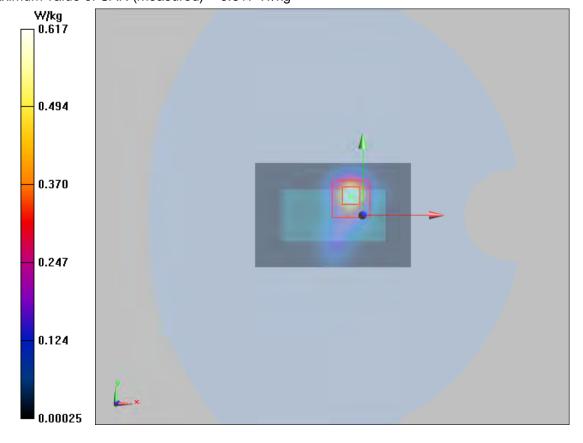
Probe: EX3DV4 - SN3677; ConvF(7.90, 7.90, 7.90); Calibrated: 1/23/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right Side Low/Area Scan (81x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.696 W/kg


Right Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.092 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 0.547 W/kg; SAR(10 g) = 0.202 W/kg

Maximum value of SAR (measured) = 0.617 W/kg

Plot 10 802.11b Right Side Low (Body)

Date: 1/31/2018

Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.902$ S/m; $\epsilon_r = 51.597$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

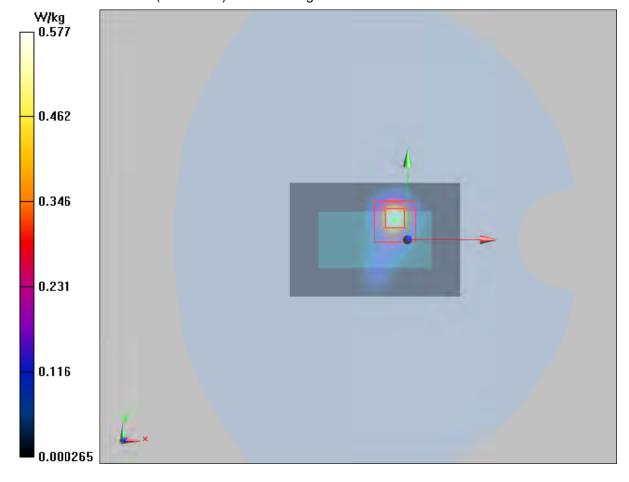
Probe: EX3DV4 - SN3898; ConvF(7.85, 7.85, 7.85); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right Side Low/Area Scan (81x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.982 W/kg


Right Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.674 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.496 W/kg; SAR(10 g) = 0.205 W/kg

Maximum value of SAR (measured) = 0.577 W/kg

Plot 11 802.11n HT40 U-NII-1 Front Side CH38 (Head)

Date: 3/27/2018

Communication System: UID 0, 802.11n(40M) (0); Frequency: 5190 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5190 MHz; $\sigma = 4.677$ S/m; $\epsilon_r = 36.13$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(5.62, 5.62, 5.62); Calibrated: 6/27/2017;

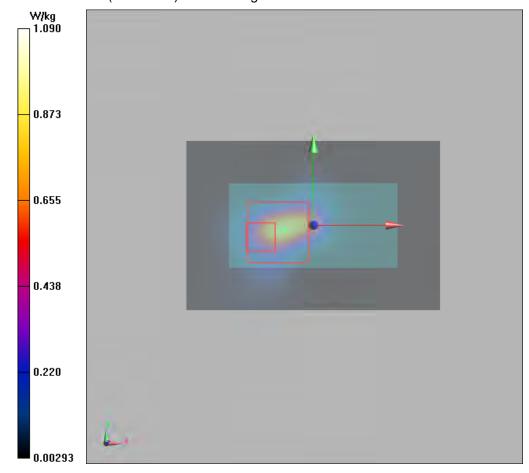
Electronics: DAE4 Sn1291; Calibrated: 10/31/2017

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right Side Low/Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.917 W/kg


Right Side Low/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.68 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 4.87 W/kg

SAR(1 g) = 0.835 W/kg; SAR(10 g) = 0.224 W/kg

Maximum value of SAR (measured) = 1.09 W/kg

Plot 12 802.11n HT40 U-NII-1 Front Side CH38 (Body)

Date: 3/27/2018

Communication System: UID 0, 802.11n(40M) (0); Frequency: 5190 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5190 MHz; $\sigma = 5.304$ S/m; $\epsilon_r = 48.069$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

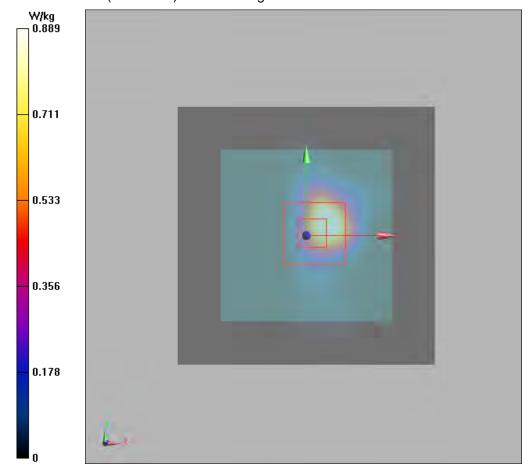
Probe: EX3DV4 - SN3898; ConvF(5.13, 5.13, 5.13); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side Low/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.901 W/kg


