

Assure Compact Validator

Installation Guide

Document Number:	DPU-00083
Revision:	1.0
Revision Date:	1 May 2023

The information contained in this document is copyright and may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means in whole or in part without the express written consent of Vix IP Pty Ltd.

This material is also confidential and may not be disclosed in whole or part to any third party nor used in any manner whatsoever other than for a purpose expressly consented to by Vix IP Pty Ltd in writing.

Document History

REVISION	REVISION DATE	DESCRIPTION	AUTHOR
0.1	14 Jun 2021	Initial Draft derived from DPU-00084	Atul Sharma
0.2	15 Jun 2021	Updated with review comments.	Atul Sharma
0.3	12 Jul 21	Added entire section 6 from DPU-00084	Atul Sharma
0.4	08 Mar 2022	Updated document template; Restructured document; Added more instructions.	Carrie Huang
0.5	17 Mar 2022	Addressed review comments: Added example on the current rating per conductor as a function of the number of conductors; Changed Compact to Compact Validator and other minor wording adjustments; Added cradle part number and information on the cradle cover and extra parts to suit poles of different diameter.	Carrie Huang
0.6	02 Jun 2022	Changed the way how the cradle kit is delivered and added instructions on how to disassemble it to be ready for installation.	Carrie Huang
0.7	27 Oct 2022	Added FCC & ISED compliance statement; Added installation procedure overview and BoM; Added controllable power switch between main power and Compact on wiring diagram; Added 1-wire module pinouts; Added ferrite installation reminder; Added photos and instructions on securing the rubber boot; Updated cradle cover photos; Added quality assurance and testing; Added information for rolling stock wiring.	Carrie Huang
1.0	1 May 2023	Released for use.	Carrie Huang

Contents

1	Safety Precautions	7
1.1	Warnings and Cautions.....	7
1.2	EMC and Safety Standards Applied	7
1.2.1	FCC RF Radiation Exposure Statement.....	7
1.2.2	FCC Compliance Statement	8
1.2.3	ISED Compliance Statement	8
1.3	Safety	8
2	Introduction.....	9
2.1	Purpose.....	9
2.2	Scope	9
2.3	References.....	10
2.4	Glossary/Acronyms.....	10
3	Installation Overview.....	11
3.1	System Architecture	11
3.2	Power Supply	11
3.3	Installation Example	12
3.4	Installation Procedure and BoM.....	13
4	Accessories	14
4.1	SAM / uSD	14
4.2	Back-up Battery	14
4.3	1-Wire Assembly (CBL0429)	15
5	Wiring and Terminations.....	16
5.1	Example Vehicle Wiring Diagram	16
5.2	Connector Termination	18
5.3	Circuit Breakers	18
5.4	Cable Recommendations	19
5.5	Power Supply Cable	20
5.5.1	Requirements.....	20
5.5.2	Hierarchy for Power Supply	20
5.5.3	Length Versus Size.....	21
5.5.4	Current Capacity	21
5.5.5	Ground Terminations	22
5.5.6	Ground Termination Checks	22
5.6	Hot Plugging	22
6	Pole Mounting	23
6.1	Compact Validator Positioning.....	23
6.2	Cradle Kit	24
6.3	Cradle Mounting Instructions	25
6.4	Validator Mounting Instructions	28
6.5	Validator Demounting Instructions.....	30

6.6	Cradle Demounting Instructions	32
6.7	Cradle Covering	34
7	Quality Assurance and Testing	35
7.1	Installation Review	35
7.2	Testing	35
7.3	Sign-off	35
Appendix A	Cut-out for Surface Mount Compact Validator	36
Appendix B	Dimensions and Weight	37
Appendix C	Pole Cut-out	38
Appendix D	Example Rolling Stock Wiring Diagram	39

Figures

Figure 1: Picture of Compact Validator	9
Figure 2: Compact Validator Typical System Architecture	11
Figure 3: Picture of a Pole-Mounted Compact Validator	12
Figure 4: Picture of a Surface-Mounted Compact Validator	12
Figure 5: Picture of Compact Validator Main Board	14
Figure 6: 1-Wire Assembly Connection	15
Figure 7: Example Vehicle Wiring Diagram	16
Figure 8: Compact Validator Rear Connector	18
Figure 9: Typical Bus Power Supply Circuit Breaker and Cable Rating	20
Figure 10: Cable Current Capacity Chart	21
Figure 11: Compact Validator Positioning – Height	23
Figure 12: Compact Validator Preferred Pole Mounting Bracing	24
Figure 13: Assure Compact Validator Cradle Kit	24
Figure 14: Cradle Kit	24
Figure 15: Cradle Front Placement	25
Figure 16: Joining Cradle Front and Cradle Rear	25
Figure 17: Correct and Incorrect Position of Closed Cradle Arms	26
Figure 18: Compact Validator Cradle Mount Shims	26
Figure 19: Seals Position on External Cover	27
Figure 20: Compact Validator Cradle Mount Cover	27
Figure 21: Rubber Boot Installation	28
Figure 22: Compact Validator Cable Connection	28
Figure 23: Rubber Boot Fitting	29
Figure 24: Compact Validator Mounting on Cradle	29
Figure 25: Device Locking	30
Figure 26: Device Unlocking	30
Figure 27: Compact Validator Removal	31
Figure 28: Cable Disconnection	31
Figure 29: Rubber Boot Removal	32

Figure 30: External Cover Removal	32
Figure 31: Opening Cradle Arms	32
Figure 32: Cradle Front and Rear Separation	33
Figure 33: Cradle Front Removal	33
Figure 34: Cradle Covering.....	34
Figure 35: Cradle Cover Locking	34
Figure 36: Cut-out for Surface Mount Compact Validator	36
Figure 37: Dimensions and Weight.....	37
Figure 38: Pole Cut-out.....	38
Figure 39: Example Rolling Stock Power Wiring Diagram	39

Tables

Table 1: Valid Devices	9
Table 2: Terminology	10
Table 3: Power Supply Specification	11
Table 4: Procedure Overview	13
Table 5: Cable Connection Mapping	17
Table 6: Mating Female Connector Housing	18
Table 7: Mating Female Crimps.....	18
Table 8: Cable Recommendations	19
Table 9: Maximum Cable Length Recommendations	19
Table 10: Cable Length	21

1 Safety Precautions

This document presents important information that is intended to ensure the safe and effective use of this device. Please read this information carefully and store it in an accessible location near your installation.

1.1 Warnings and Cautions

Warnings and cautions are used to call attention to potential hazards. Failure to observe the information provided with the warnings and cautions may result in personal injury or property damage. Be sure that you understand the meaning of each before you proceed.

Warning:	Indicates a potentially lethal hazard. Failure to observe a WARNING may result in severe injury or death.
Caution:	Failure to observe a CAUTION may result in personal injury or damage to the device or other property.
Warning:	The device should only be opened and repaired by a qualified service technician. Improper repair work can be dangerous. Tampering with this device may result in injury, fire, or electric shock.
Warning:	Be sure to use the specified power source. Connection to an improper power source may cause fire or electric shock.
Warning:	Disconnect all power before carrying out repairs or service.
Warning:	Risk of fire or explosion if incorrect fuses are used. Fuses should only be replaced with new fuses of the same rating.

1.2 EMC and Safety Standards Applied

The following standards have been applied to this device:

- CE/FCC Marking
- UKCA
- ISED
- Safety: EN62368-1
- Automotive Type approval to ECE Regulation No 10
- Rolling Stock – EN 50155 / EN 50121-3-2

1.2.1 FCC RF Radiation Exposure Statement

This equipment complies with radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Après examen de ce matériel aux conformité ou aux limites d'intensité de champ RF, les utilisateurs peuvent sur l'exposition aux radiofréquences et la conformité and compliance d'acquérir les informations correspondantes. La distance minimale du corps à utiliser le dispositif est de 20cm.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

1.2.2 FCC Compliance Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

1.2.3 ISED Compliance Statement

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

- 1) This device may not cause interference.
- 2) This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence.

