

FCC PART 15.225

TEST REPORT

For

Shanghai ADKFP Intelligent Technology Co., Ltd.

3th, 2 buildings, No.777 South Hongmei Road, Shanghai, China

FCC ID: 2AIOY-DTA16

Report Type: Original Report	Product Type: Enhanced access card reader
Test Engineer: <u>Chris Wang</u> <i>Chris Wang</i>	
Report Number: <u>RKS170205001-00C</u>	
Report Date: <u>2017-02-26</u>	
Oscar Ye <i>Oscar Ye</i>	
Reviewed By: <u>RF Leader</u>	
Prepared By: Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION.....	.3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	.3
OBJECTIVE.....	.3
RELATED SUBMITTAL(S)/GRANT(S).....	.3
TEST METHODOLOGY.....	.3
MEASUREMENT UNCERTAINTY.....	.4
TEST FACILITY.....	.4
SYSTEM TEST CONFIGURATION.....	.5
JUSTIFICATION5
EUT EXERCISE SOFTWARE5
EQUIPMENT MODIFICATIONS5
LOCAL SUPPORT EQUIPMENT.....	.5
EXTERNAL I/O CABLE.....	.5
BLOCK DIAGRAM OF TEST SETUP6
SUMMARY OF TEST RESULTS.....	.7
TEST EQUIPMENT LIST8
FCC§15.203 - ANTENNA REQUIREMENT.....	.9
APPLICABLE STANDARD9
ANTENNA CONNECTED CONSTRUCTION9
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS10
APPLICABLE STANDARD10
EUT SETUP10
EMI TEST RECEIVER SETUP.....	.10
TEST PROCEDURE10
CORRECTED FACTOR & MARGIN CALCULATION11
TEST RESULTS SUMMARY.....	.11
TEST DATA11
FCC§15.225, §15.205 & §15.209 - RADIATED EMISSIONS TEST14
APPLICABLE STANDARD14
EUT SETUP14
EMI TEST RECEIVER SETUP.....	.14
CORRECTED AMPLITUDE & MARGIN CALCULATION15
TEST RESULTS SUMMARY.....	.15
TEST DATA15
FCC§15.225(E) - FREQUENCY STABILITY.....	.17
APPLICABLE STANDARD17
TEST PROCEDURE17
TEST DATA17
§15.215(C) - 20DB EMISSION BANDWIDTH TESTING18
REQUIREMENT18
TEST PROCEDURE18
TEST DATA19

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Shanghai ADKFP Intelligent Technology Co., Ltd.
Model	DTA16/AC
Series Model	DTA10/AC
Product	Enhanced access card reader
Dimension	89mm(L)×89mm(W)×11.3mm(H)
Power Supply	DC 12V

**Note: The difference between tested model and series model was explained in the declaration letter.*

**All measurement and test data in this report was gathered from production sample serial number: 20160606002. (Assigned by BACL, Kunshan). The EUT was received on 2016-06-06.*

Objective

This Type approval report is prepared on behalf of Shanghai ADKFP Intelligent Technology Co., Ltd. in accordance with Part 2- Subpart J, and Part 15-Subparts A and C of the Federal Communication Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules, sec 15.203, 15.205, 15.207, 15.209 and 15.225.

Related Submittal(s)/Grant(s)

No related submittal(s)/grant(s)

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item	Uncertainty	
AC Power Lines Conducted Emissions	3.19dB	
RF conducted test with spectrum	0.9dB	
RF Output Power with Power meter	0.5dB	
Radiated Emission	30MHz~1GHz	6.11dB
	1GHz~6GHz	4.45dB
	6GHz~18GHz	5.23dB
Occupied Bandwidth	0.5kHz	
Temperature	1.0°C	
Humidity	6%	