Front Side Low/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.17 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.784 W/kg; SAR(10 g) = 0.211 W/kg

Maximum value of SAR (measured) = 0.889 W/kg

Plot 13 802.11n HT40 U-NII-2C Front Side CH134 (Head)

Date: 3/13/2018

Communication System: UID 0, 802.11n(40M) (0); Frequency: 5670 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5670 MHz; $\sigma = 5.288$ S/m; $\epsilon_r = 34.873$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(5.03, 5.03, 5.03); Calibrated: 6/27/2017;

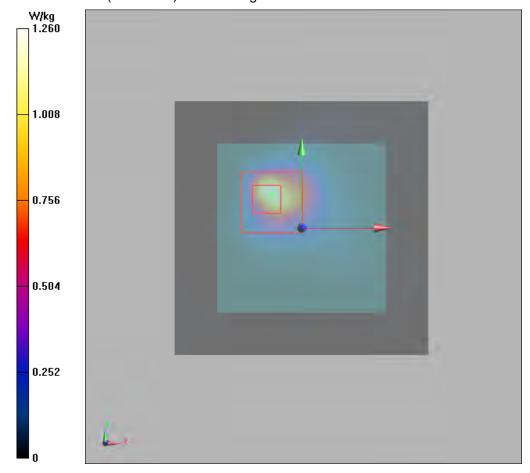
Electronics: DAE4 Sn1291; Calibrated: 10/31/2017

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side High/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.26 W/kg


Front Side High/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.560 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 0.907 W/kg; SAR(10 g) = 0.254 W/kg

Maximum value of SAR (measured) = 1.26 W/kg

Plot 14 802.11n HT40 U-NII-2C Front Side CH134 (Body)

Date: 3/27/2018

Communication System: UID 0, 802.11n HT40 (0); Frequency: 5670 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.957$ S/m; $\epsilon_r = 47.494$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

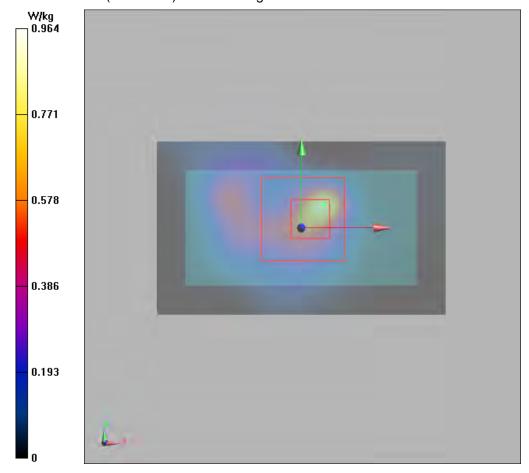
Probe: EX3DV4 - SN3898; ConvF(4.14, 4.14, 4.14); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side High/Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.892 W/kg


Front Side High/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.20 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 0.830 W/kg; SAR(10 g) = 0.271 W/kg

Maximum value of SAR (measured) = 0.964 W/kg

Plot 15 802.11n HT20 U-NII-3 Right Side CH149 (Head)

Date: 3/28/2018

Communication System: UID 0, 802.11n HT20 (0); Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5745 MHz; $\sigma = 5.385$ S/m; $\epsilon_r = 34.693$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3898; ConvF(5.18, 5.18, 5.18); Calibrated: 6/27/2017;

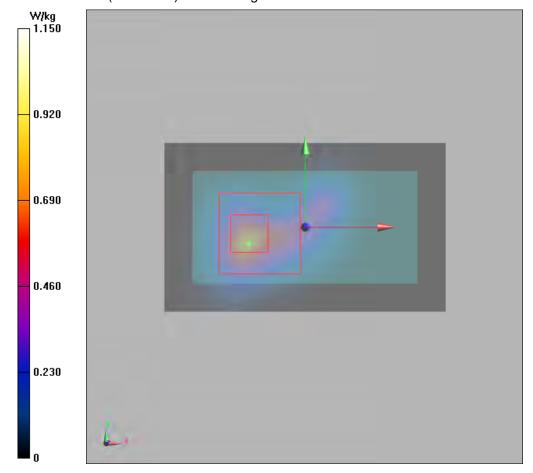
Electronics: DAE4 Sn1291; Calibrated: 10/31/2017

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right Side Low/Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.14 W/kg


Right Side Low/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.18 V/m; Power Drift = -0.163 dB

Peak SAR (extrapolated) = 3.24 W/kg

SAR(1 g) = 0.925 W/kg; SAR(10 g) = 0.246 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

Plot 16 802.11n HT20 U-NII-3 Right Side CH149 (Body)

Date: 3/28/2018

Communication System: UID 0, 802.11n HT20 (0); Frequency: 5745 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5745 MHz; σ = 6.06 S/m; ϵ_r = 47.742; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