L'exploitation est autorisée aux deux conditions suivantes :

- 1) L'appareil ne doit pas produire de brouillage;
- 2) L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

CAN ICES-003 (B)/NMB-003(B)

This product meets the applicable Innovation, Science and Economic Development Canada technical specifications.

Le présent produit est conforme aux spécifications techniques applicables d'Innovation, Sciences et Développement économique Canada.

1.3 Safety

All installation work must be carried out in accordance with State and Federal Safety Codes and Codes of Practice as well as recognised industry standards. The appropriate protective clothing must be worn where necessary. Tools must be used in accordance with manufacturers' instructions and suitable for the task.

Personnel attempting to perform any work on the electrical wiring must be trained and suitably qualified in the appropriate electrical codes of practice and must work in accordance with those codes.

2 Introduction

2.1 Purpose

This document describes the Compact Validator installation for general and expanded use.

Figure 1: Picture of Compact Validator

2.2 Scope

This document details the recommended installation for the Compact Validator. It describes the mechanical and electrical interfaces and how to interconnect the Compact Validator into the target environment. This document defines some of the system interfaces but does not provide in depth details, description is limited to function and potential use.

The scope of this document is limited to the following Compact Validator models, which are all pole mounting variants. Details on surface mounting will be added in a future revision.

Table 1: Valid Devices

VIX PART NUMBER	DESCRIPTION
COMPACT-AAAx	Compact Standard

2.3 References

The following materials are to be used in conjunction with or are referenced by this document.

[1] DPU-00086 Assure Compact Validator Maintenance Manual

2.4 Glossary/Acronyms

Table 2: Terminology

TERM	DEFINITION
CAT5/6	Category 5/6
CE marking	CE marking is an administrative marking with which the manufacturer or importer affirms its conformity with European health, safety, and environmental protection standards
DC	Direct Current
EMC	Electromagnetic Compatibility
EN	European Standards abbreviated to ENs (literal translation as European Norms)
FCC	Federal Communications Commission
Hot Plugging	Changing components whilst system is operating
ISED	Innovation, Science and Economic Development Canada
NC	Not Connected
OTG	On the Go
PoE	Power over Ethernet
RTC	Real Time Clock
SAM	Secure Access Module
USB	Universal Serial Bus
uSD	Micro Secure Digital

3 Installation Overview

3.1 System Architecture

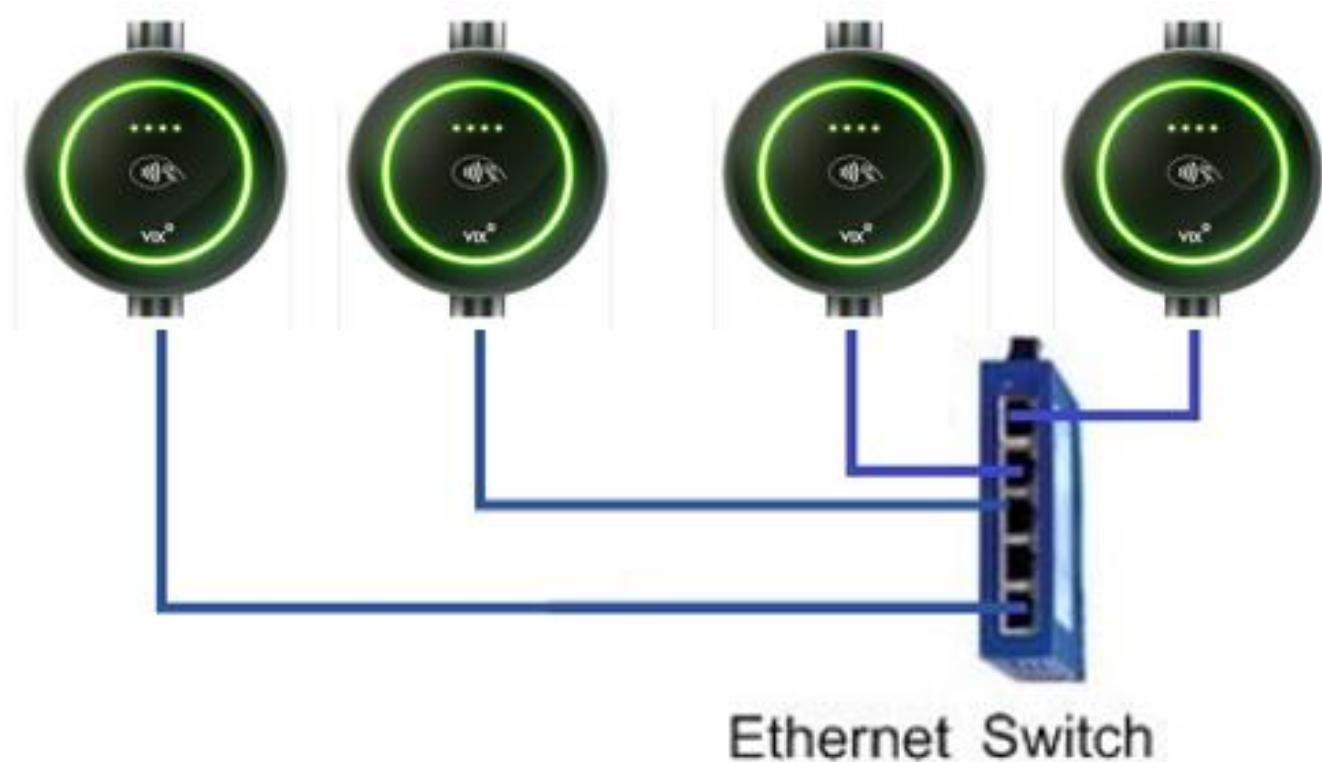


Figure 2: Compact Validator Typical System Architecture

3.2 Power Supply

Compact Validator can be powered either by Power-Over-Ethernet or by 24C DC power supply.

Table 3: Power Supply Specification

PARAMETER	MIN.	TYP.	MAX.	UNIT
Input Supply Voltage	9	24	36	V
Specified Input Current on power-up (@24V)	-	-	0.4	A
Specified Input Current steady state (@24V)	0.2 (4.8W)	0.3 (7.2W)	0.5 (12W)	A
Reverse Voltage Protection	-	-	-100	V

3.3 Installation Example

Mechanically the Compact Validator is mounted in two ways:

1. Onto a pole with a cradle.

Figure 3: Picture of a Pole-Mounted Compact Validator

2. Onto a surface (e.g. Gates at train stations or TVMs (ticket vending machine)).

Figure 4: Picture of a Surface-Mounted Compact Validator

Refer to Appendix A for the details of the cut-out required on the surface.

3.4 Installation Procedure and BoM

The below table presents an overview of the installation process and the required materials in each step, for the pole-mounted Compact Validator. For tools to be used, refer to the corresponding section.

Table 4: Procedure Overview

STEP	ACTIVITY	MATERIAL	REFERENCE
1.	SAM/uSD Fitment & Battery Check	<ul style="list-style-type: none">• SAM/uSD and/or Battery	Section 4
2.	Cable Preparation	<ul style="list-style-type: none">• 24V DC core• Ethernet cable• Other cables, if needed• Interconnectors, if needed• 30WAY connector and suitable crimps• Ferrites for each group of connections• Circuit breakers• 1-wire assembly (CBL0429) and mating connector with crimps	Section 5
3.	Cradle Installation	<ul style="list-style-type: none">• Compact Cradle (CRADLE-COMPACT-x-Ryy)	Section 6.3
4.	Validator Mounting	<ul style="list-style-type: none">• COMPACT-xxxx	Section 6.4

4 Accessories

4.1 SAM / uSD

Prior to installation, if the SAM or uSD card need to be inserted or replaced, the Compact Validator needs to be opened by removing the 4 screws at the rear of the unit. Refer to [1] for details on how to obtain access to the main board. The SAM card slot is located on the top side of the main board and the uSD card slot is located at the rear side as shown below.

