

FCC PART 15, SUBPART C

TEST REPORT

For

Sierra Innotek, Inc.

4391 Cameron Road,
Cameron Park, CA 95682, USA

FCC ID: 2AIQA-CMVAD100

Report Type: Original Report	Product Type: Law Enforcement Body Wire Transmitter
Prepared By: <u>Chin Ming Lui</u>	
Report Number: <u>R1810113-247</u>	
Report Date: <u>2018-11-06</u>	
Reviewed By: <u>Frank Wang</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “*”.

TABLE OF CONTENTS

1 General Description.....	5
1.1 Product Description for Equipment Under Test (EUT)	5
1.2 Mechanical Description of EUT	5
1.3 Objective.....	5
1.4 Related Submittal(s)/Grant(s)	5
1.5 Test Methodology	5
1.6 Measurement Uncertainty.....	6
1.7 Test Facility Registrations	6
1.8 Test Facility Accreditations.....	6
2 System Test Configuration.....	9
2.1 Justification.....	9
2.2 EUT Exercise Software.....	9
2.3 Duty Cycle Correction Factor	9
2.4 Equipment Modifications.....	10
3 Summary of Test Results	11
4 FCC §15.203 - Antenna Requirements	12
4.1 Applicable Standards	12
4.2 Antenna Description	12
5 FCC §2.1093 & §15.247(i) - RF Exposure	13
5.1 Applicable Standards	13
5.2 RF Exposure Evaluation Results.....	14
6 FCC §15.107 & §15.207 - AC Line Conducted Emissions	15
6.1 Applicable Standards	15
6.2 Test Setup	15
6.3 Test Procedure	15
6.4 Corrected Amplitude and Margin Calculation.....	16
6.5 Test Setup Block Diagram.....	16
6.6 Test Equipment List and Details	17
6.7 Test Environmental Conditions	17
6.8 Summary of Test Results	17
6.9 Conducted Emissions Test Plots and Data.....	18
7 FCC §15.209 & §15.247(d) - Spurious Radiated Emissions	20
7.1 Applicable Standards	20
7.2 Test Setup	21
7.3 Test Procedure	21
7.4 Corrected Amplitude and Margin Calculation.....	22
7.5 Test Equipment List and Details	22
7.6 Test Environmental Conditions	23
7.7 Summary of Test Results	23
7.8 Radiated Emissions Test Results	24
8 FCC §15.247(a) (2) - Emission Bandwidth	27
8.1 Applicable Standards	27
8.2 Measurement Procedure.....	27
8.3 Test Equipment List and Details	27
8.4 Test Environmental Conditions	27
8.5 Test Results.....	28
9 FCC §15.247(b) (3) - Output Power Measurement.....	31
9.1 Applicable Standards	31
9.2 Measurement Procedure.....	31

9.3	Test Equipment List and Details	31
9.4	Test Environmental Conditions	31
9.5	Test Results.....	32
10	FCC §15.247(d) - 100 kHz Bandwidth of Band Edges.....	34
10.1	Applicable Standards	34
10.2	Measurement Procedure.....	34
10.3	Test Equipment List and Details	34
10.4	Test Environmental Conditions	34
10.5	Test Results.....	35
11	FCC §15.247(e) - Power Spectral Density	36
11.1	Applicable Standards	36
11.2	Measurement Procedure.....	36
11.3	Test Equipment List and Details	36
11.4	Test Environmental Conditions	36
11.5	Test Results.....	37
12	FCC §15.247(d) - Spurious Emissions at Antenna Terminals	39
12.1	Applicable Standards	39
12.2	Test Procedure	39
12.3	Test Equipment List and Details	39
12.4	Test Environmental Conditions	39
12.5	Test Results.....	40
13	Appendix A - FCC Equipment Labeling Requirements	42
13.1	FCC ID Label Requirements	42
13.2	Label Contents and Location	42
14	Appendix B - EUT Test Setup Photographs.....	43
15	Appendix C - EUT External Photographs.....	44
16	Appendix D - EUT Internal Photographs.....	45
17	Appendix E (Normative) - A2LA Electrical Testing Certificate	46

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1810113-247	Original Report	2018-11-06

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *Sierra Innotek, Inc.*, and their product model: *C-CAT Mini*, FCC ID: 2AIQA-CMVAD100 or the “EUT” as referred to in this report. The product is a Law Enforcement Body Wire Transmitter.

1.2 Mechanical Description of EUT

The C-CAT Mini (EUT) measures approximately 4 cm (L) x 2.3 cm (W) x 0.8 cm (H) and weighs approximately 0.012 kg.

1.3 Objective

This report is prepared on behalf of *Sierra Innotek, Inc.*, in accordance with Part 2, Subpart J, and Part 15, Subparts C of the Federal Communication Commission’s rules.

The objective is to determine compliance with FCC Part 15.247 rules for Output Power, Antenna Requirements, 6 dB and 99% Occupied Bandwidth, Power Spectral Density, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions.

1.4 Related Submittal(s)/Grant(s)

FCC Part 90.217, equipment class TNT with FCC ID: 2AIQA-CMVAD100

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB 558074 D01 15.247 Meas Guidance v05: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.57 dB
Power Spectral Density, conducted	±1.48dB
Unwanted Emissions, conducted	±1.57dB
All emissions, radiated	±4.0 dB
AC power line Conducted Emission	±2.0 dB
Temperature	±2 ° C
Humidity	±5 %
DC and low frequency voltages	±1.0 %
Time	±2 %
Duty Cycle	±3 %

1.7 Test Facility Registrations

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.8 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment

[including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- 2 All Scope 2-Licensed Personal Mobile Radio Services;
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

- For Singapore (Info-Communications Development Authority (IDA)):

- 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:

- 1 All Radio Equipment, per KHCA 10XX-series Specifications;
- 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
- 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

- 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 - Terminal Equipment for the Purpose of Calls;
 - All Scope A2 - Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)

- for Imaging Equipment (ver. 2.0)
- for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) – APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada - ISEDC) Foreign Certification Body – FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China – Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority – OFTA) APEC Tel MRA -Phase I & Phase II
- Israel – US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications - Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority - IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI - Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory – US EPA
 - o Telecommunications Certification Body (TCB) – US FCC;
 - o Nationally Recognized Test Laboratory (NRTL) – US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 558074 D01 15.247 Meas Guidance v05.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

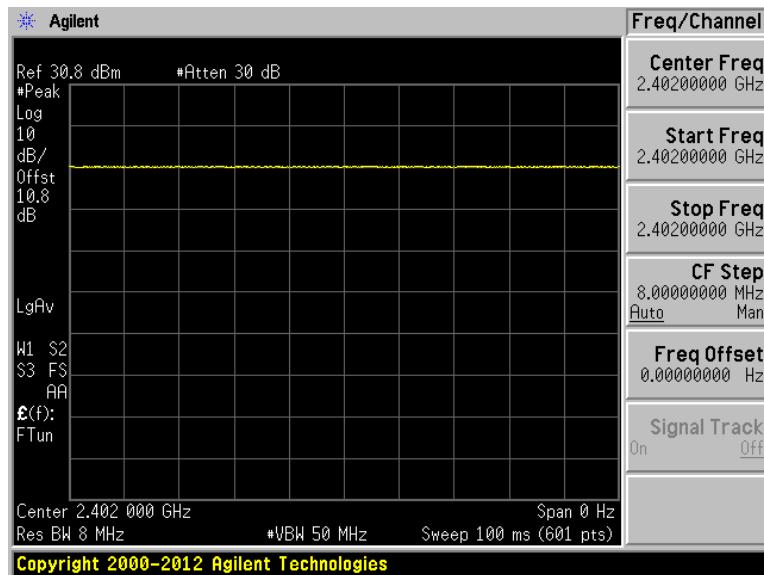
2.2 EUT Exercise Software

No test firmware was used.

Modulation	Frequency (MHz)	Power Setting
BLE	2402	Default
	2440	Default
	2480	Default

2.3 Duty Cycle Correction Factor

According to KDB 558074 D01 15.247 Meas Guidance v05 section 6:


Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98 %). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (\bar{T}) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed \bar{T} at any time that data is being acquired (i.e., no transmitter off-time is to be considered).

Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
BLE	-	-	100	0

Duty Cycle = On Time (ms) / Period (ms)

Duty Cycle Correction Factor (dB) = $10 \log(1/\text{Duty Cycle})$

Please refer to the following plots.

2.4 Equipment Modifications

To prepare the conducted sample, the internal SMD 2.4GHz antenna has been removed and SMA connector has been added.

2.5 Local Support Equipment

Manufacturer	Description	Model
Dell	Laptop	Latitude E6410

2.6 Support Equipment

N/A

2.7 Interface Ports and Cabling

Cable Description	Length (m)	To	From
USB power	0.3	EUT	USB Type A power

3 Summary of Test Results

Results reported relate only to the product tested.

FCC Rules	Description of Test	Results
§15.203	Antenna Requirement	Compliant
§15.107 and §15.207	AC Line Conducted Emissions	Compliant
§2.1093, §15.247(i)	RF Exposure	Compliant
§2.1051, §15.247 (d)	Spurious Emissions at Antenna Port	Compliant
§15.209, §15.247 (d)	Radiated Spurious Emissions	Compliant
§15.247(a)(2)	6 dB and 99% Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Peak Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

4 FCC §15.203 - Antenna Requirements

4.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 Antenna Description

The antenna connector types used by the EUT are MMCX for VHF.

Frequency Range (MHz)	External/Internal/Integral	Maximum Antenna Gain (dBi)	Antenna Type / Pattern
136-174	External	2.15	¼ Wave wire/toroid
2402-2480	Internal	-2	SMD part/spherical

5 FCC §2.1093 & §15.247(i) - RF Exposure

5.1 Applicable Standards

According to FCC KDB 447498 D01 General RF Exposure Guidance v05r02 Section 4.3.1, Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander (see 5) of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops & tablets etc.

- 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

- 2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:

- a) $[\text{Power allowed at numeric threshold for } 50 \text{ mm in step 1} + (\text{test separation distance} - 50 \text{ mm}) \cdot (f(\text{MHz})/150)] \text{ mW, at } 100 \text{ MHz to } 1500 \text{ MHz}$
- b) $[\text{Power allowed at numeric threshold for } 50 \text{ mm in step 1} + (\text{test separation distance} - 50 \text{ mm}) \cdot 10] \text{ mW at } > 1500 \text{ MHz and } \leq 6 \text{ GHz}$

- 3) At frequencies below 100 MHz, the following may be considered for SAR test exclusion, and as illustrated in Appendix C:

- a) The power threshold at the corresponding test separation distance at 100 MHz in step 2) is multiplied by $[1 + \log(100/f(\text{MHz}))]$ for test separation distances > 50 mm and < 200 mm
- b) The power threshold determined by the equation in a) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$ for test separation distances ≤ 50 mm

- c) SAR measurement procedures are not established below 100 MHz. When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any test results to be acceptable.

5.2 RF Exposure Evaluation Results

The highest measured conducted power as reported in Section 9.5 of this report was 10.64 dBm (12 mW) at 2402 MHz.

For FCC, based on the $[(\text{max. power of channel, including tune-up tolerance, mW})/(\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

$(12 \text{ mW}/5 \text{ mm}) * \sqrt{2.402} = 3.8$ which is less than 7.5.

Conclusion:

The BLE radio is active normally when the device is on a table or held by hand. For the worst case consideration, 10-g extremity SAR exclusion was used. Thus, SAR was exempted for this device.

6 FCC §15.107 & §15.207 - AC Line Conducted Emissions

6.1 Applicable Standards

s per FCC §15.207 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15-0.5	66 to 56 ^{Note1}	56 to 46 ^{Note2}
0.5-5	56	46
5-30	60	50

Note1: Decreases with the logarithm of the frequency.

Note2: A linear average detector is required

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2013 measurement procedure. The specification used were FCC §15.107 and §15.207 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

6.3 Test Procedure

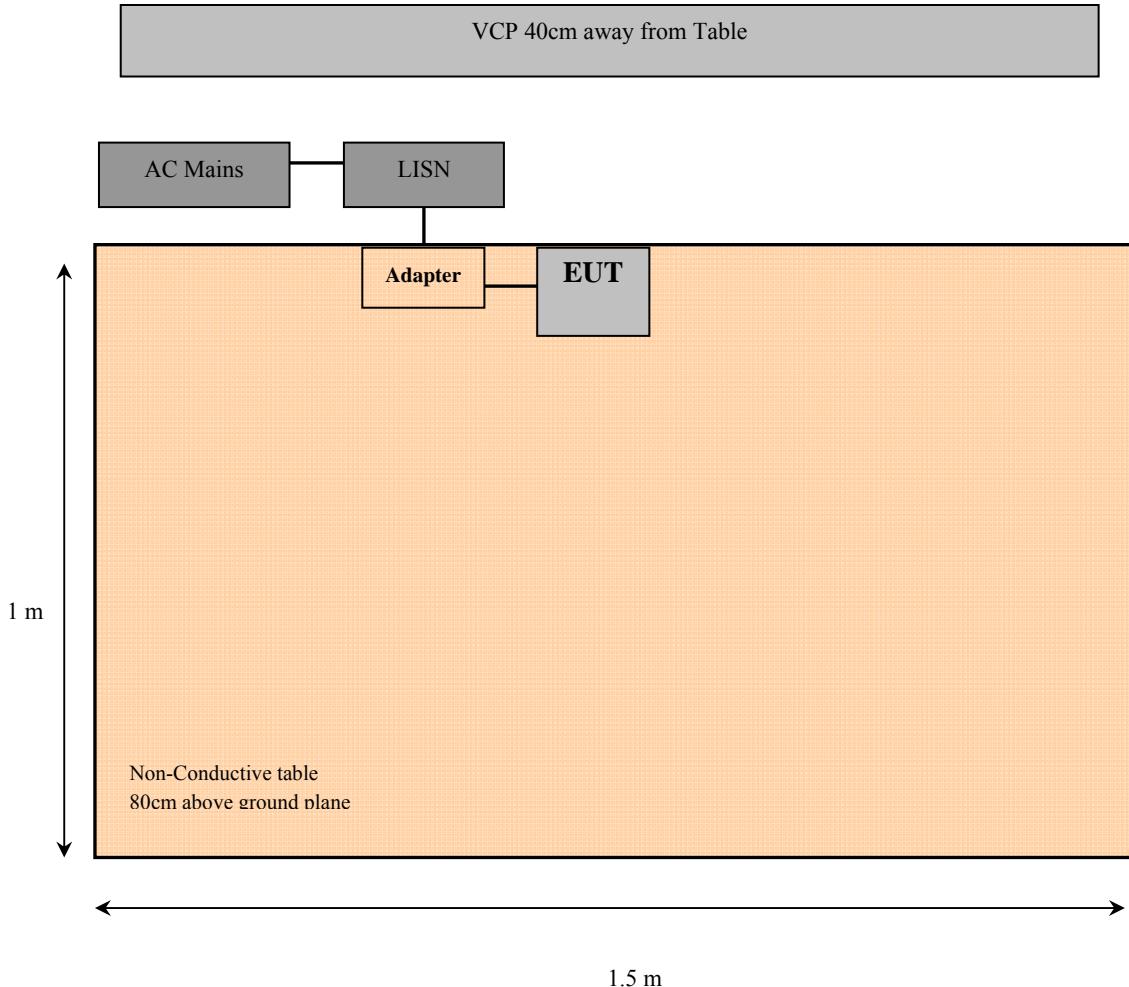
During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data were recorded in the peak, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

6.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:


$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

6.5 Test Setup Block Diagram

6.6 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde and Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100338	2018-07-05	2 years
Rohde and Schwarz	Impulse Limiter	ESH3-Z2	101964	2018-07-27	1 year
Solar Electronics Company	High Pass Filter	Type 7930-100	7930150203	2018-02-28	1 year
Suirong	30 ft conductive emission cable	LMR 400	-	N/R	N/A
FCC	LISN	FCC-LISN-50-25-2-10-CISPR16	160129	2018-04-04	1 year
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