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

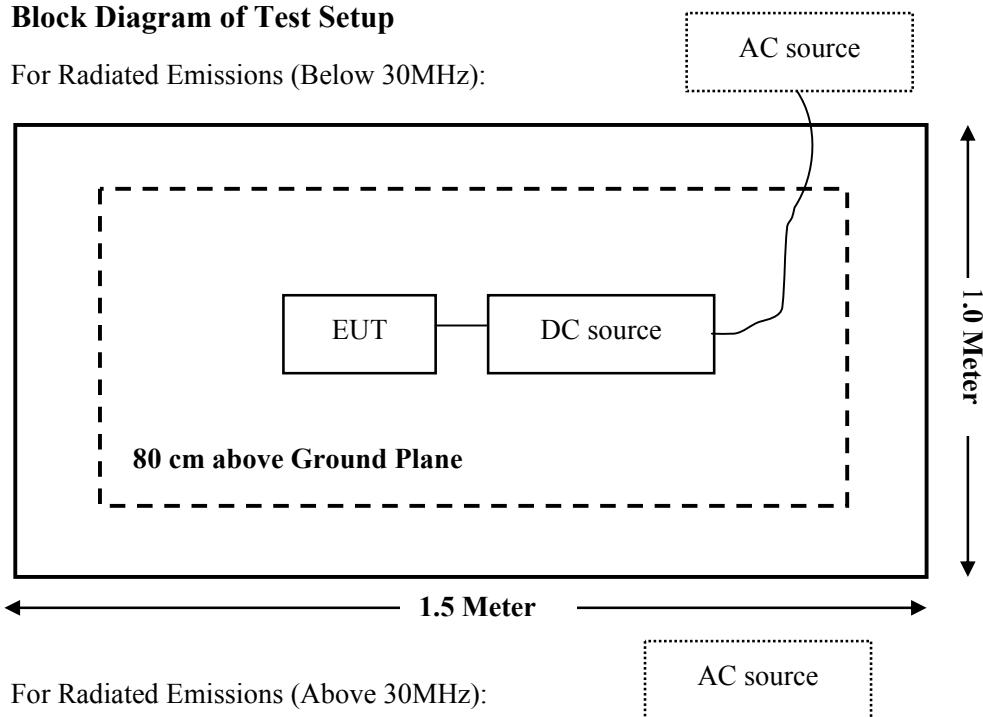
EUT Exercise Software

No exercise software.

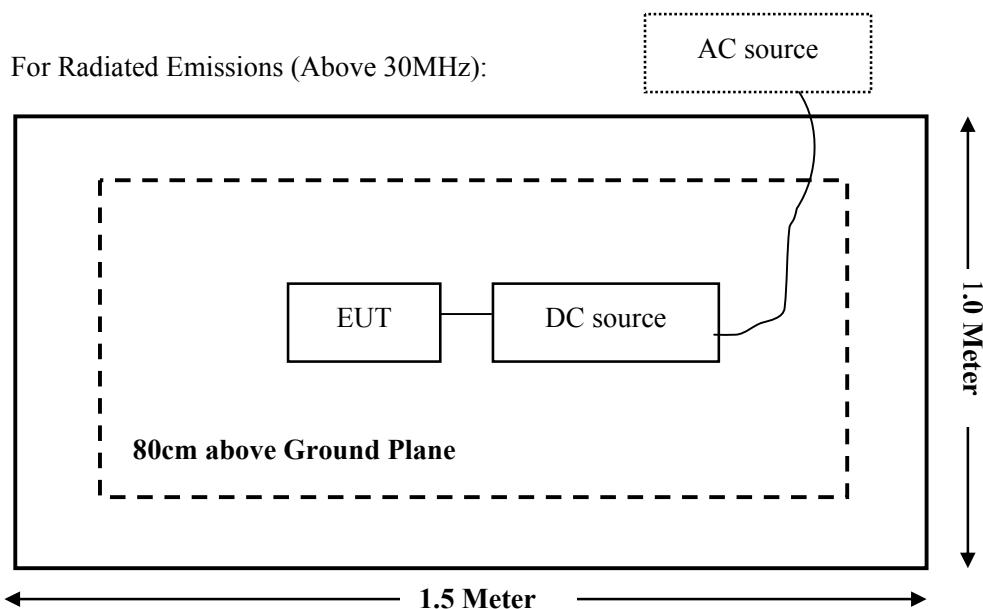
Equipment Modifications

No modification on the EUT.