Note: *The Compact Validator is not supplied with any of the above-mentioned accessory by default.*



Figure 5: Picture of Compact Validator Main Board

4.2 Back-up Battery

The rechargeable battery on the main board provides backup power to the real time clock when the unit is disconnected from the main power.

The battery usually comes with 90% charge when new, and it gets charged further during production testing, so it should be sufficient to power the RTC for approximately half a year, when out of the factory.

If the elapsed time between manufacturing and installation is more than half a year, there is a chance that the battery gets deeply discharged and the performance is not guaranteed.

If the device needs to be opened for the SAM/uSD insertion, it is recommended to use this opportunity to measure the battery voltage, to ensure it is above 2V, replace it otherwise.

Refer to [1] and Figure 5 for details on how to obtain access to the main board back-up battery if replacement is required.

4.3 1-Wire Assembly (CBL0429)

The 1-wire assembly comes with a connector which could be directly mated with the cable harness without any crimping required. Refer to section 5 for the wires, connector, and crimps to be used on the cable harness.

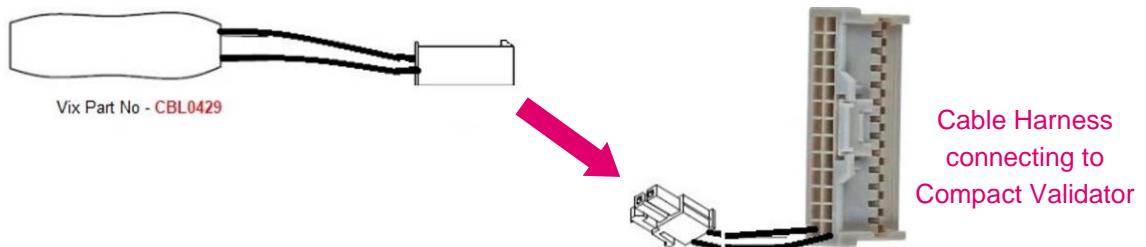


Figure 6: 1-Wire Assembly Connection

5 Wiring and Terminations

5.1 Example Vehicle Wiring Diagram

The following example diagram shows a Compact Validator installed in isolation, with only general reference to external devices. It is mainly for the Compact Validator end only, any interconnection and extension between the Compact Validator and the terminal end needs to be discussed and confirmed between the customer and VIX.

Refer to Appendix D for an example power wiring diagram for the rolling stock application.



Figure 7: Example Vehicle Wiring Diagram

Refer to section 5.2 for the connector and crimps to be used at the validator end. Refer to sections 5.3 and 5.4 for recommendation on circuit breakers and cables.

Note:	<i>The above diagram is for a 24V bus system, with 0 to 20-meter power cable and 70% derating of cable's maximum current rating. Refer to section 5.5 for information on the power cable selection.</i>
Caution:	For any connected signal group (power, Ethernet or USB), a ferrite MUST be used on the cable on the validator end to ensure EMC performance. The recommendation is Laird Technologies # 28A0593-0A2 (shown in the above diagram), but any ferrite with similar impedance characteristics and size could be submitted to VIX for approving its use.

Note:	<i>The ferrites could be offset in position to accommodate for the space constraint within the pole. They should be secured in place on its cable group with cable ties or other means. They need to be installed prior to cradle mounting as it is difficult to position/fit them through the pole/cradle.</i>		
--------------	---	--	--

Interconnection connectors are recommended to be used between the validator end and the end terminal/device. This provides flexibility in installation and removal. The below table presents the above wiring in a table format with the interconnection recommendations, but they could be altered, based on the actual application/requirement.

Table 5: Cable Connection Mapping

END TERMINATION	CABLE ID	PIN NAME	PIN	COMPACT END CONNECTOR
USB type A jack	D	USB_OTG_ID	1	
		GND	2	
		USB_OTG_N	3	
		USB_OTG_P	4	
		VBUS_OTG	6	
DB9 female	E	DIAG_GND (RS232)	5	
		DIAG_TX232 (RS232)	7	
		DIAG_RX232 (RS232)	8	
Molex # 39012020 + suitable crimps	PIN 1	A	1-WIRE	9
	PIN 2	A	1_WIRE-GND	10
		NC	NC	11
		NC	NC	12
RJ45 jack	C	MDI_3_P (Gigabit Ethernet)	13	Molex # 5016463000
		MDI_3_N (Gigabit Ethernet)	14	
		MDI_2_P (Gigabit Ethernet)	15	
		MDI_2_N (Gigabit Ethernet)	16	
		MDI_1_P (Gigabit Ethernet)	17	
		MDI_1_N (Gigabit Ethernet)	18	
		MDI_0_P (Gigabit Ethernet)	19	
		MDI_0_N (Gigabit Ethernet)	20	
		NC	NC	
		NC	NC	
		NC	CHASSIS	23
		NC	CHASSIS	24
		NC	CHASSIS	25
		NC	CHASSIS	26
Interconnection (suitable for wire gauges on both sides) => Cable B => BATT_GND to Ground star point, and BATT+ to 1A circuit breaker	A	BATT_GND	27	
	A	BATT_GND	28	
	A	BATT+	29	
	A	BATT+	30	

5.2 Connector Termination

The design incorporates a robust Molex iGrid automotive connector, that is easy to crimp large or small cables using a variety of readily available crimps. Both the pole-mounted and surface-mounted Compact Validators use the same rear connector with the same pinouts.

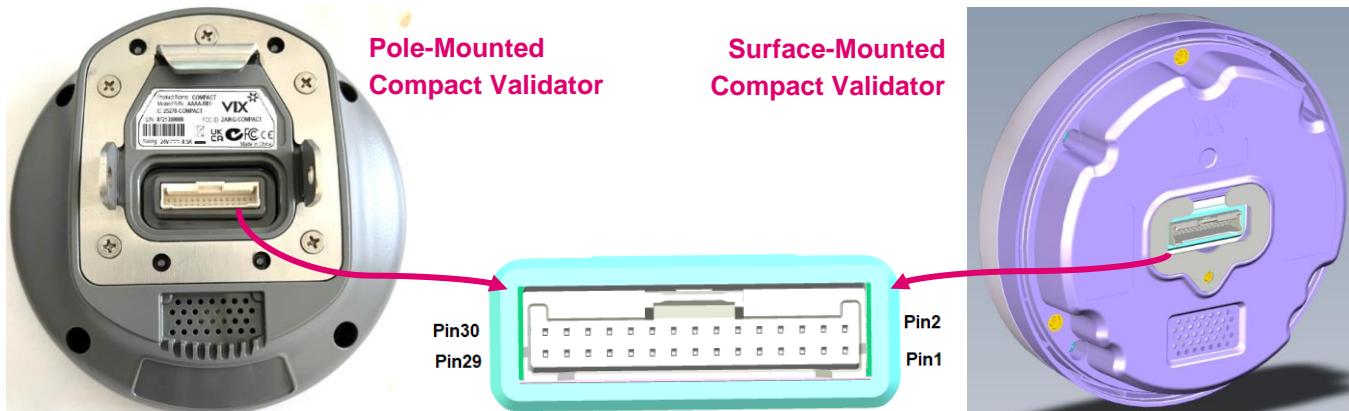


Figure 8: Compact Validator Rear Connector

The following defines the mating connector/crimps and tooling requirements used on the **cable harness** that connects to the Compact Validator.