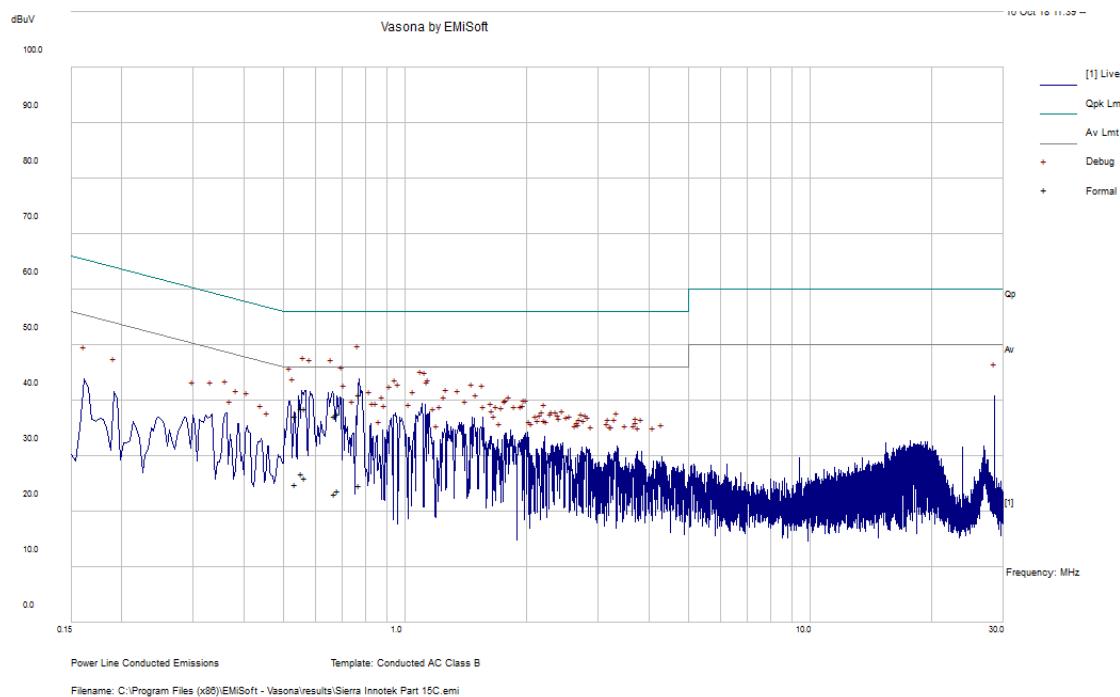
Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

6.7 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	101.31 kPa

The testing was performed by Chin Ming Lui on 2018-10-16 in the Conducted Test Site.

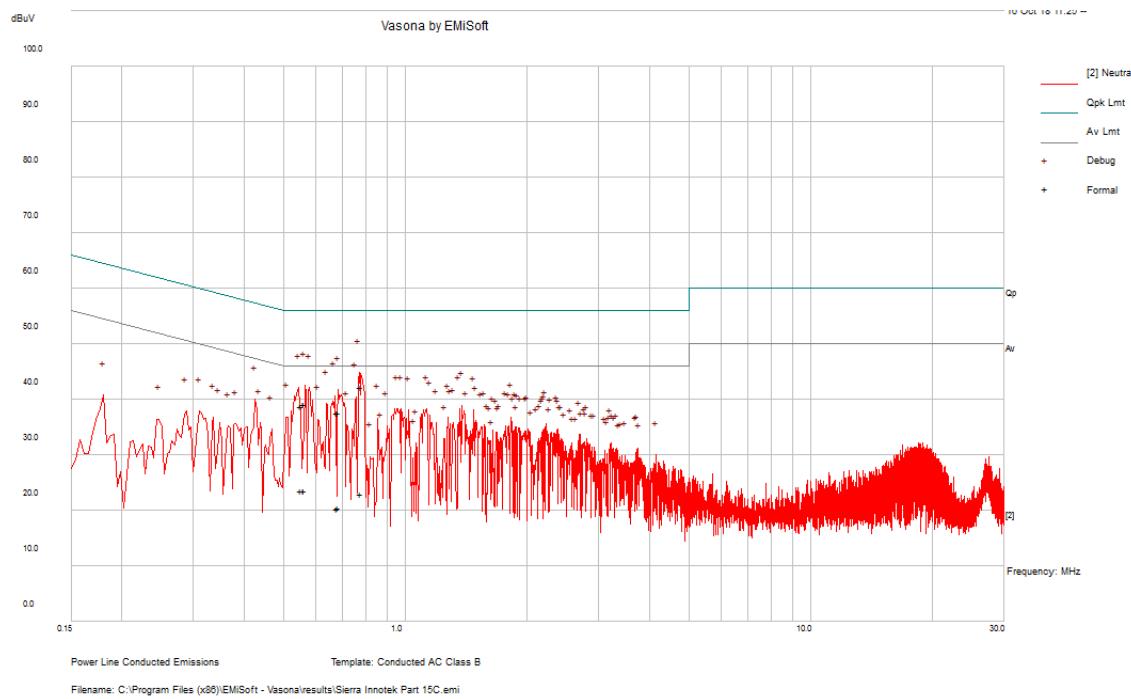
6.8 Summary of Test Results


According to the recorded data in following table, the EUT complied with the FCC 15B and 15C conducted emissions limits, with the margin reading of:

Connection: AC/DC adapter connected to 120 V/60 Hz, AC			
Margin (dB)	Frequency (MHz)	Conductor Mode (Live/Neutral)	Range (MHz)
-13.78	0.775693	Neutral	0.15-30

Note: Testing was performed under worst case BLE channel

6.9 Conducted Emissions Test Plots and Data


120 V, 60 Hz – Line

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.773731	41.03	Line	56	-14.97	QP
0.557411	38.55	Line	56	-17.45	QP
0.670756	37.21	Line	56	-18.79	QP
0.566456	38.54	Line	56	-17.46	QP
0.685036	37.65	Line	56	-18.35	QP
0.535979	37.18	Line	56	-18.82	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.773731	24.7	Line	46	-21.3	Ave.
0.557411	26.95	Line	46	-19.05	Ave.
0.670756	23.3	Line	46	-22.7	Ave.
0.566456	26.15	Line	46	-19.85	Ave.
0.685036	23.85	Line	46	-22.15	Ave.
0.535979	24.92	Line	46	-21.08	Ave.

120 V, 60 Hz – Neutral

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.775693	42.22	Neutral	56	-13.78	QP
0.552857	38.84	Neutral	56	-17.16	QP
0.563229	39.17	Neutral	56	-16.83	QP
0.562855	39.14	Neutral	56	-16.86	QP
0.684811	37.67	Neutral	56	-18.33	QP
0.678219	37.66	Neutral	56	-18.34	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.775693	23.04	Neutral	46	-22.96	Ave.
0.552857	23.55	Neutral	46	-22.45	Ave.
0.563229	23.57	Neutral	46	-22.43	Ave.
0.562855	23.61	Neutral	46	-22.39	Ave.
0.684811	20.46	Neutral	46	-25.54	Ave.
0.678219	20.29	Neutral	46	-25.71	Ave.

7 FCC §15.209 & §15.247(d) - Spurious Radiated Emissions

7.1 Applicable Standards

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) and RSS-Gen except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5. 35 – 5. 46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3 3458 – 3 358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

7.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meter, and the EUT was placed on a turntable, which was 0.8 meter and 1.5 meter above the ground plane for below and above 1000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna's polarity should be changed between horizontal and vertical.