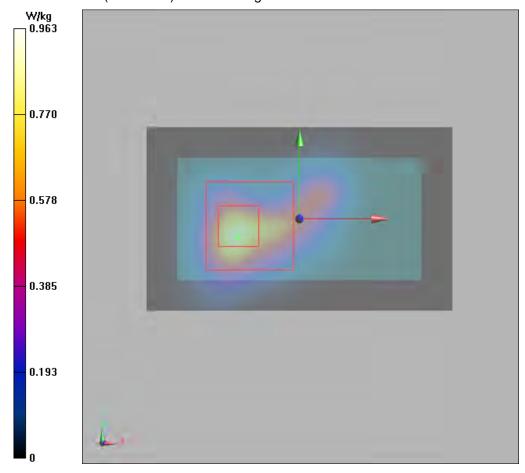
Probe: EX3DV4 - SN3898; ConvF(4.50, 4.50, 4.50); Calibrated: 6/27/2017;

Electronics: DAE4 Sn1291; Calibrated: 10/31/2017 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right Side Low/Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.966 W/kg


Right Side Low/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.16 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 0.816 W/kg; SAR(10 g) = 0.213 W/kg

Maximum value of SAR (measured) = 0.963 W/kg

ANNEX D: Probe Calibration Certificate (SN: 3677)

E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Client

TA(Shanghai)

Certificate No: Z17-97012

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3677

Calibration Procedure(s)

FD-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 23, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 549	13-Dec-16(SPEAG, No.DAE4-549_Dec16)	Dec -17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	A TROOP
Reviewed by:	Qi Dianyuan	SAR Project Leader	S CONTRACTOR OF THE PARTY OF TH
Approved by:	Lu Bingsong	Deputy Director of the laboratory	James 1
This calibration postificate ab	all and be assessed	Issued: Januar uced except in full without written approval of	

Certificate No: Z17-97012

Page 1 of 11

In Colleboration with

S D E B G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization 8=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z17-97012

Page 2 of 11

Report No: R1801A0004-S2V5

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3677

Calibrated: January 23, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z17-97012

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

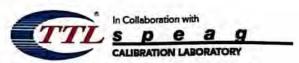
	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.39	0.44	0.38	±10.8%
DCP(mV) ^B	97.3	102.2	101.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 0	CW	X	0.0	0.0	1.0	0.00	180.5	±2.0%
		Y	0.0	0.0	1.0		195.3	1
		Z	0.0	0.0	1.0		177.9	7

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.


^B Numerical linearization parameter: uncertainty not required.


Certificate No: Z17-97012

Page 4 of 11

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.58	9.58	9.58	0.30	0.75	±12%
835	41.5	0.90	9.31	9.31	9.31	0.11	1.55	±12%
1750	40.1	1.37	8.60	8.60	8.60	0.24	1.07	±12%
1900	40.0	1.40	8.39	8.39	8.39	0.23	1.10	±12%
2300	39.5	1.67	8.13	8,13	8.13	0.53	0.74	±12%
2450	39.2	1.80	7.90	7.90	7.90	0.61	0.71	±12%
2600	39.0	1.96	7.64	7.64	7.64	0.68	0.68	±12%
5250	35.9	4.71	5.66	5.66	5.66	0.40	1.20	±13%
5600	35.5	5.07	4.99	4.99	4.99	0.40	1.40	±13%
5750	35.4	5.22	5.00	5.00	5.00	0.40	1.40	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


Certificate No: Z17-97012


Page 5 of 11

Report No: R1801A0004-S2V5

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Body Tissue Simulating Media

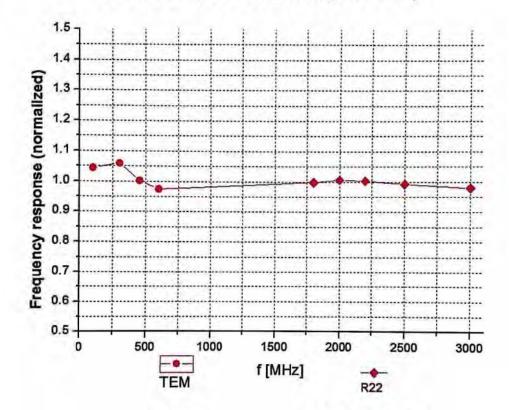
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.99	9.99	9.99	0.30	0.95	±12%
835	55.2	0.97	9.74	9.74	9.74	0.14	1.66	±12%
1750	53.4	1.49	8.39	8.39	8.39	0.21	1.16	±12%
1900	53.3	1.52	7.98	7.98	7.98	0.22	1.24	±12%
2300	52.9	1.81	7.97	7.97	7.97	0.55	0.80	±12%
2450	52.7	1.95	7.85	7.85	7.85	0.50	0.86	±12%
2600	52.5	2.16	7.63	7,63	7.63	0.44	0.91	±12%
5250	48.9	5.36	5.03	5.03	5.03	0.50	1.60	±13%
5600	48.5	5.77	4.34	4.34	4.34	0.54	1.66	±13%
5750	48.3	5.94	4.52	4.52	4.52	0.57	1.95	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z17-97012

Page 6 of 11

Report No: R1801A0004-S2V5


F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

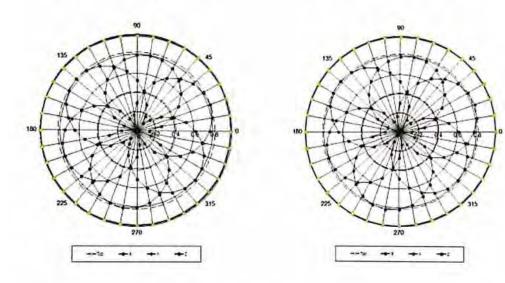
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