- Refer to the below two tables for the recommended connector and crimps. The crimps should be selected based on the connecting cable size and the current rating requirement.
- Approved alternative connectors, that are compatible with the defined interfaces, can be used.
- Defined tools should be used to ensure good termination coupling in both the cable manufacture and installation.

Table 6: Mating Female Connector Housing

SIZE	MOLEX PART NUMBER	PITCH	MATERIAL	POLARISED
30WAY	5016463000	2mm	Nylon	Yes

Table 7: Mating Female Crimps

SIZE	MOLEX PART NUMBER	RATING	MATERIAL	PLATING	WIRE
22-26 AWG	5016471000	2A	Copper Alloy	Tin	0.95-1.50mm
22-24 AWG	5030952201	2A	Copper Alloy	Gold	0.85-1.50mm
26-28 AWG	5016481000	1.5A	Copper Alloy	Tin	0.85-1.40mm
26-28 AWG	5030952200	1.5A	Copper Alloy	Gold	0.85-1.50mm

5.3 Circuit Breakers

It is vitally important to protect the power cabling against over current conditions. Circuit breakers are an ideal way of protecting the wiring over conventional fuses. Circuit breakers must be selected to trip before the cable current limit is reached.

For a 24V system, the recommended circuit breaker rating is 1A for Compact Validator power in.

5.4 Cable Recommendations

VIX recommends using the following cables for the **Compact Validator** end. Cables between the interconnections and the end terminal/devices should be chosen appropriately, depending on the distances and current ratings.

Local and statutory regulations should be followed for fire proofness and cable material content (i.e. RoHS), which may override these recommendations.

Note: *Cables must be suitably strain relieved at all times and in appropriate locations.*

Table 8: Cable Recommendations

CABLE ID	DESCRIPTION	MPN	FUNCTION
A	24 AWG Stranded Unshielded	Belden # 9923	1-Wire Power
B	2 x 22AWG (Red, Black) Stranded Unshielded (Follow Table 10 for cable rating versus distance)	Belden # 9407	Power
C	CAT5e Cable, 24AWG Stranded Shielded Or CAT6a Cable, 24AWG Stranded Shielded (to ensure 1Gbit on 100m cable and EMC performance) For PoE application, a minimum of 24 AWG is required to support the temperature rise.	For CAT5e, Belden # 1300SB Or Madex # CAT5E-SFTP-LCZH	Ethernet
D	USB2.0 Cable (90ohm) 1 twisted Pair + 2 x 24AWG Shielded		USB
E	1 twisted Pair + 1 core 24 AWG Stranded		RS232 Diag (Not required in normal installation)

After the primary interconnections, the signal cables can be further extended if required to reach switches, hubs and gate controllers as required. It is highly recommended that the maximum total length is not exceeded, as it may result in problematic operation. The performance is not guaranteed if the extension is achieved by a huge number of interconnections throughout the total allowed length. Signal extenders could be considered to maintain the performance.

Table 9: Maximum Cable Length Recommendations

FUNCTION	CABLE DESCRIPTION	MAX TOTAL LENGTH
Ethernet	Ethernet extension	100m
RS232	Diagnostic extension	5m
USB	USB Host extension	2m

It is recommended that solid core cables be avoided where possible, to improve the connection reliability of the installed cable. If solid core is used for a CAT5e cable, extra care must be taken in crimping and restraining of wires, and sharp bending should be avoided.

5.5 Power Supply Cable

5.5.1 Requirements

Power supply cables wired to the input of a circuit breaker must be rated with respect to the previous circuit breaker or fuse from which they were derived. Adequate current de-rating should be applied to the cable as per the manufacturer's instructions.

5.5.2 Hierarchy for Power Supply

Figure 9 shows a typical wiring hierarchy for the equipment power supply cabling in the automotive vehicle environment.

Notice that the cable ratings are higher than the circuit breakers and fuse ratings. In this example the circuit breaker rating has been de-rated to 70% of the cable maximum continuous current rating.

Also note that the current rating of the input side of the circuit breaker from the vehicle bus bar. This cable must be rated to exceed the current rating of the bus bar. In this case 70% de-rating has been applied.

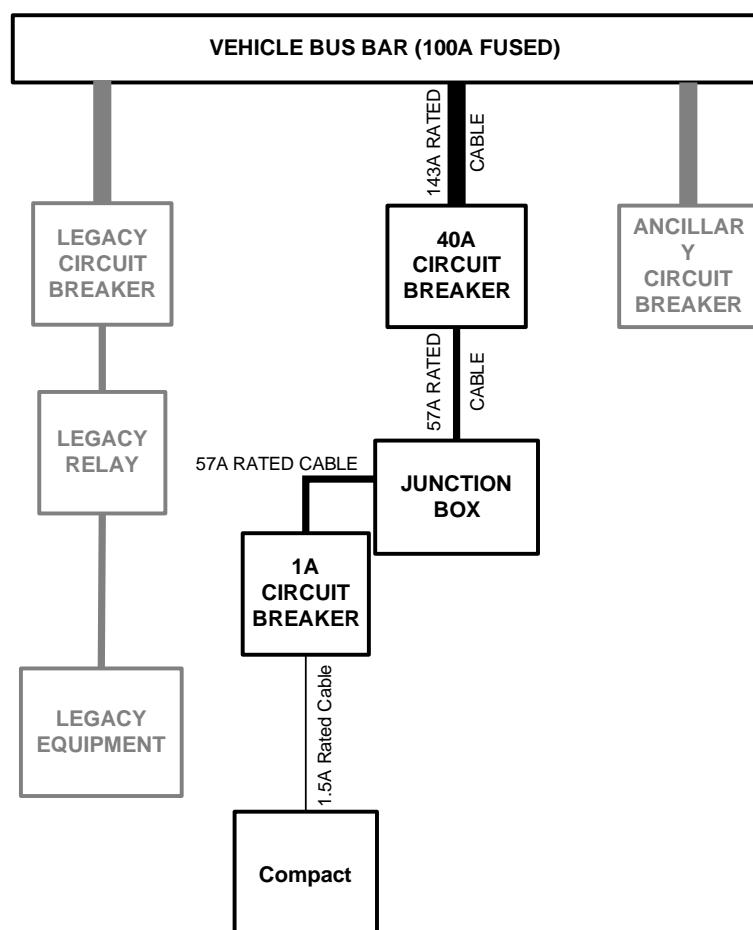


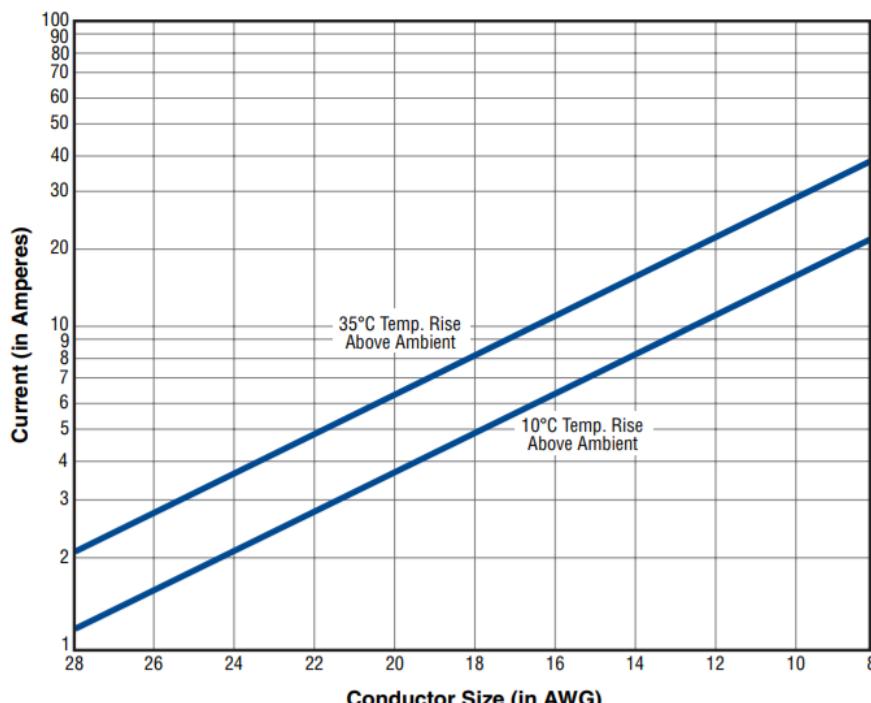
Figure 9: Typical Bus Power Supply Circuit Breaker and Cable Rating