The spectrum analyzer or receiver was set as:

Below 1000 MHz:

$$\text{RBW} = 100 \text{ kHz} / \text{VBW} = 300 \text{ kHz} / \text{Sweep} = \text{Auto}$$

Above 1000 MHz:

- (1) Peak: $\text{RBW} = 1\text{MHz} / \text{VBW} = 1\text{MHz} / \text{Sweep} = \text{Auto}$
- (2) Average: $\text{RBW} = 1\text{MHz} / \text{VBW} = 1/\text{T} \text{ or } 10\text{Hz} / \text{Sweep} = \text{Auto}$

7.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

7.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde and Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100337	2017-07-15	2 years
Agilent	Analyzer, Spectrum	E4446A	US44300386	2018-06-01	1 year
Sunol Sciences	System Controller	SC99V	011003-1	N/R	N/A
Sunol Sciences	Antenna, Biconi-Log	JB1	A013105-3	2018-02-26	2 years
Agilent	Amplifier, Pre	8447D	2944A10187	2018-04-02	1 year
IW	AOBOR Hi frequency Co AX Cable	DC 1531	KPS-1501A3960K PS	2018-01-04	1 year
-	Hi frequency Co AX Cable	-	-	Each time ¹	N/A
-	SMA cable	-	C00011	Each time ¹	N/A
HP	Amplifier, Pre	8449B	3147A00400	2018-02-02	1 year
Sunol Sciences	Antenna, Horn	DRH-118	A052704	2017-03-27	2 years
Wisewave	Antenna, Horn	ARH-4223-02	10555-01	2018-02-14	2 years
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

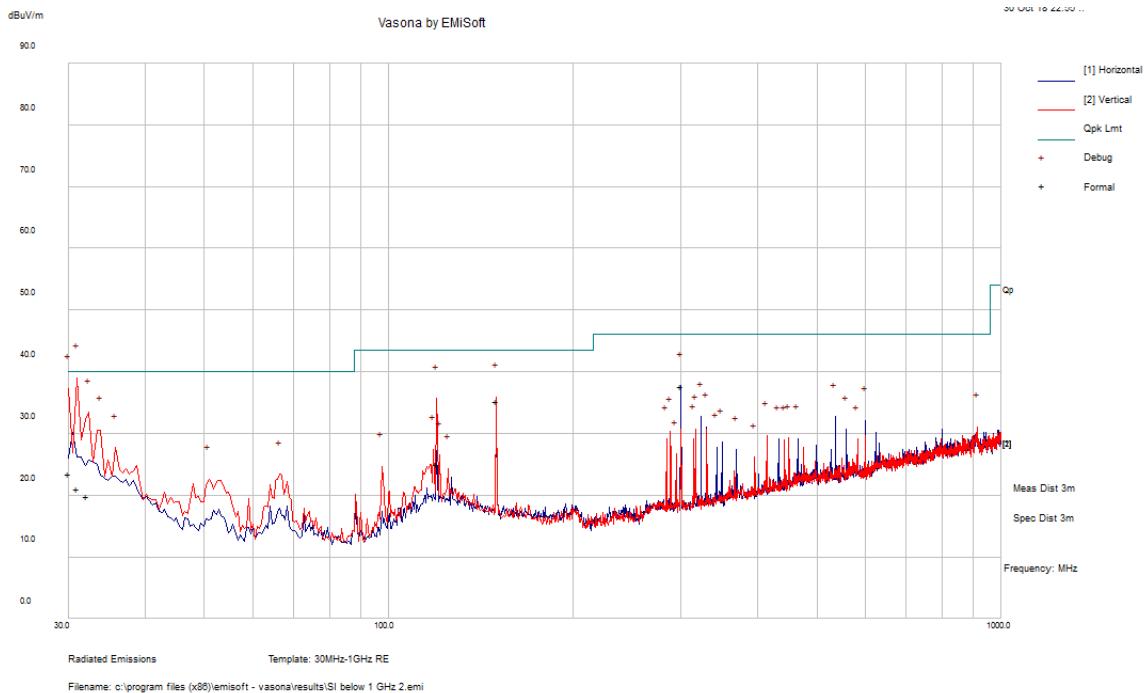
Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) “A2LA Policy on Metrological Traceability”.

7.6 Test Environmental Conditions

Temperature:	20-22 °C
Relative Humidity:	42-50 %
ATM Pressure:	102.7 kPa

The testing was performed by Chin Ming Lui and Harry Zhao on 2018-10-17 and 2018-10-18 in 5m chamber 3.

7.7 Summary of Test Results

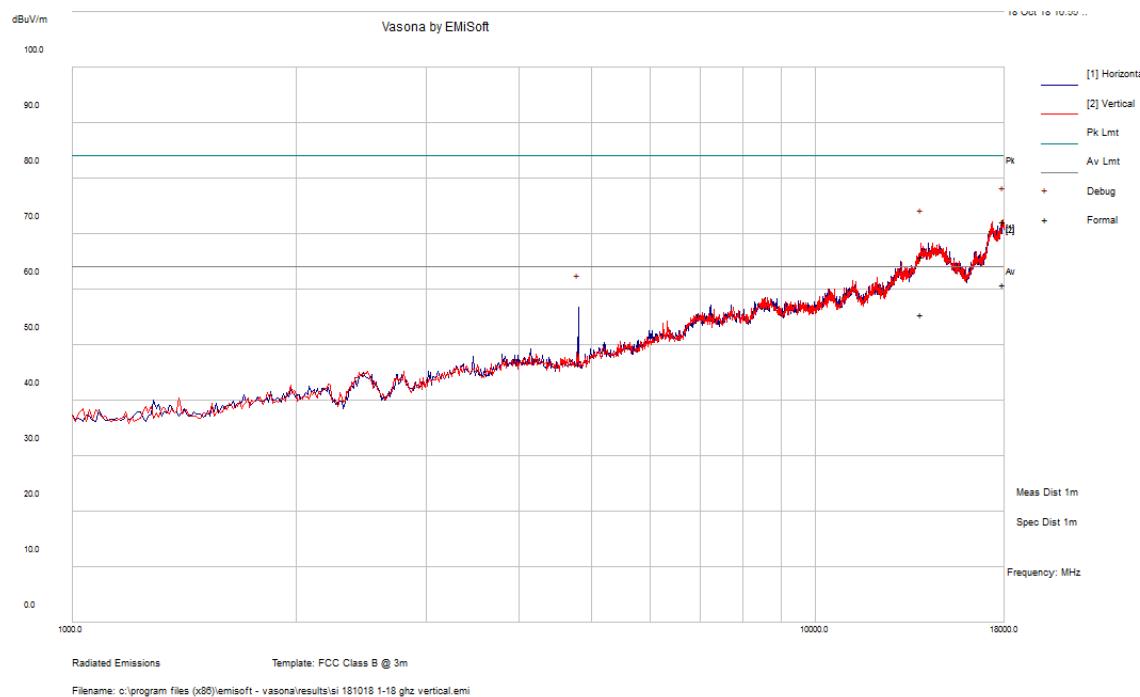
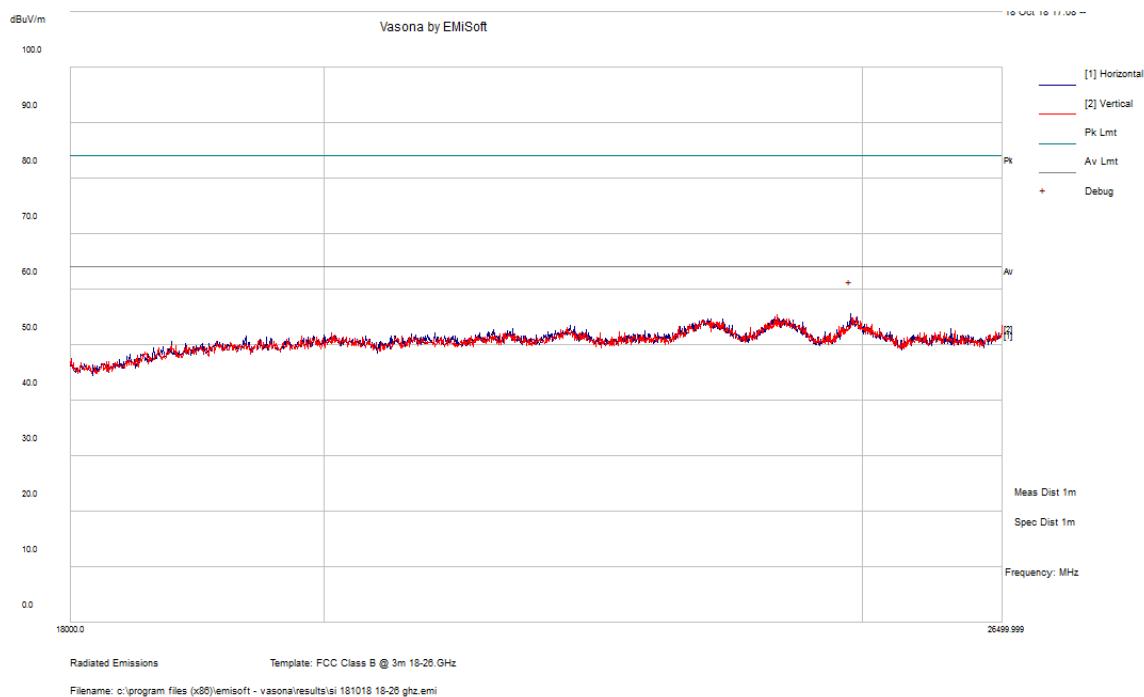

According to the data hereinafter, the EUT complied with FCC Title 47, Part 15C standard's radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode, Channel
-1.24	4880	Horizontal	BLE, Middle Channel

Please refer to the following table and plots for specific test result details.