Local Support Equipment


Manufacturer	Description	Model	Serial Number
EAST	Regulated DC Power Supply	MCH-303D-II	14070562

External I/O Cable


Cable Description	Length (m)	From/Port	To
Power Cable-1	0.5	EUT	DC Source
Power Cable-2	0.5	EUT	DC Source

Block Diagram of Test Setup

For Radiated Emissions (Below 30MHz):

For Radiated Emissions (Above 30MHz):

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207	AC Line Conducted Emission	Compliance
§15.225 §15.209 §15.205	Radiated Emission Test	Compliance
§15.225(e)	Frequency Stability	Compliance
§15.215(c)	20dB Emission Bandwidth Testing	Compliance

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-24
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08
Sonoma Instrument	Amplifier	330	171377	2016-12-12	2017-12-11
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/
Haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-11
Haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-11
Haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-11
ETS-LINDGREN	PASSIVE LOOP	6512	108100	2016-01-09	2019-01-08
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2016-09-21	2017-09-20
BACL	Temperature & Humidity Chamber	BTH-150	30023	2016-10-10	2017-10-09
EAST	Regulated DC Power Supply	MCH-303D-II	14070562	/	/
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-09
Rohde & Schwarz	LISN	ENV216	3560655016	2016-11-25	2017-11-24
Rohde & Schwarz	CE Test software	EMC32	100357	/	/
MICRO-COAX	Coaxial Cable	Cable-6	006	2016-09-08	2017-09-07

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

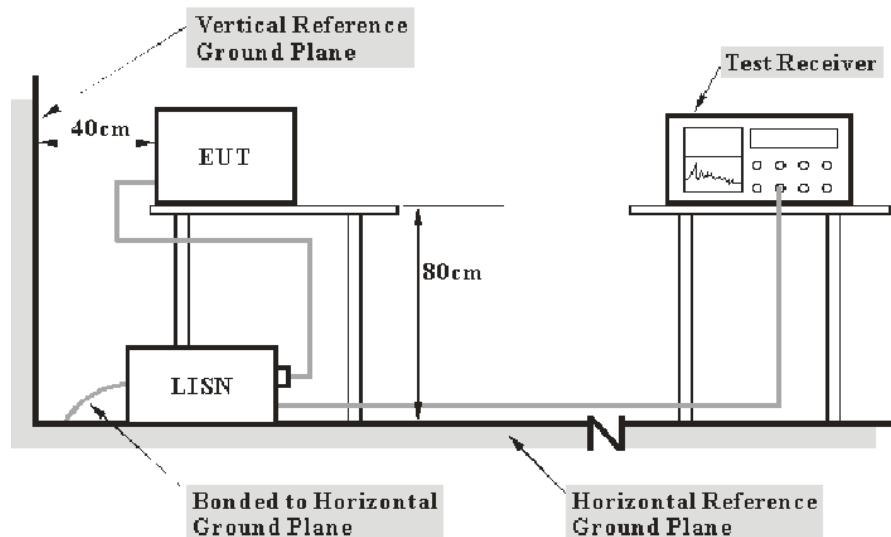
FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connected Construction

The EUT has a PCB antenna which was permanently attached; fulfill the requirement of this section. Please see EUT photo for details.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss}$$