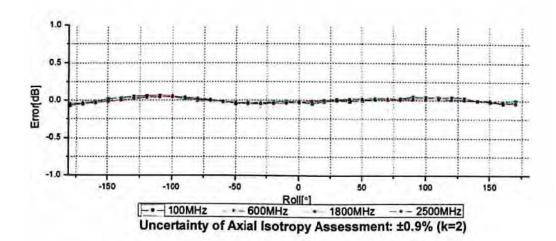
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z17-97012

Page 7 of 11

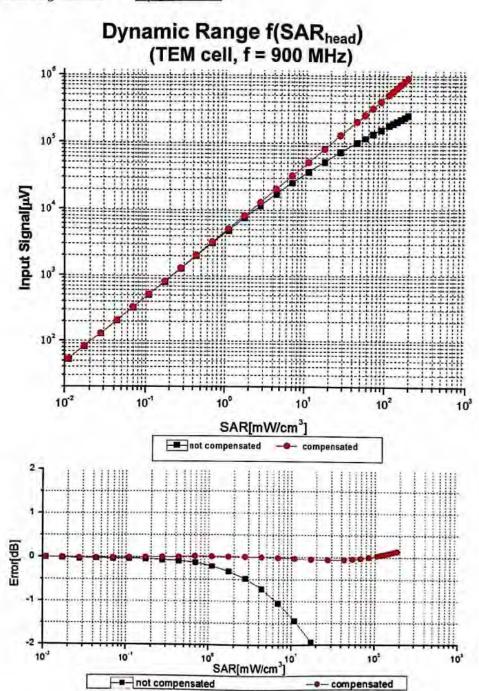



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

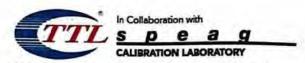
Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22


Certificate No: Z17-97012

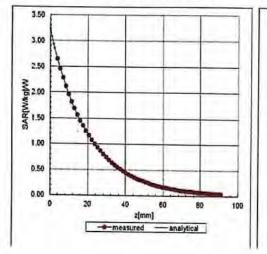
Page 8 of 11

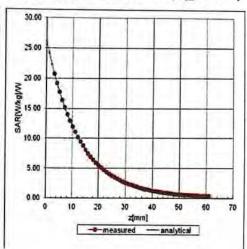

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Certificate No: Z17-97012

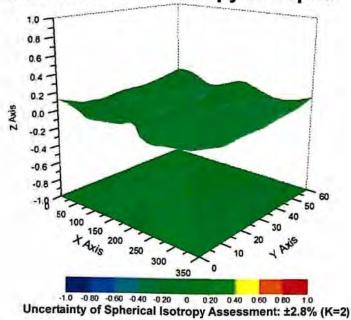
Page 9 of 11

Uncertainty of Linearity Assessment: ±0.9% (k=2)

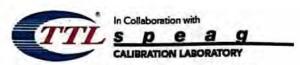



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment


f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)



Deviation from Isotropy in Liquid

Certificate No: Z17-97012 Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax; +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn


DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z17-97012

Page 11 of 11

ANNEX E: Probe Calibration Certificate (SN: 3898)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Report No: R1801A0004-S2V5

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: EX3-3898 Jun17

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3898

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 27, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:

Name
Function
Signature
Laboratory Technician
Self My
Approved by.

Katja Pokovic
Technical Manager
Issued: June 28, 2017
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3898_Jun17

Page 1 of 38

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Report No: R1801A0004-S2V5

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization § = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3898_Jun17

Page 2 of 38

EX3DV4 - SN:3898

June 27, 2017

Probe EX3DV4

SN:3898

Manufactured: Calibrated:

October 9, 2012 June 27, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3898_Jun17

Page 3 of 38

EX3DV4- SN:3898 June 27, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.38	0.35	0.31	± 10.1 %
DCP (mV) ^B	99.1	99.4	100.3	- 1011 10

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	143.9	±2.7 %
		Y	0.0	0.0	1.0		142.2	
		Z	0.0	0.0	1.0		145.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	Q V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V ⁻¹	Т6
X	32.49	240.5	35.09	11.03	0.713	4.958	1.269	0.147	1.005
Υ	33.00	245.0	35.30	9.807	0.625	4.966	1.221	0.120	1.005
Z	31.60	235.2	35.43	7.345	0.706	4.969	1.116	0.151	1.005

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Report No: R1801A0004-S2V5

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4-SN:3898

June 27, 2017

Report No: R1801A0004-S2V5

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.75	10.75	10.75	0.35	1.03	± 12.0 %
835	41.5	0.90	10.23	10.23	10.23	0.48	0.80	± 12.0 %
900	41.5	0.97	10.03	10.03	10.03	0.49	0.80	± 12.0 %
1750	40.1	1.37	8.63	8.63	8.63	0.37	0.80	± 12.0 %
1900	40.0	1.40	8.37	8.37	8.37	0.33	0.80	± 12.0 %
2000	40.0	1.40	8.36	8.36	8.36	0.35	0.80	± 12.0 %
2300	39.5	1,67	7.91	7.91	7.91	0.36	0.80	± 12.0 9
2450	39.2	1.80	7.55	7.55	7.55	0.39	0.80	± 12.0 %
2600	39.0	1.96	7.37	7.37	7.37	0.38	0.86	± 12.0 9
3500	37.9	2.91	7.31	7.31	7.31	0.25	1.25	± 13.1 9
5250	35.9	4.71	5.62	5.62	5.62	0.35	1.80	± 13.1 %
5600	35.5	5.07	5.03	5.03	5.03	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.18	5.18	5.18	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4-SN:3898 June 27, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898