5.5.3 Length Versus Size

For power distribution it is critical that the cable is selected to minimise voltage drop. This selection process shall consider the peak currents generated during equipment start up. As a guide, it is recommended that the cable voltage drop uses a peak current of 0.5A (in a 24V system) and a maximum voltage drop of 1V (including return, i.e. 0.5V each way) when selecting the cable.

All cables have resistance. When comparing cables of the same type and style, then generally, the thicker the copper the lower the resistance for the same length. If cables are to be used over long lengths, then it may be necessary to increase the cable size to reduce the voltage drop caused by the resistance of the wire and the load current.

For the Compact Validator wiring in a 24V system, the following is provided as a guide to maintain an acceptable voltage drop.


Table 10: Cable Length

DISTANCE FROM START POINT	CONDUCTOR SIZE	EQUIVALENT CABLE
0m-30m	22 AWG	Belden 9407 (2 Conductors)
30m-50m	20 AWG	Belden 9408 (2 Conductors)

Note: *The highest rated cable (Belden 9408) can be used in all situations.*

5.5.4 Current Capacity

The maximum continuous current rating for a cable is limited by conductor size, number of conductors contained within the cable, maximum temperature rating of the cable, and environmental conditions such as ambient temperature and air flow. Use the below as a guide to select a cable with suitable current rating.

For example: If a 4x 20AWG copper cable is used, the RMS current per conductor at 10°C rise above ambient

$$= 3.7A \text{ (from chart)} \times 0.8 \text{ (from table)} \\ = 2.96A$$

Current Ratings

No. of Conductors*	Factor
1	1.6
2 to 3	1.0
4 to 5	.8
6 to 15	.7
16 to 30	.5

*Do not count shields unless used as conductor.

Figure 10: Cable Current Capacity Chart

5.5.5 Ground Terminations

The star point for the power supply grounds (negative terminals) of the automotive vehicle system units shares a common termination point, thus providing a controlled system ground reference point.

5.5.6 Ground Termination Checks

The ground connection resistances of all installed transit system units should be measured to ensure good conductivity.

Connection should be referenced to the Transit System Ground Star Point. The resistance from any negative power connection to the star point should be less than 0.5Ω .

5.6 Hot Plugging

Warning: It is strongly recommended that Hot Plugging (inserting / removing the Molex iGrid Connector whilst power is connected) should be avoided where possible.

Warning: If this is not possible, then it is also strongly recommended that the orientation on the connector is double checked before inserting.

6 Pole Mounting

This pole mounting process requires no tool, except a key (for unlocking the lock if needed), providing the pole has already been cut out as required.

Refer to Appendix C for the cut-out required on the mounting pole. This includes a cut-out for the cables and a cut-out for the locating pin.

6.1 Compact Validator Positioning

When positioning a validator within a vehicle cabin, the following provisions should be used as a guideline:

- Metal objects are to be located greater than 200 mm from target area, specifically adjacent to it to prevent antenna de-tuning & card reading range reduction. The metal pole where the cradle is attached has no detrimental impact on the card reading range as there is sufficient clearance between the pole and the antenna.
- The Compact Validator should be located within easy reach of patrons as shown in Figure 11.
- The preferred Compact Validator pole mounting bracing is shown in Figure 12.

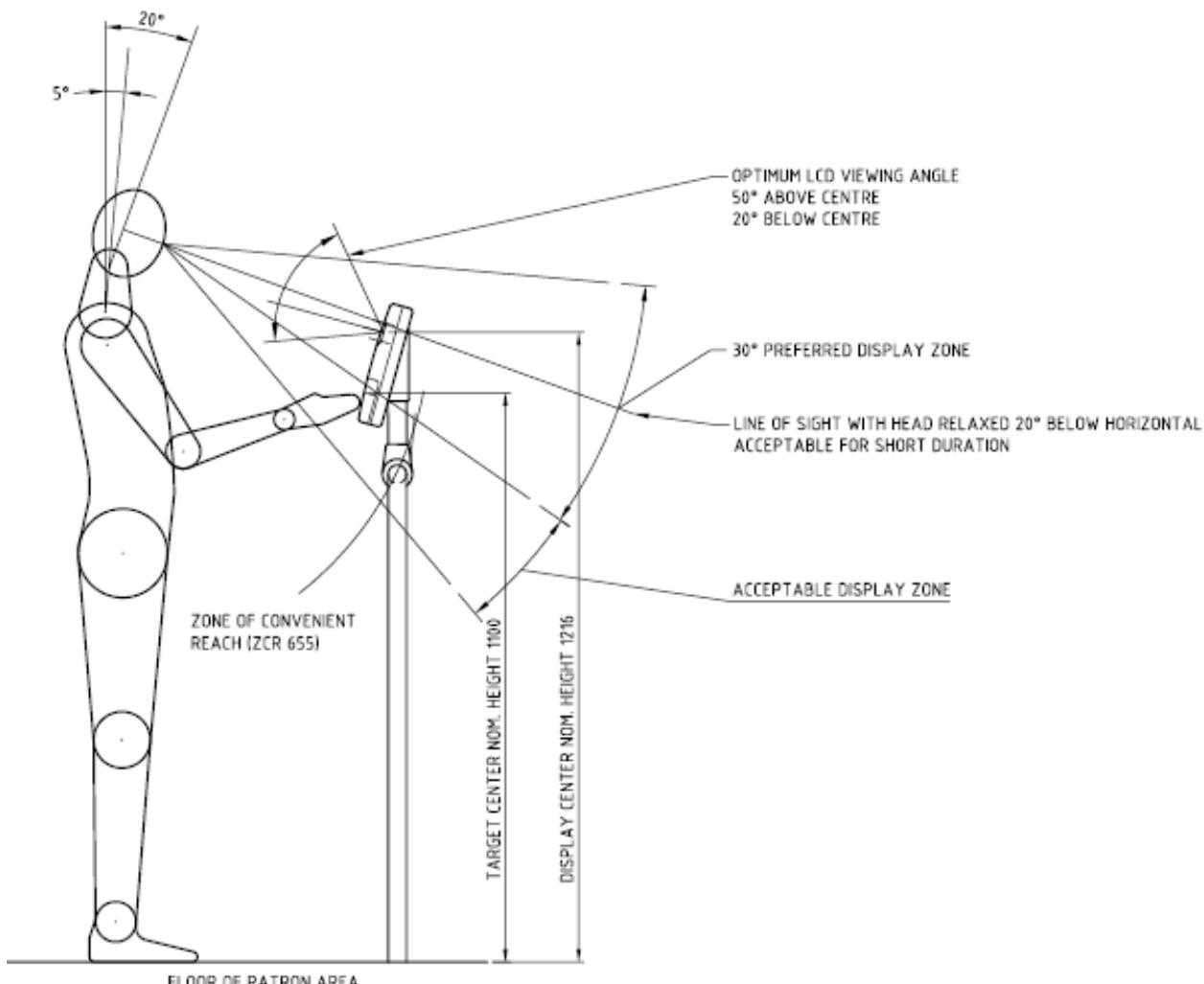


Figure 11: Compact Validator Positioning – Height

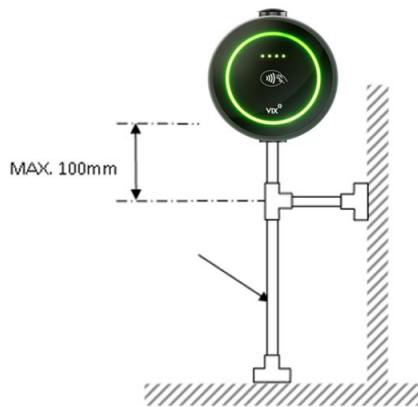


Figure 12: Compact Validator Preferred Pole Mounting Bracing

6.2 Cradle Kit

The cradle components are delivered as a kit (CRADLE-COMPACT-x-Ryy) designed for a standard 32mm pole.