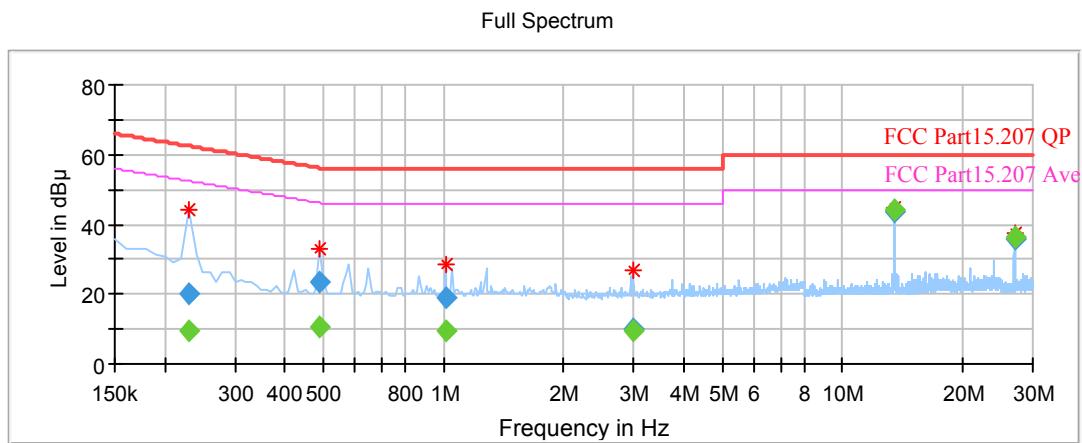
The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

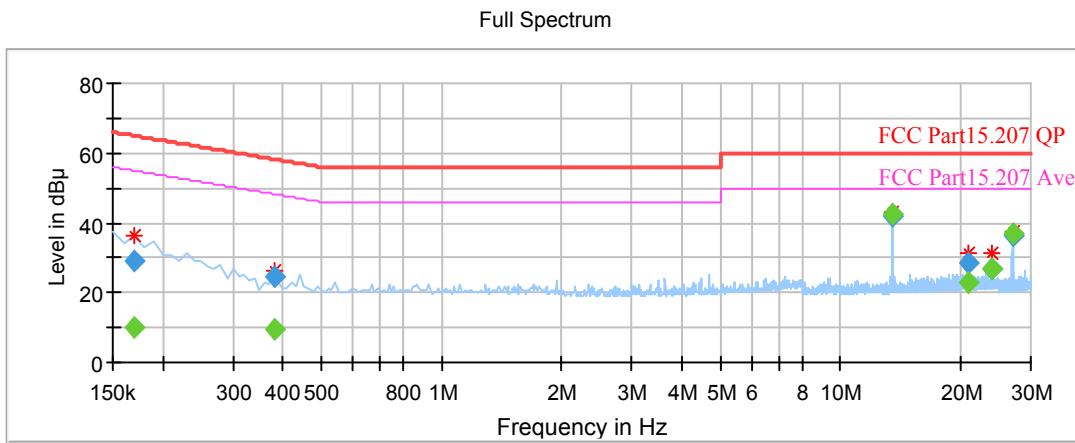
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data


Environmental Conditions

Temperature:	23 °C
Relative Humidity:	55 %
ATM Pressure:	101.1kPa


The testing was performed by Chris Wang on 2016-05-11.

EUT operation mode: Transmitting

AC 120V/60 Hz, Line

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.230000	---	9.65	9.000	L1	10.00	42.80	52.45	Compliance
0.230000	20.11	---	9.000	L1	10.00	42.34	62.45	Compliance
0.490000	---	10.81	9.000	L1	10.10	35.36	46.17	Compliance
0.490000	23.73	---	9.000	L1	10.10	32.44	56.17	Compliance
1.010000	---	9.55	9.000	L1	9.90	36.45	46.00	Compliance
1.010000	18.79	---	9.000	L1	9.90	37.21	56.00	Compliance
2.980000	---	9.53	9.000	L1	9.90	36.47	46.00	Compliance
2.980000	10.10	---	9.000	L1	9.90	45.90	56.00	Compliance
13.560000	---	43.90	9.000	L1	10.20	6.10	50.00	Compliance
13.560000	44.43	---	9.000	L1	10.20	15.57	60.00	Compliance
27.120000	---	35.95	9.000	L1	10.50	14.05	50.00	Compliance
27.120000	36.48	---	9.000	L1	10.50	23.52	60.00	Compliance