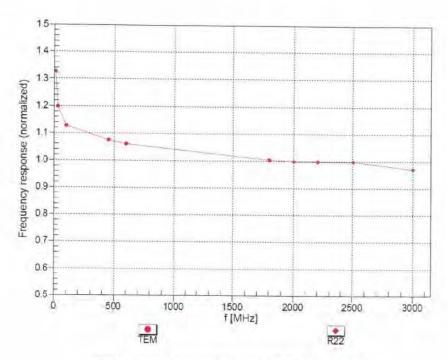
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.45	10.45	10.45	0.52	0.82	± 12.0 %
835	55.2	0.97	10.40	10.40	10.40	0.49	0.80	± 12.0 %
900	55.0	1.05	10.32	10.32	10.32	0.47	0.80	± 12.0 %
1750	53.4	1.49	8.50	8.50	8.50	0.39	0.80	± 12.0 %
1900	53.3	1.52	8.17	8.17	8.17	0.35	0.84	± 12.0 %
2000	53.3	1.52	8.35	8.35	8.35	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.95	7.95	7.95	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.85	7.85	7.85	0.32	0.95	± 12.0 %
2600	52.5	2.16	7.51	7.51	7.51	0.26	0.95	± 12.0 %
3500	51.3	3.31	6.97	6.97	6.97	0.28	1.25	± 13.1 %
5250	48.9	5.36	5.13	5.13	5.13	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.14	4.14	4.14	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.50	4.50	4.50	0.50	1.90	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Fat frequencies below 3 GHz at frequencies above 3 GHz warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

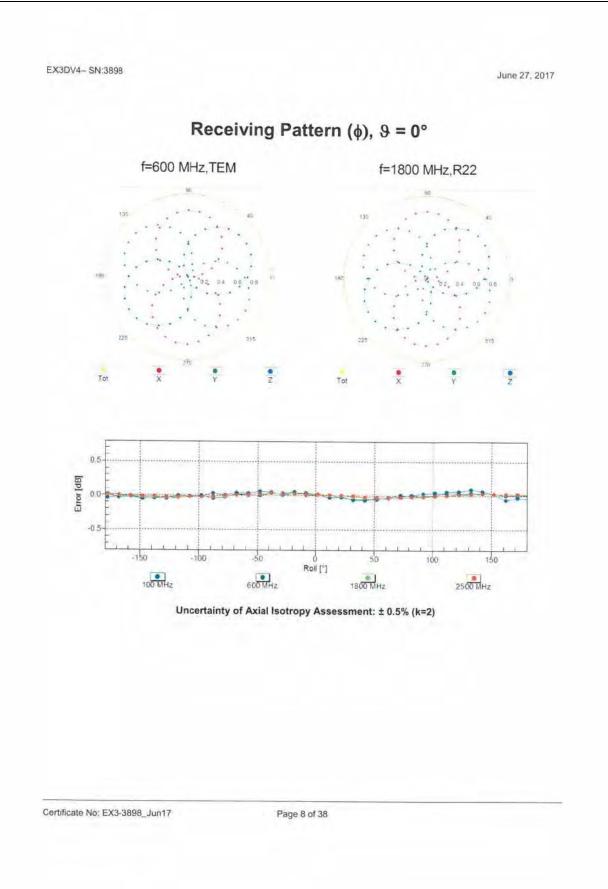

Certificate No: EX3-3898 Jun17

Report No: R1801A0004-S2V5

diameter from the boundary.

EX3DV4-SN:3898 June 27, 2017

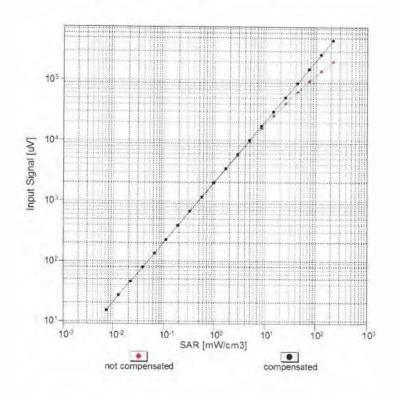
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

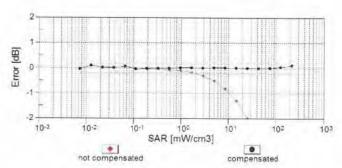


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3898_Jun17

Page 7 of 38

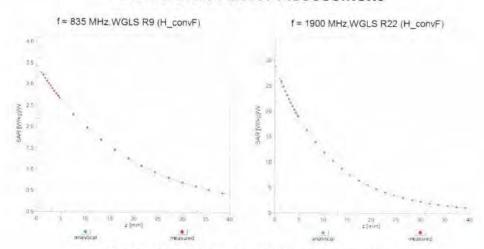




EX3DV4-SN:3898

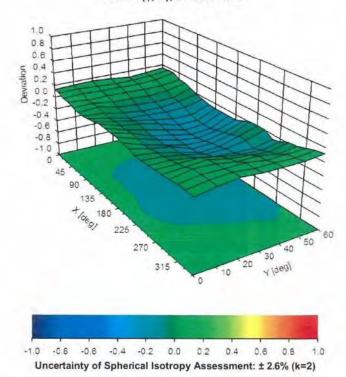
June 27, 2017

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3898_Jun17

Page 9 of 38



Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz

Certificate No: EX3-3898_Jun17

Page 10 of 38

EX3DV4- SN:3898

June 27, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	112
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3898_Jun17