7.8 Radiated Emissions Test Results

1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Comment
31.0195	21	138	V	191	40	-19	QP
30	23.42	135	V	277	40	-16.58	QP
32.2165	19.79	146	V	24	40	-20.21	QP
149.985	35.27	101	V	286	43.5	-8.23	QP
119.973	25.12	123	V	49	43.5	-18.38	QP
300.00425	37.7	101	H	75	46	-8.3	QP

Note: Testing was performed under worst case BLE channel

2) 1-25 GHz Measured at 3 meters

Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low Channel 2402 MHz BLE mode											
2402	45.12	315	110	H	28.94	5.76	0	79.82	-	-	PK
2402	43.69	315	110	H	28.94	5.76	0	78.39	-	-	AV
2402	46.47	237	100	V	28.93	5.76	0	81.16	-	-	PK
2402	45.23	237	100	V	28.93	5.76	0	79.92	-	-	AV
2390	47.89	0	100	H	28.94	6.489	36.174	47.15	74.00	-26.85	PK
2390	36.72	0	100	H	28.94	6.489	36.174	35.98	54.00	-18.02	AV
2390	48.68	0	100	V	28.93	6.489	36.174	47.93	74.00	-26.07	PK
2390	36.89	0	100	V	28.93	6.489	36.174	36.14	54.00	-17.86	AV
4804	51.42	353	100	H	32.54	9.36	35.747	57.58	74.00	-16.42	PK
4804	45.28	353	100	H	32.54	9.36	35.747	51.44	54.00	-2.56	AV
4804	48.35	105	105	V	32.56	9.36	35.747	54.52	74.00	-19.48	PK
4804	39.79	105	104	V	32.56	9.36	35.747	45.96	54.00	-8.04	AV
7206	45.37	0	100	H	36.73	12.01	35.697	58.41	63.83	-5.42	PK
7206	33.96	0	100	H	36.73	12.01	35.697	47.00	63.38	-16.38	AV
Middle Channel 2440 MHz BLE mode											
2440	43.58	230	151	H	29.15	5.76	0	78.49	-	-	PK
2440	41.61	230	151	H	29.15	5.76	0	76.52	-	-	AV
2440	42.83	237	100	V	29.19	5.76	0	77.78	-	-	PK
2440	41.08	237	100	V	29.19	5.76	0	76.03	-	-	AV
4880	51.79	1	100	H	32.81	9.46	35.702	58.35	74.00	-15.65	PK
4880	46.20	1	100	H	32.81	9.46	35.702	52.76	54.00	-1.24	AV
4880	48.54	98	299	V	32.81	9.46	35.702	55.10	74.00	-18.90	PK
4880	40.46	98	299	V	32.81	9.46	35.702	47.02	54.00	-6.98	AV
7320	44.44	0	100	H	37.06	11.97	35.695	57.77	74.00	-16.23	PK
7320	33.16	0	100	H	37.06	11.97	35.695	46.49	54.00	-7.51	AV
High Channel 2480 MHz BLE mode											
2480	41.74	228	139	H	29.25	5.86	0	76.85	-	-	PK
2480	39.64	228	139	H	29.25	5.86	0	74.75	-	-	AV
2480	41.40	240	100	V	29.18	5.86	0	76.44	-	-	PK
2480	38.95	240	100	V	29.18	5.86	0	73.99	-	-	AV
2483.5	47.66	0	100	H	29.25	6.61	36.13	47.39	74.00	-26.61	PK
2483.5	36.13	0	100	H	29.25	6.61	36.13	35.86	54.00	-18.14	AV
2483.5	47.99	0	100	V	29.18	6.61	36.13	47.65	74.00	-26.35	PK
2483.5	36.13	0	100	V	29.18	6.61	36.13	35.79	54.00	-18.21	AV
4960	50.06	345	114	H	32.78	9.42	35.662	56.60	74.00	-17.41	PK
4960	43.90	345	114	H	32.78	9.42	35.662	50.44	54.00	-3.56	AV
4960	49.10	102	258	V	32.78	9.42	35.662	55.64	74.00	-18.37	PK
4960	40.26	102	258	V	32.78	9.42	35.662	46.80	54.00	-7.21	AV
7440	45.79	0	100	H	37.07	12.01	35.636	59.24	74.00	-14.76	PK
7440	33.36	0	100	H	37.07	12.01	35.636	46.81	54.00	-7.19	AV

1-18 GHz*Worst Case BLE Channel: 2402 MHz***18-26.5 GHz**

8 FCC §15.247(a) (2) - Emission Bandwidth

8.1 Applicable Standards

According to ECFR §15.247(a) (2), systems using digital modulation techniques may operate in the 902~928 MHz, 2400~2483.5 MHz, and 5725~5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

8.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 15.247 Meas Guidance v05: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules Section 8.2: DTS bandwidth

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

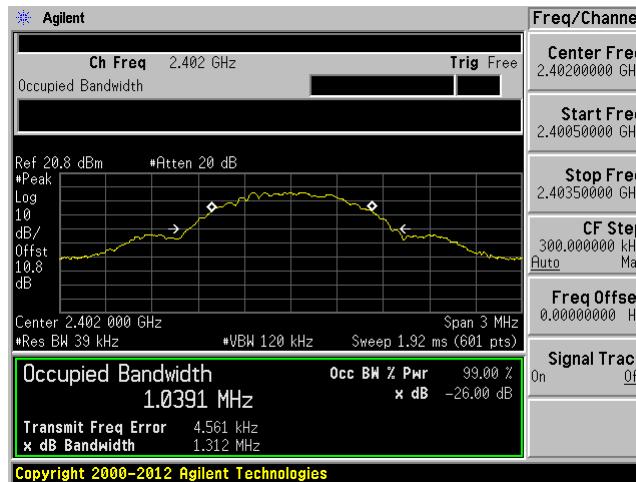
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

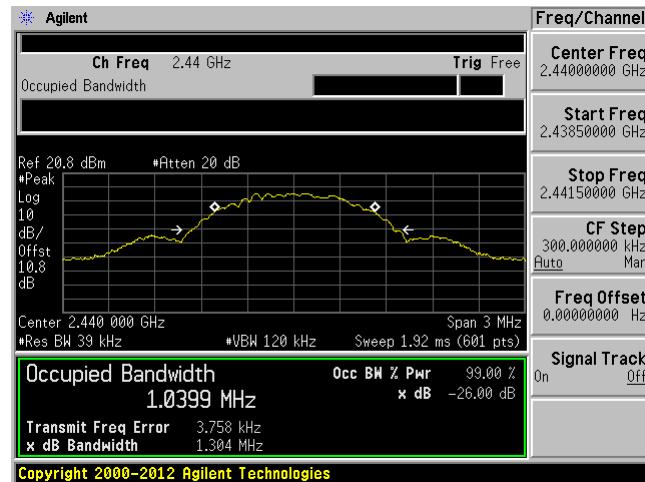
8.4 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

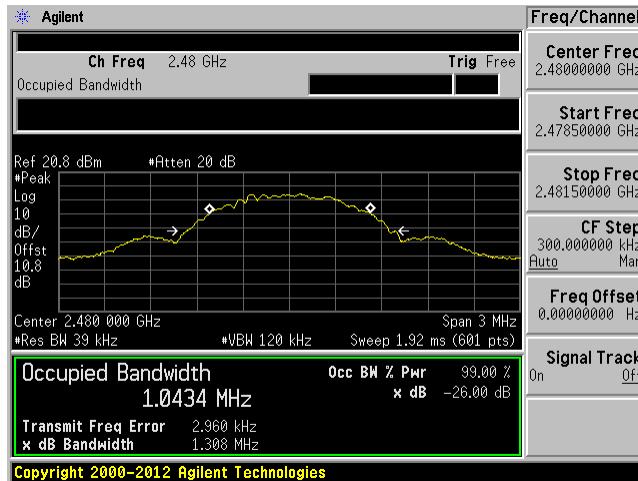
The testing was performed by Chin Ming Lui on 2018-10-15 in RF site.