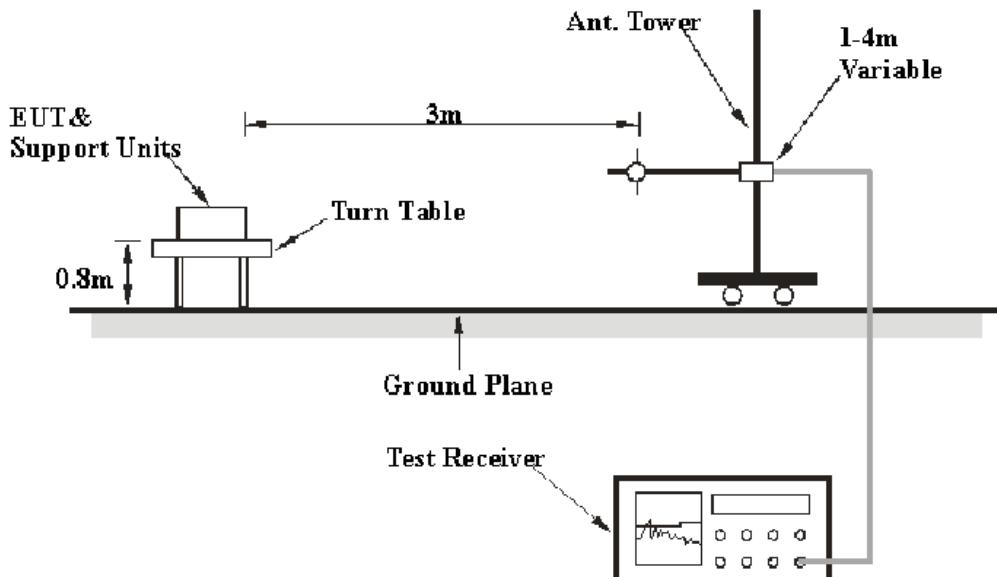
AC 120V/60 Hz, Neutral

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.170000	---	10.19	9.000	N	10.1	44.77	54.96	Compliance
0.170000	28.88	---	9.000	N	10.1	36.08	64.96	Compliance
0.380000	---	9.60	9.000	N	10.1	38.68	48.28	Compliance
0.380000	24.69	---	9.000	N	10.1	33.59	58.28	Compliance
13.560000	---	41.99	9.000	N	10.0	7.57	50.00	Compliance
13.560000	42.43	---	9.000	N	10.0	18.01	60.00	Compliance
20.970000	---	22.75	9.000	N	10.2	27.25	50.00	Compliance
20.970000	28.35	---	9.000	N	10.2	31.65	60.00	Compliance
23.960000	---	26.82	9.000	N	10.2	23.18	50.00	Compliance
23.960000	26.85	---	9.000	N	10.2	33.15	60.00	Compliance
27.120000	---	36.53	9.000	N	10.3	13.47	50.00	Compliance
27.120000	37.15	---	9.000	N	10.3	22.85	60.00	Compliance

FCC§15.225, §15.205 & §15.209 - RADIATED EMISSIONS TEST

Applicable Standard

As per FCC Part 15.225


(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

EUT Setup

The radiated emission tests were performed in the 3-meter chamber a test site, using the setup accordance with the ANSI C63.10. The specification used was the FCC Part Subpart C limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

According to FCC Rules, 47 CFR 15.33, the EUT emissions were investigated up to 1000 MHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	300 Hz	1 kHz	/	QP
150 kHz – 30 MHz	10 kHz	30 kHz	/	QP
30 MHz – 1000 MHz	120 kHz	300 kHz	120	QP

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Corrected Factor}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209 & 15.205

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Test Data

Environmental Conditions

Temperature:	22.0 °C
Relative Humidity:	50 %
ATM Pressure:	101.2 kPa

The testing was performed by Chris Wang on 2017-01-24.

Test mode: Charging and Transmitting.

Scan with model DTA16/AC and DTA10/AC, the worst case was recorded.