Note: If a different diameter pole is to be used, the size needs to be informed to VIX prior to order so that available accessories could be recommended. For a 30mm or 35mm pole, extra parts could be obtained from VIX to suit: CRADLE-KIT-30 or CRADLE-KIT-35.

The cradle kit comes with the below 4 components.

Figure 13: Assure Compact Validator Cradle Kit

To prepare for installation, the cradle has to be disassembled into the below three main parts – cradle front, cradle rear and external cover, by following steps 2 to 4 in section 0.

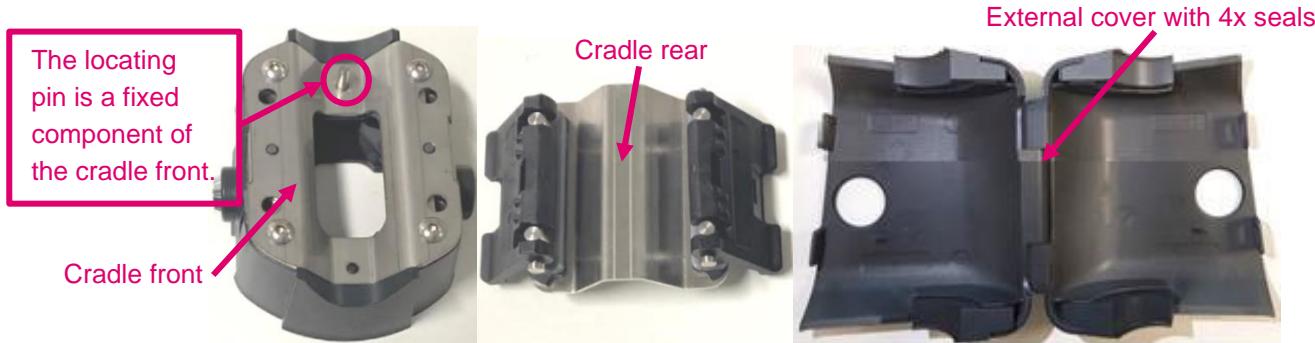


Figure 14: Cradle Kit

The cradle plates are manufactured from 304 Stainless Steel and anodised aluminium. Check that the plates have no corners or sharp edges that may present a hazard to operators or installers.

6.3 Cradle Mounting Instructions

1. Carefully bring out the connector and cables from the pole cut-out. Ensure there is sufficient slack for the Compact Validator connection and mounting.

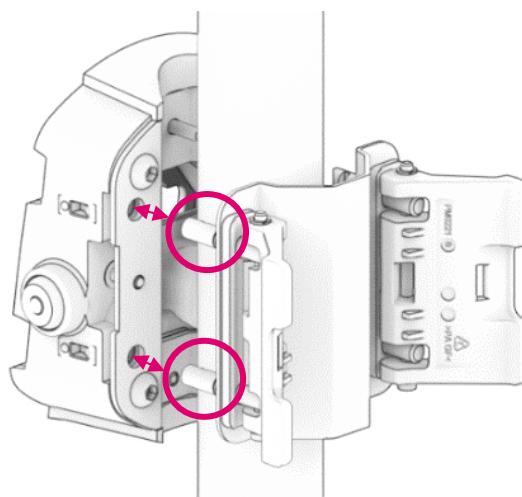
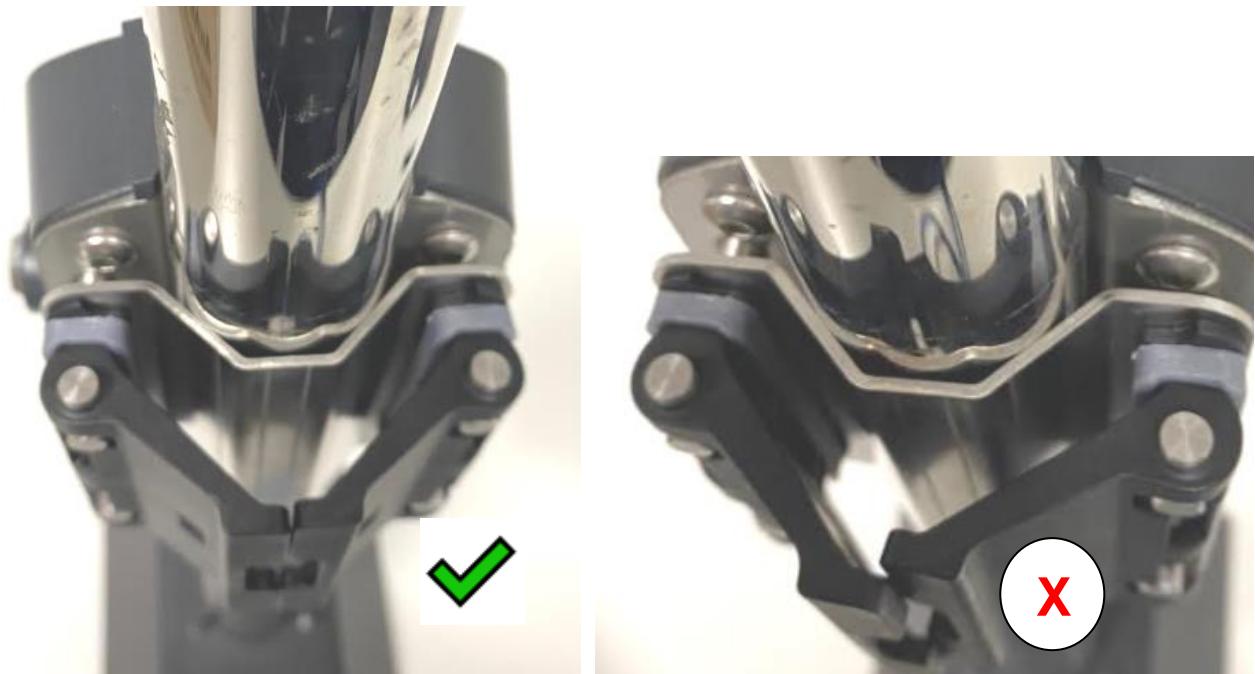
Caution: Ensure the cables have already had ferrites installed and terminated according to the requirements in section 5.