8.5 Test Results

Channel	Frequency (MHz)	99% OBW (kHz)	6 dB BW (kHz)	6 dB OBW Limit (kHz)
Low	2402	1039.1	713.137	≥ 500
Middle	2440	1039.9	719.615	≥ 500
High	2480	1043.4	714.719	≥ 500


Please refer to the following plots for detailed test results.

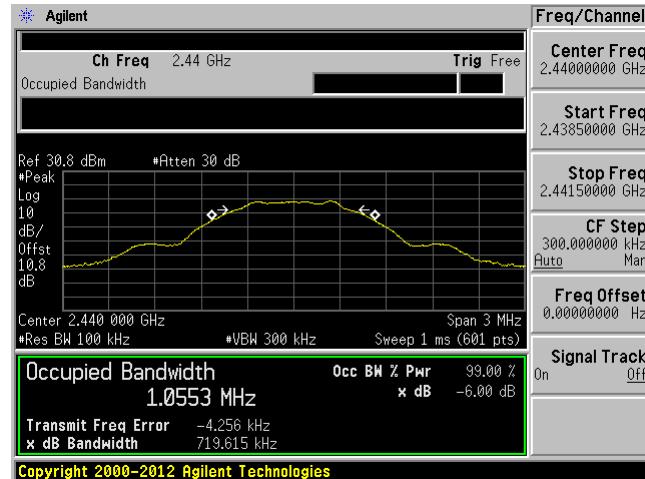
99% Emission Bandwidth


Low Channel 2402 MHz

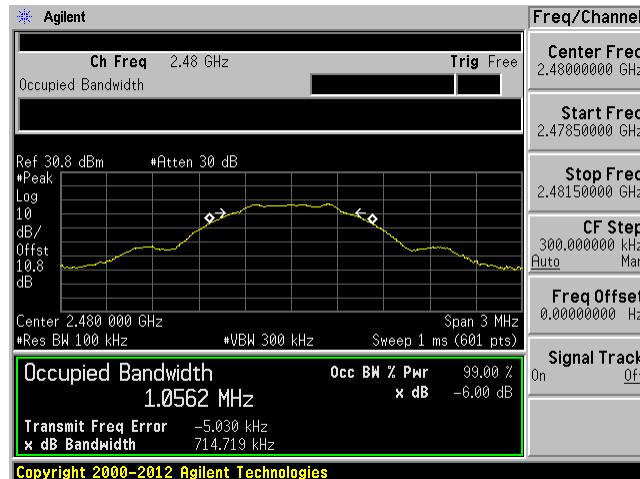
Middle Channel 2440 MHz



High Channel 2480 MHz



6 dB Emission Bandwidth


Low Channel 2402 MHz

Middle Channel 2440 MHz

High Channel 2480 MHz

9 FCC §15.247(b) (3) - Output Power Measurement

9.1 Applicable Standards

According to ECFR §15.247(b) (3), for systems using digital modulation in the 902~928 MHz, 2400~2483.5 MHz, and 5725~5850 MHz bands: 1 Watt.

9.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 15.247 Meas Guidance v05: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules Section 8.3: DTS fundamental emission output power.

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

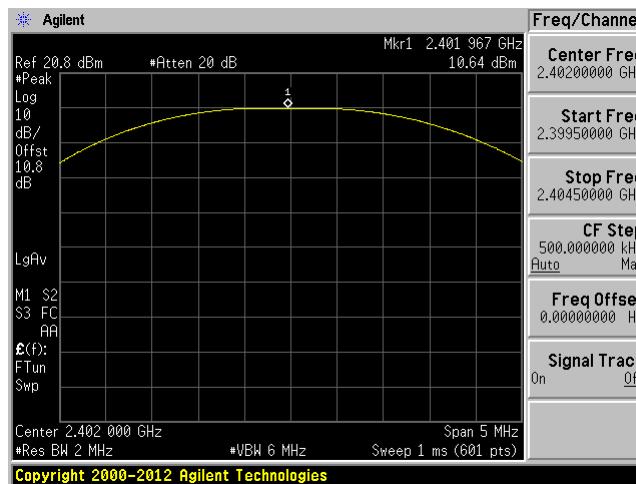
Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

9.4 Test Environmental Conditions

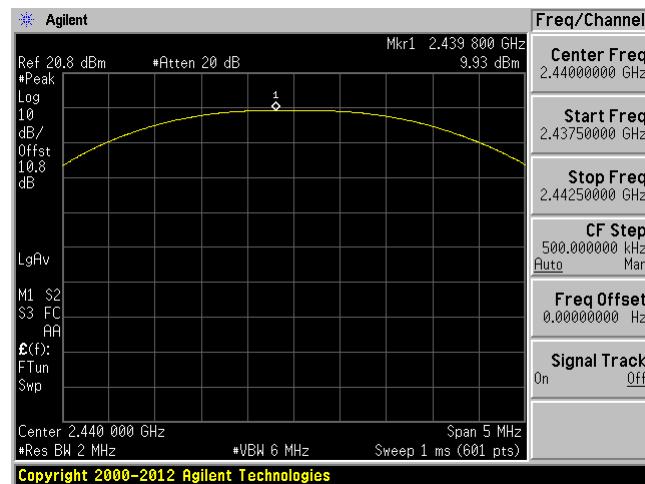
Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Chin Ming Lui on 2018-10-15 in RF site.

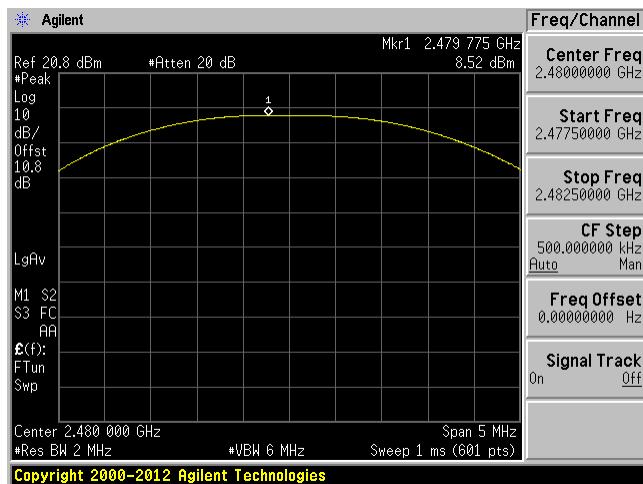
9.5 Test Results


Peak Output Power

Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)	Limit (dBm)
Low	2402	10.64	30
Middle	2440	9.93	30
High	2480	8.52	30


Please refer to the following plots for detailed test results.

BLE


Low Channel 2402 MHz

Middle Channel 2440 MHz

High Channel 2480 MHz

10 FCC §15.247(d) - 100 kHz Bandwidth of Band Edges

10.1 Applicable Standards

According to ECFR §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

10.2 Measurement Procedure

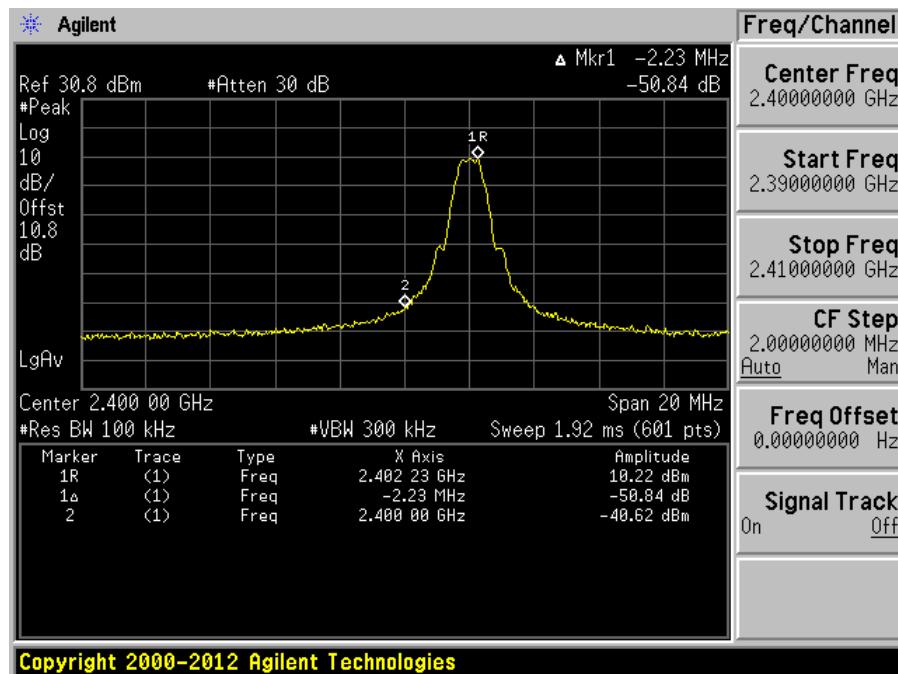
The measurements are based on FCC KDB 558074 D01 15.247 Meas Guidance v05: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules Section 8.7: DTS band-edge emission measurements