C SAR Test Report Report No: R1801A0004-S2V5

EX3DV4- SN:3898 June 27, 2017

Appendix: Modulation Calibration Parameters

UID	lix: Modulation Calibration Para Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	143.9	± 2.7 %
		Y	0.00	0.00	1.00	0.00	142.2	12.1 /
		Z	0.00	0.00	1.00		145.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.36	65.22	10.01	10.00	20.0	± 9.6 %
		Y	2.38	65.50	10.11		20.0	
		Z	2.49	65.99	10.50		20.0	
10011- CAB	UMTS-FDD (WCDMA)	×	0.97	66.94	14.95	0.00	150.0	± 9.6 %
		Y	1.04	68.03	15.67		150.0	
		Z	0.97	66.89	14.93		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.16	63.59	14.83	0.41	150.0	± 9.6 %
		Υ	1.18	63.88	15.16		150.0	
		Z	1.15	63.44	14.80		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	4.63	66.61	16.74	1.46	150.0	± 9.6 %
		Y	4.65	66.69	16.86		150.0	
		Z	4.62	66.62	16.77		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	9.40	81.38	17.52	9.39	50.0	± 9.6 %
		Y	16.05	87.81	19.48		50.0	
		Z	22.43	92.46	21.10		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	7.11	77.84	16.31	9.57	50.0	± 9.6 %
		Y	10.05	82.09	17.71		50.0	
		Z	11.78	84.47	18.73		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	13.45	86.10	17.72	6.56	60.0	± 9.6 %
		Y	100.00	106.94	22.92		60.0	
		Z	100.00	108.65	23.66		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.63	65.06	22.13	12.57	50.0	± 9.6 %
		Y	5.18	76.12	28.60		50.0	
		Z	3.25	61.92	20.33		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	6.62	83.09	28.34	9.56	60.0	± 9.6 %
		Y	7.13	86.03	30.02		60.0	
1000=		Z	5.66	79.86	27.23		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	100.00	105.78	21.78	4.80	80.0	± 9.6 %
12015		Y	100.00	107.41	22.39	112	80.0	
10000		Z	100.00	109.53	23.24		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	107.00	21.71	3.55	100.0	± 9.6 %
		Υ	100.00	109.56	22.70		100.0	
40000		Z	100.00	112.11	23.68		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	4.64	75.90	24.34	7.80	80.0	± 9.6 %
		Υ	4.68	76.87	25.15	0-15-	0.08	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z	4.08 5.90	73.46 78.01	23.48 14.62	5.30	80.0 70.0	± 9.6 %
Onn		Y	25.51	02.24	40.00		70.0	
		Z	25.49	92.34 93.66	18.68		70.0	
10031-	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X			19.29	4.00	70.0	+000
CAA	IEEE 002.13.1 Biuetooth (GFSK, DH3)		100.00	106.02	20.18	1.88	100.0	± 9.6 %
		Y	100.00	109.92	21.67		100.0	
		Z	100.00	111.87	22.32		100.0	

Certificate No: EX3-3898_Jun17

EX3DV4-SN:3898

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	114.56	22.90	1.17	100.0	± 9.6 %
		Y	100.00	122.28	25.84	- 1772	100.0	
10022	IEEE 000 45 4 DL -1 - 1 /DUA DODOU	Z	100.00	123.55	26.18		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	×	3.55	73,49	16.00	5.30	70.0	± 9.6 %
		Y	4.05	76.03	17.25		70.0	
		Z	3.36	73.75	16.36		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	1.68	68.28	12.61	1.88	100.0	± 9.6 %
		Y	1.85	69.87	13.55		100.0	
		Z	1.56	68.16	12.68		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	1.37	67.38	12.10	1.17	100.0	± 9.6 %
		Υ	1.50	68.80	12.97		100.0	
		Z	1.28	67.19	12.08		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	×	3.90	74.92	16.61	5.30	70.0	± 9.6 %
		Y	4.61	77.96	18.03		70.0	
		Z	3.72	75.34	17.04		70.0	
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.57	67.63	12.31	1.88	100.0	± 9.6 %
CAA							1.7.4	
		Y	1.70	69.04	13.19		100.0	
		Z	1.45	67.44	12.35		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	1.37	67.55	12.30	1,17	100.0	± 9.6 %
		Y	1.50	69.01	13.19		100.0	
		Z	1.28	67.33	12.27		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.30	69.04	12.94	0.00	150.0	± 9.6 %
		Υ	1.55	71.17	14.03		150.0	
		Z	1.24	68.56	12.61		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	5.68	76.10	14.67	7.78	50.0	± 9.6 %
		Y	9.76	82.03	16.60		50.0	
		Z	12.77	85.55	17.89		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	90.50	0.61	0.00	150.0	± 9.6 %
		Y	0.01	91.46	2.87		150.0	
		Z	0.01	90.61	1.44		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	5.51	71.14	15.12	13.80	25,0	± 9,6 %
		Y	6.15	72.46	15.57		25.0	
		Z	6.71	73.40	16.16		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	5.68	73.94	15.07	10.79	40.0	± 9.6 %
		Y	6.47	75.65	15.68		40.0	
		Z	7.05	76.86	16.35		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	6.87	78.23	18.34	9.03	50.0	±9.6 %
		Y	8.46	81.68	19.73		50.0	
		Z	7.33	79.69	19.06		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	3.79	72.47	22.17	6,55	100.0	±9.6 %
		Y	3.76	72.88	22.68		100.0	
		Z	3,40	70.54	21.50		100.0	-
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.18	64.29	15.13	0.61	110.0	± 9.6 %
		Y	1.19	64.62	15.50		110.0	
		Z	1.15	64.01	15.07		110.0	
10060-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X	2.28	80.40	19.85	1.30	110.0	± 9.6 %
CAB	Mbps)							
	Mbps)	Υ	3.16	86.37	22.34		110.0	