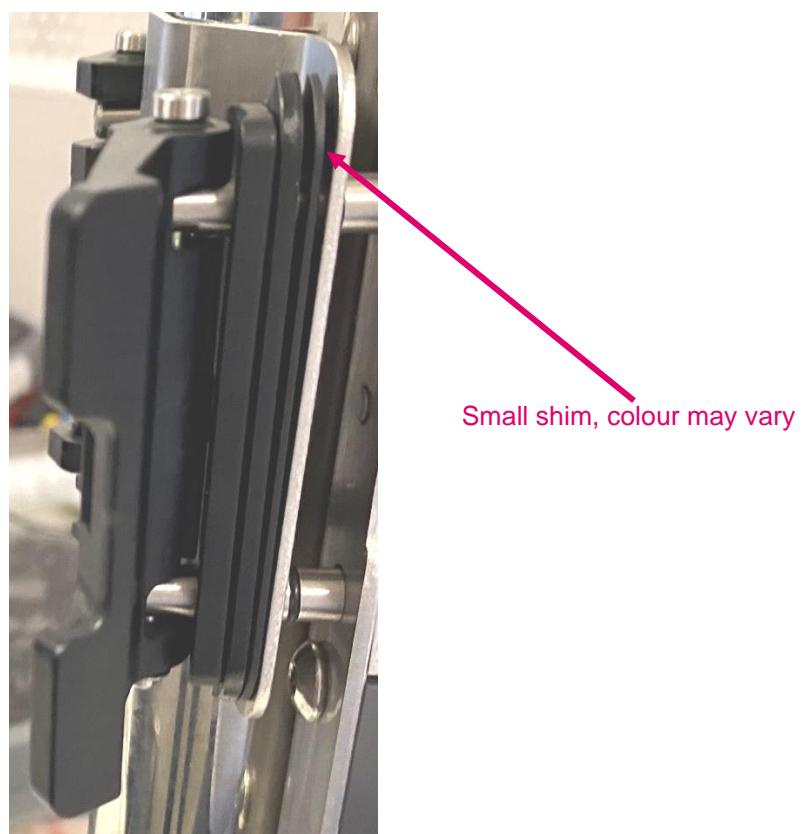
2. Hold the cradle front with the locating pin aligning with the locating hole on the mounting pole, feed the cables through the cradle front centre aperture.
3. Fit the cradle front to the pole, by inserting the locating pin into the locating hole. Hold the cradle front on the pole until the next step is complete.



Figure 15: Cradle Front Placement

4. Insert the 4 pins on the cradle rear into the 4 holes on the cradle front. Press the 2 halves together, they should lock into place with a click.


Figure 16: Joining Cradle Front and Cradle Rear

5. Close both cradle mount flaps until they meet evenly, this locks the cradle to the pole (They should not overlap).

Figure 17: Correct and Incorrect Position of Closed Cradle Arms

6. Check the cradle is secure on the pole. If not, undo the arms and insert the supplied small shims at the indicated location (on both sides), then close the arms and check again.

Figure 18: Compact Validator Cradle Mount Shims

7. Check the 4 seals are inserted into the correct position on the external cover.

Note: Both the cover and the seals are marked to ensure the correct placement.

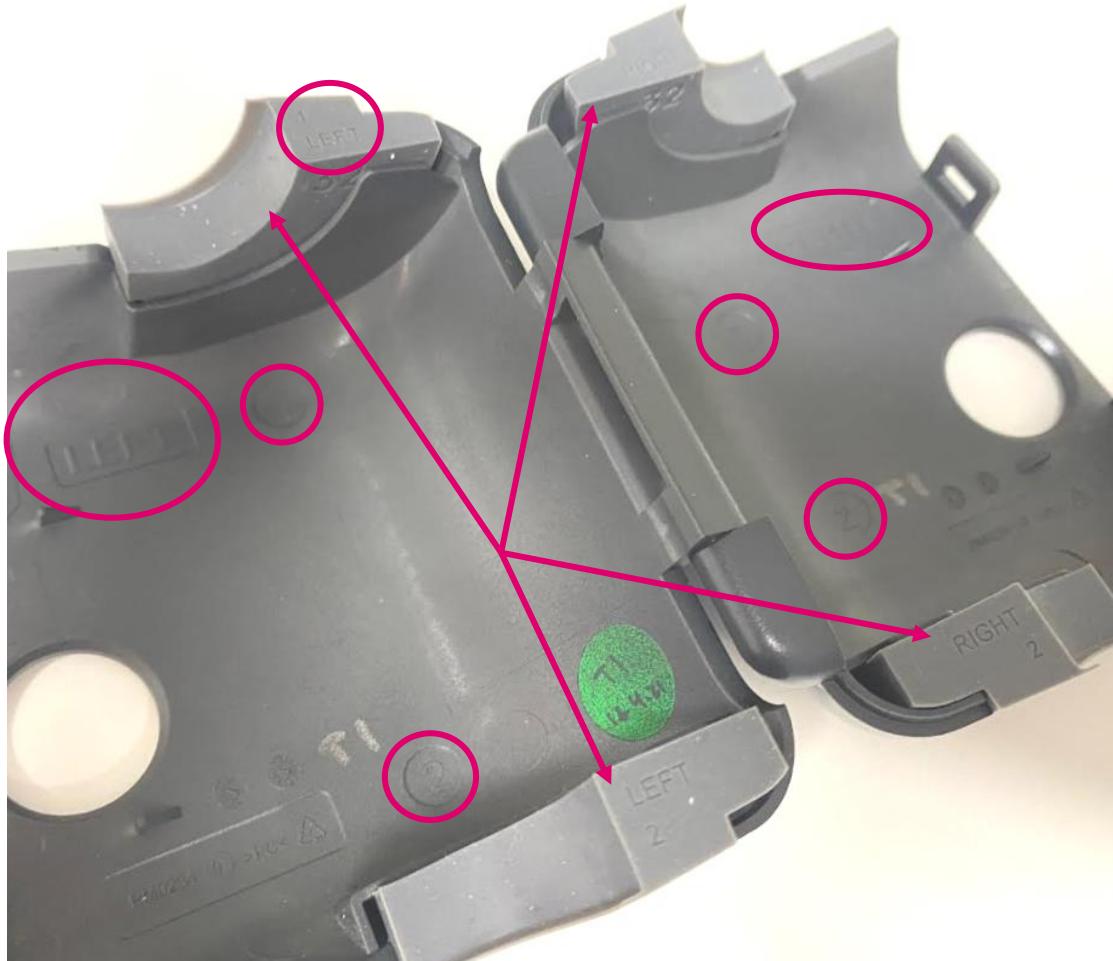


Figure 19: Seals Position on External Cover

8. Wrap the cover around the cradle sub-assembly from the back and clip it in place.

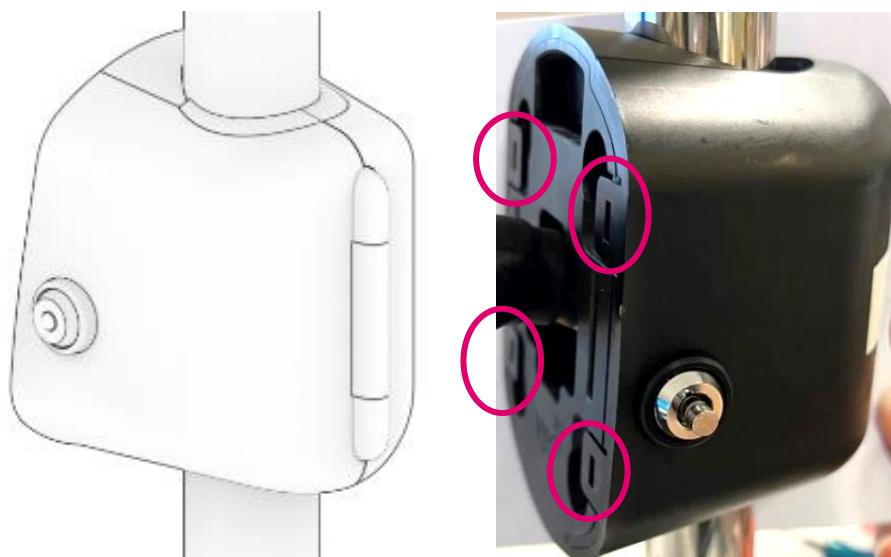


Figure 20: Compact Validator Cradle Mount Cover

9. Feed the cables through the protective rubber boot to provide environmental protection. Ensure there is sufficient slack for the Compact Validator connection and mounting.