1) Spurious Emissions (9 kHz~30 MHz):

Indicated		Detector PK/QP/Ave.	Correction Factor			Corrected Amplitude (dB μ V/m) @3m	FCC Part 15.225\15.209	
Frequency (MHz)	Maximum Reading (dB μ V)		Ant. Factor (dB)	Cable Loss (dB)	Pre- Amp. Gain (dB)		Limit (dB μ V/m) @3m	Margin (dB)
1.17	25.14	QP	35.4	0.20	20.0	40.74	66.24	25.50
13.256	23.65	QP	35.4	0.20	20.0	39.25	80.50	41.25
13.543	24.25	QP	35.4	0.20	20.0	39.85	90.50	50.65
13.667	23.65	QP	35.4	0.20	20.0	39.25	90.50	51.25
13.56	51.50	QP	35.4	0.20	20.0	67.10	124.00	56.90
23.56	23.49	QP	35.4	0.20	20.0	39.09	69.54	30.45

2) Spurious Emissions (30 MHz ~1 GHz):

Frequency (MHz)	Corrected Amplitude (dB μ V/m)	Detector PK/QP/Ave.	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Position (deg)	Correction Factor (dB)	Limit (dB μ V/m)	Margin (dB)
80.44	16.40	QP	120	V	314	-16.83	40.0	23.60
189.08	30.19	QP	110	V	301	-12.13	43.5	13.31
216.24	31.93	QP	212	V	355	-12.39	46.0	14.07
515.97	25.53	QP	155	H	71	-5.31	46.0	20.47
623.64	26.89	QP	183	H	86	-4.41	46.0	19.11
659.81	26.28	QP	174	V	266	-3.48	46.0	19.72

FCC§15.225(e) - FREQUENCY STABILITY

Applicable Standard

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to $+50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to PC, then to an external AC power supply and inductive antenna was connected to a Spectrum Analyzer. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable AC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	22.1 °C
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Chris Wang on 2017-01-24.

Test Mode: Transmitting.

Test Result: Pass

$F_0=13.56\text{MHz}$				
Power Supply	Temperature (°C)	Measured Frequency (MHz)	Frequency Error	Part 15.225 Limit
12V	-20	13.56071	0.00524%	$\pm 0.01\%$
	0	13.56079	0.00583%	$\pm 0.01\%$
	+20	13.56084	0.00619%	$\pm 0.01\%$
	+50	13.56097	0.00715%	$\pm 0.01\%$
10.2V	+20	13.56054	0.00398%	$\pm 0.01\%$
13.8V	+20	13.56098	0.00723%	$\pm 0.01\%$

§15.215(c) - 20dB EMISSION BANDWIDTH TESTING

Requirement

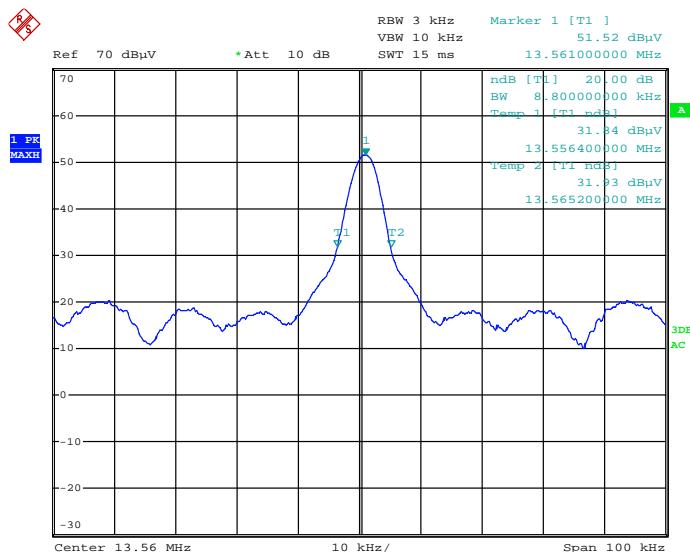
Per 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

Test Data

Environmental Conditions


Temperature:	22.0 °C
Relative Humidity:	53 %
ATM Pressure:	101.2 kPa

The testing was performed by Chris Wang on 2017-01-24.

Test Mode: Transmitting

Test Result: Pass

20 dB Emission Bandwidth

Date: 24.JAN.2017 09:57:28

***** END OF REPORT *****