Report No: R1801A0004-S2V5

June 27, 2017

EX3DV4- SN:3898 June 27, 2017

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.88	72.36	18.12	2.04	110.0	±9.6 %
		Y	1.96	73.75	19.06		110.0	
		Z	1.64	70.87	17.81		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.44	66.67	16.29	0.49	100.0	±9.6 %
		Y	4.47	66.75	16.40		100.0	
		Z	4.43	66.68	16.31		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	Х	4.45	66.73	16.35	0.72	100.0	± 9.6 %
		Y	4.47	66.82	16.46		100.0	
		Z	4.44	66.74	16.38		100.0	
10064- CAB	JEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.67	66.90	16.51	0.86	100.0	± 9.6 %
		Y	4.70	66.98	16.63		100.0	
	The Paris of the P	Z	4.66	66.90	16.54	1 100 11	100.0	10 10 10
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.54	66.69	16.54	1.21	100.0	±9.6%
		Y	4.57	66.78	16.66		100.0	
		Z	4.53	66.69	16.57		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	Х	4.55	66.64	16.64	1.46	100.0	± 9.6 %
		Y	4.57	66.74	16.77		100.0	
	Large Control of the	Z	4.53	66.63	16.67		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.82	66.89	17.07	2.04	100.0	±9.6 %
		Y	4.85	67.00	17.21		100.0	
		Z	4.80	66.88	17.10		100.0	-
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	4.85	66.79	17.19	2.55	100.0	± 9.6 %
		Y	4.88	66.89	17.34		100.0	
		Z	4.84	66.77	17.22		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	Х	4.91	66.79	17.35	2.67	100,0	± 9.6 %
		Y	4.94	66.90	17.51	-	100.0	
		Z	4.89	66.76	17.38		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.72	66.64	16.98	1.99	100.0	±9.6 %
		Y	4.74	66.72	17.11		100.0	1
		Z	4.70	66.64	17.01		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.66	66.81	17,11	2.30	100.0	±9.6 %
		Y	4.68	66.91	17.25		100.0	
		Z	4.64	66.80	17.14		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.72	66.97	17.39	2.83	100.0	±9.6 %
		Y	4.74	67.07	1.7.55		100.0	
		Z	4.70	66.94	17.43		100.0	
10074- CAB	IEEE 802,11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.74	66.94	17.53	3.30	100.0	± 9.6 %
		Y	4.76	67.04	17.69		100.0	
-		Z	4.72	66,91	17.56	Lagar 1	100.0	
10075- CAB	(DSSS/OFDM, 36 Mbps)	X	4.77	66.95	17.74	3.82	90.0	±9.6 %
		Y	4.78	67.04	17.91		90.0	
		Z	4.74	66.89	17.77		90.0	1
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.81	66.85	17.91	4.15	90.0	±9.6%
		Y	4.82	66.94	18.08		90.0	
	4200	Z	4.79	66.79	17.94	20.70	90.0	17.70
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.85	66.95	18.02	4.30	90.0	±9.6 %
		Y	4.86	67:03	18.19		90.0	