10.3 Test Equipment List and Details

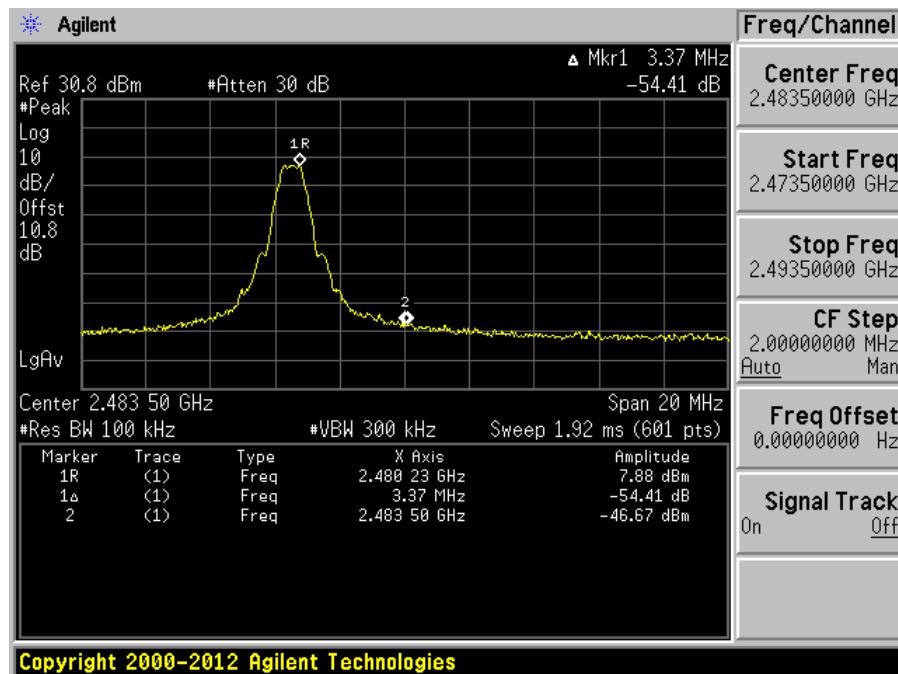
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".


10.4 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa


The testing was performed by Chin Ming Lui on 2018-10-15 in RF site.

10.5 Test Results

Low Channel 2402 MHz

High Channel 2480 MHz

11 FCC §15.247(e) - Power Spectral Density

11.1 Applicable Standards

According to ECFR §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

11.2 Measurement Procedure

The measurements are based on FCC KDB 558074 D01 15.247 Meas Guidance v05: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules Section 8.4: DTS maximum power spectral density level in the fundamental emission.

11.3 Test Equipment List and Details

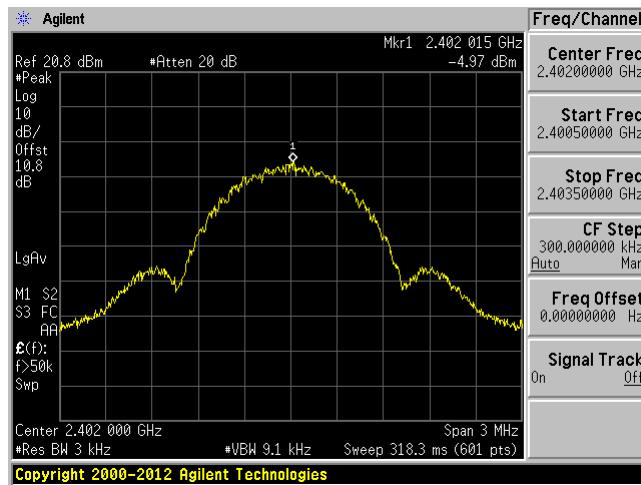
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

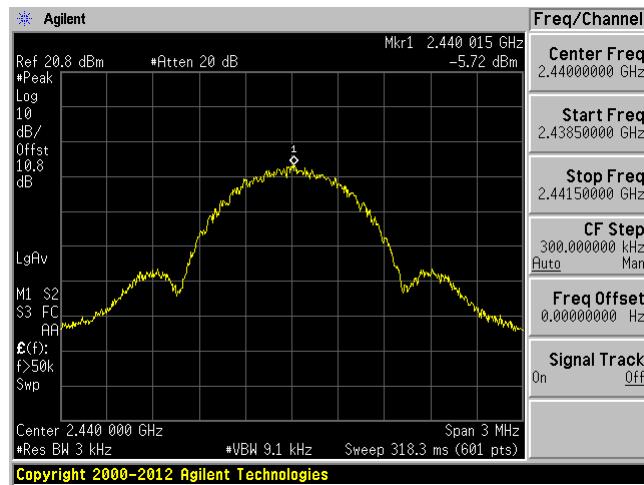
Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

11.4 Test Environmental Conditions

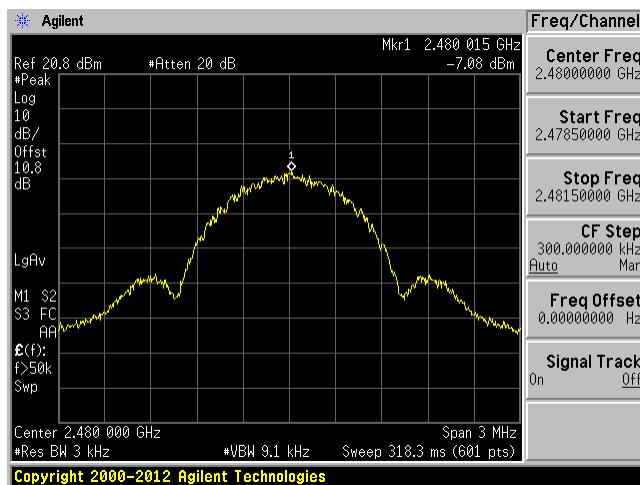
Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa


The testing was performed by Chin Ming Lui on 2018-10-15 in RF site.

11.5 Test Results


Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-4.97	8
Middle	2440	-5.72	8
High	2480	-7.08	8

Please refer to the following plots for detailed test results


Low Channel 2402 MHz

Middle Channel 2440 MHz

High Channel 2480 MHz

12 FCC §15.247(d) - Spurious Emissions at Antenna Terminals

12.1 Applicable Standards

For ECFR §15.247(d) in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

12.2 Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

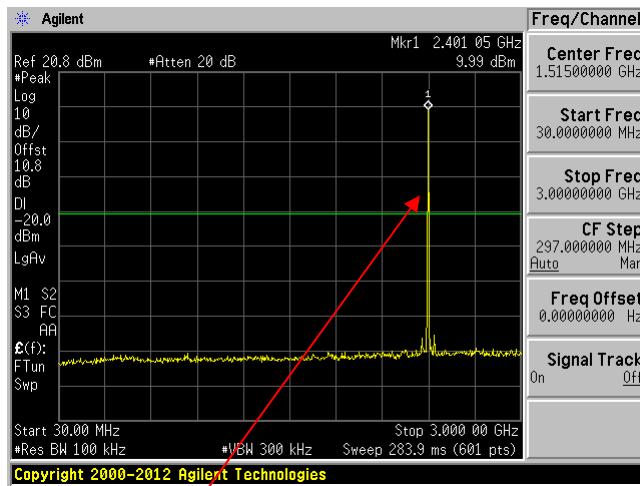
12.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