C SAR Test Report Report No: R1801A0004-S2V5

EX3DV4- SN:3898

June 27, 2017

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.66	64.51	10.46	0.00	150.0	± 9.6 %
		Y	0.73	65.64	11.22		150.0	
		Z	0.65	64.36	10.28		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	0.56	57.02	2.34	4.77	80.0	± 9.6 %
		Y	0.50	57.27	2.55		80.0	
		Z	0.72	60.56	4.69		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	Х	12.76	85.53	17.57	6.56	60.0	± 9.6 %
		Y	100.00	106.92	22.92		60.0	
		Z	100.00	108.63	23.67		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.81	68.44	15.60	0.00	150.0	± 9.6 %
		Y	1.88	69.07	16.03		150.0	
40000	1	Z	1.81	68.48	15.60		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.77	68.36	15.57	0.00	150.0	± 9.6 %
		Y	1.84	69.01	16.01		150.0	
40000	EDOE FOR TOUR	Z	1.77	68.40	15.57		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	6.65	83.17	28.36	9.56	60.0	± 9.6 %
		Y	7.18	86.14	30.05		60.0	
10100-	LTE EDD (OC EDM) 1000 ED	Z	5.69	79.94	27.25		60.0	
CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	2.91	69.85	16.63	0.00	150.0	± 9.6 %
		Y	3.00	70.32	16.93		150.0	
10101-	TE 500 (00 5014) (000) 00 00	Z	2.90	69.77	16.63		150.0	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.08	67.30	15.83	0.00	150.0	± 9.6 %
		Υ	3.12	67.53	16.02		150.0	
10100	LTE EDD (OO ED) II ACCOUNTS	Z	3.07	67.26	15.83		150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.19	67.35	15.95	0.00	150.0	± 9.6 %
		Y	3.22	67.55	16.12		150.0	
10103-	LTE TOD (CO FOMA 4000) DD 00	Z	3.18	67.32	15.96		150.0	
CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	5.34	73.16	19.00	3.98	65.0	± 9.6 %
		Y	5.40	73.67	19.39		65.0	
10104-	LTE TDD (00 FDMA 4000) DD 00	Z	4.60	71.12	18.33		65.0	
CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	5.56	71.82	19.11	3.98	65.0	± 9.6 %
		Z	5.54 5.21	72.04	19.38		65.0	
10105- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	5.34	71.00 70.90	18.89 19.01	3.98	65.0 65.0	± 9.6 %
		Y	5.32	71.12	19.27		65.0	
		Z	4.66	68.69	18.12		65.0	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.51	69.21	16.45	0.00	150.0	± 9.6 %
		Y	2.58	69.70	16.77		150.0	-
		Z	2.50	69.15	16.45		150.0	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.72	67.32	15.69	0.00	150.0	± 9.6 %
		Y	2.77	67.58	15.90		150.0	
		Z	2.71	67.30	15.69		150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.00	68.45	15.89	0.00	150.0	± 9.6 %
		Υ	2.08	69.04	16.29		150.0	
		Z	1.99	68.40	15.88		150.0	
10111-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	X	2.48	68.76	16.00	0.00	150.0	± 9.6 %
CAD	16-QAM)							
CAD	16-QAM)	Y	2.54 2.48	69.09	16.25		150.0	

Certificate No: EX3-3898_Jun17

EX3DV4- SN:3898

June 27, 2017

10112- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.85	67.43	15.79	0.00	150.0	± 9.6 %
		Y	2.89	67.66	15.98		150.0	
		Z	2.84	67.42	15.79		150.0	
10113- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.63	68.98	16.15	0.00	150.0	± 9.6 %
		Y	2.68	69.26	16.38		150.0	
		Z	2.62	69.01	16.14		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.93	67.18	16.42	0.00	150.0	± 9.6 %
		Y	4.96	67.24	16.50		150.0	
10115	1000	Z	4.93	67.19	16.45		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.17	67.22	16,44	0.00	150.0	± 9.6 %
		Y	5.19	67.28	16.52		150.0	
10116-	IEEE DOO 44 WIT O	Z	5.16	67.22	16.46		150.0	
CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.00	67.33	16,43	0.00	150.0	± 9.6 %
		Y	5.03	67.41	16.51		150.0	
10117-	IEEE 900 44- (UTA): 1 10 -11	Z	5.00	67.33	16.45		150.0	
CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.92	67.09	16.40	0.00	150.0	± 9.6 %
		Y	4.94	67.16	16.48		150.0	
10118-	IEEE 000 44- /IIII	Z	4.91	67.08	16.41		150.0	
CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	×	5.24	67.41	16.54	0.00	150.0	± 9.6 %
alfa-ell-yar		Y	5.27	67.48	16.62		150.0	
10110	IFFE 000 14 WITH 1 COLUMN	Z	5.23	67.40	16.55		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	Х	5.01	67.35	16.44	0.00	150.0	± 9.6 %
		Y	5.04	67.42	16.53		150.0	
10110		Z	5.01	67.36	16.47		150.0	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	Х	3.20	67.37	15.86	0.00	150.0	± 9.6 %
_		Y	3.24	67.57	16.03		150.0	
10141-	LTE COD 100 COLLA 1000 CO	Z	3.19	67.34	15.86		150.0	
CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3,33	67.58	16.07	0.00	150.0	± 9.6 %
		Y	3,37	67.75	16.23		150.0	
10110		Z	3.32	67.56	16.09		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.77	68.44	15.19	0.00	150.0	± 9.6 %
_		Υ	1.85	69.19	15,67		150.0	
10143-	LTF FDF (OG FDL)	Z	1.75	68.38	15.13		150.0	
CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	×	2.28	69.18	15.08	0.00	150.0	± 9.6 %
		Υ	2.37	69.74	15.46		150.0	
10111	LIFE FOR YOU FRUIT	Z	2.25	69.10	14.98		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz. 64-QAM)	X	1.90	65,81	12.85	0.00	150.0	± 9.6 %
		Y	1.97	66.25	13.19		150.0	
10145	LEE EDD (OG EDLI)	Z	1.87	65.68	12.71	-	150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	×	0.75	61.28	7,87	0.00	150.0	± 9.6 %
		Y	0.79	61.77	8,31		150.0	
10115		Z	0.72	60.96	7.53		150.0	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	0.94	60.26	6.31	0.00	150.0	± 9.6 %
		Y	0.97	60.64	6.68		150.0	
		Z	0.88	60.00	6.02		150.0	
10147- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	×	0.98	60.58	6.58	0.00	150.0	± 9.6 %
		Y	1.02	61.02	6.98		150.0	
		Z	0.91	60.11	6.15		150.0	

Certificate No: EX3-3898_Jun17