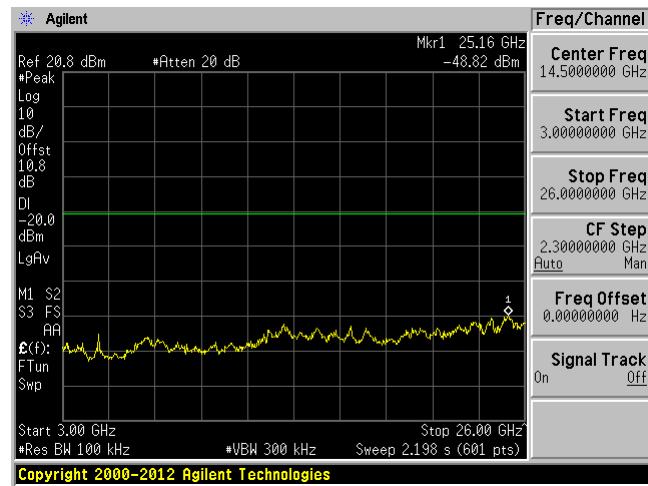
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

12.4 Test Environmental Conditions

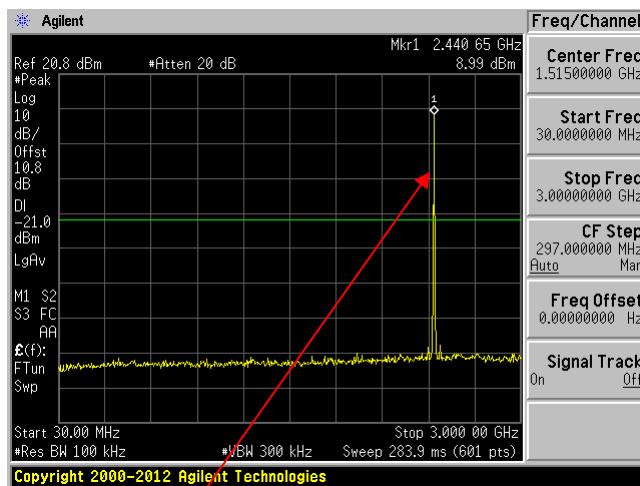

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Chin Ming Lui on 2018-10-15 in RF site.

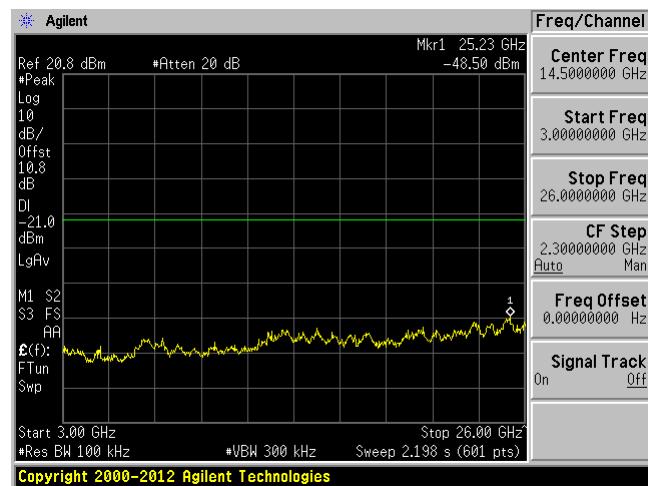

12.5 Test Results

Please refer to following plots.

Low Channel 30 MHz – 3 GHz

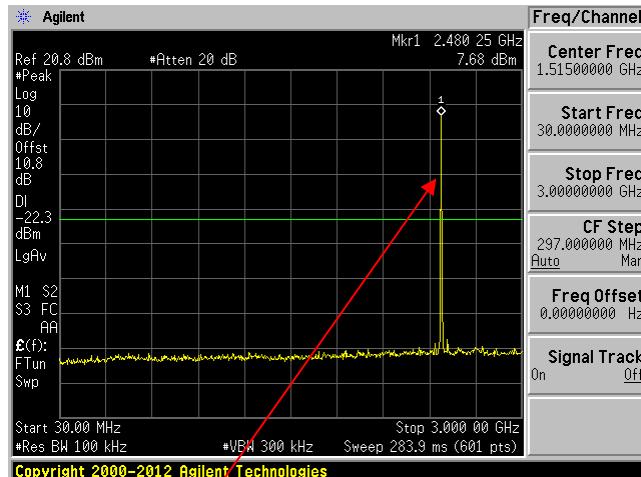


Low Channel 3 GHz – 26 GHz

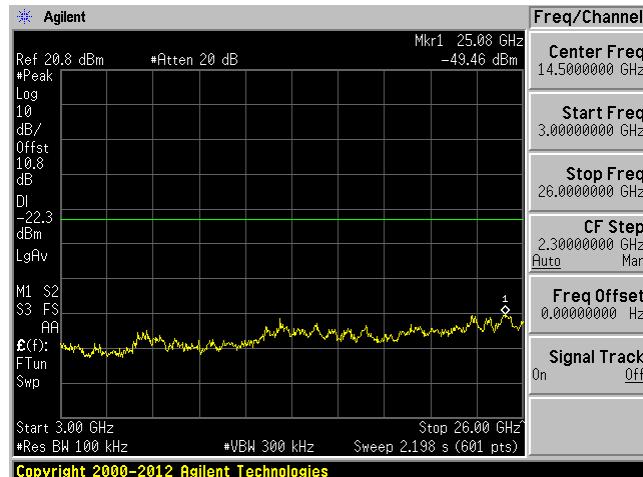


Fundamental signal

Middle Channel 30 MHz – 3 GHz



Middle Channel 3 GHz – 26 GHz



Fundamental signal

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

Fundamental signal

13 Appendix A - FCC Equipment Labeling Requirements

13.1 FCC ID Label Requirements

As per FCC §2.925,

(a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

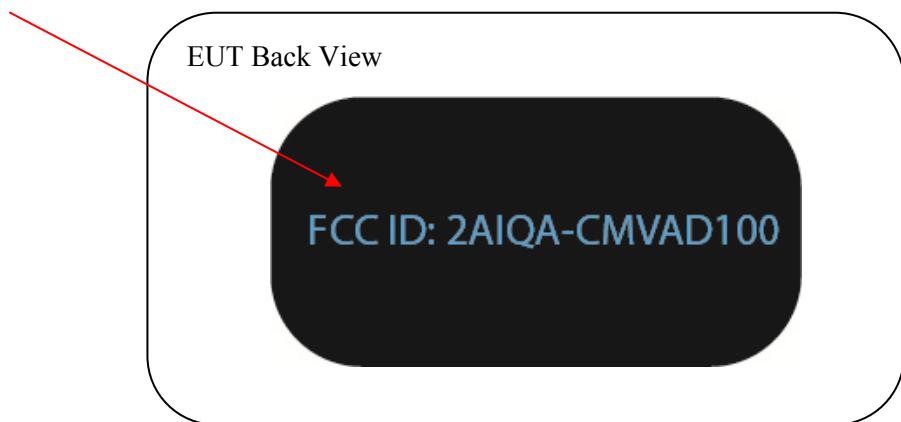
(1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term FCC ID in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID: XXX123

Where: XXX—Grantee Code, 123—Equipment Product Code

As per FCC §15.19,

(a) In addition to the requirements in part 2 of this chapter, a device subject to certification, or verification shall be labeled as follows:


(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

(4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified above is required to be affixed only to the main control unit. If the EUT is integrated within another device then a label affixed to the host shall also state, "Contains FCC ID: XXXXXX"

(5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

13.2 Label Contents and Location

14 Appendix B - EUT Test Setup Photographs

Please refer to the attachment

15 Appendix C - EUT External Photographs

Please refer to the attachment

16 Appendix D - EUT Internal Photographs

Please refer to the attachment

17 Appendix E (Normative) - A2LA Electrical Testing Certificate

Accredited Product Certification Body

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets A2LA R222 - Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 2nd day of October 2018.

President and CEO
For the Accreditation Council
Certificate Number 3297.01
Valid to September 30, 2020

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

--- END OF REPORT ---