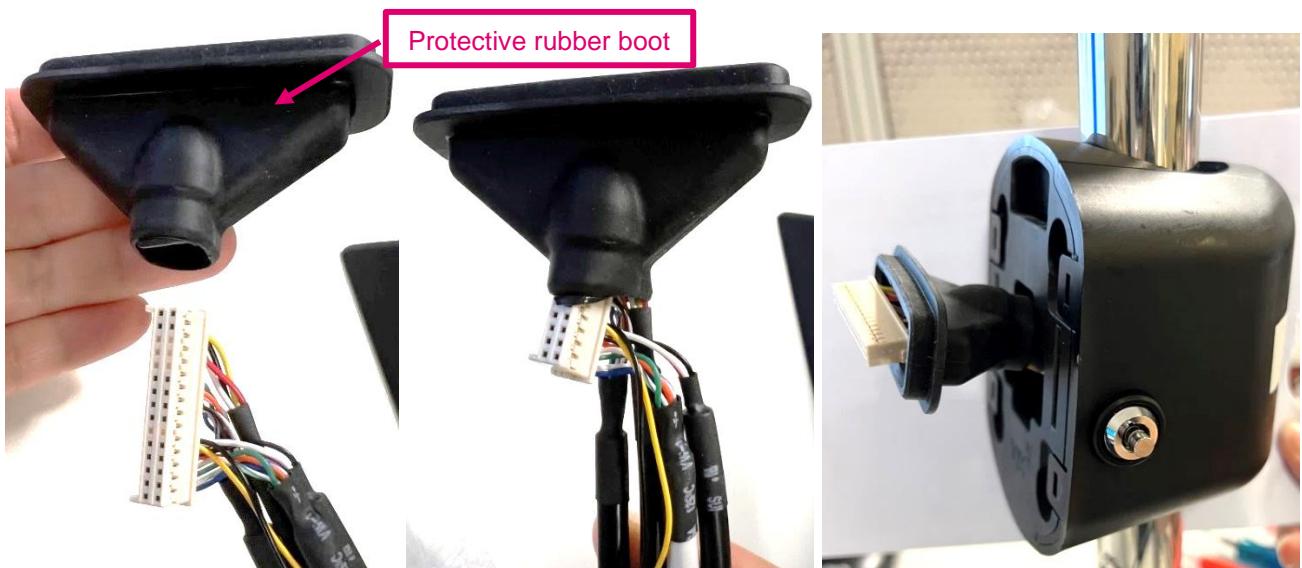
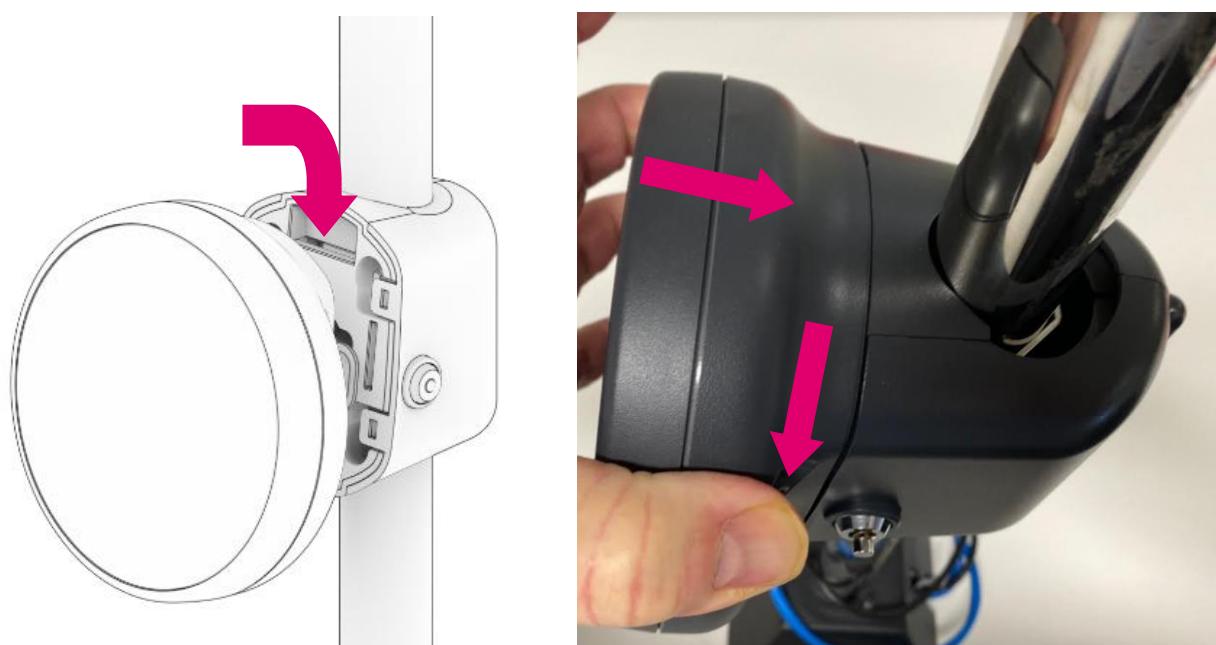


Figure 21: Rubber Boot Installation

6.4 Validator Mounting Instructions

Check that the Compact Validator casing has no corners, sharp edges, or exposed fixings (nuts/bolts) that may present a hazard to personnel.

1. Carefully connect the cables to the rear of the Compact Validator.


Figure 22: Compact Validator Cable Connection

2. Press the rubber boot into the connector groove and ensure it sits in line with the mounting plate evenly.

Figure 23: Rubber Boot Fitting

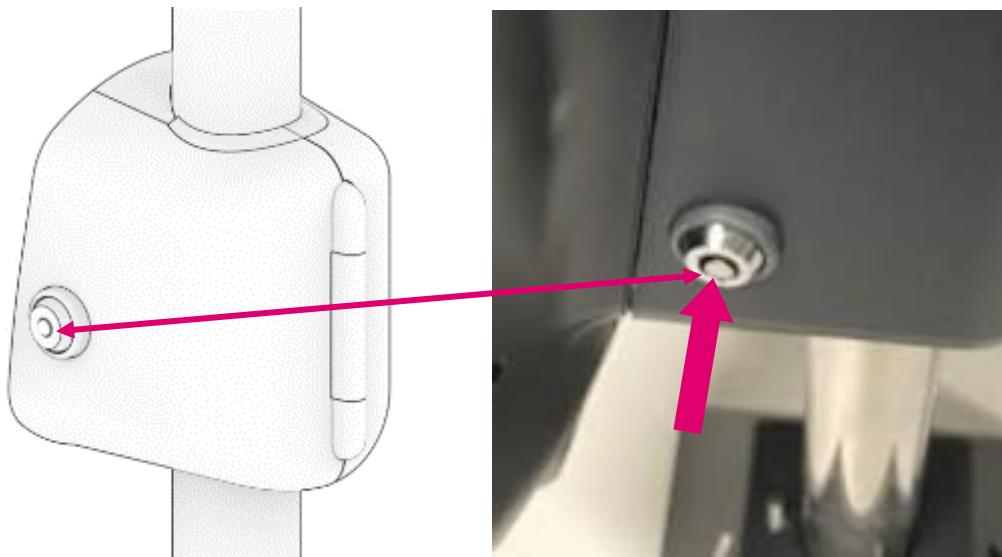

3. Mate the Compact Validator to the cradle by aligning the 3 metal plates at the rear of the device (see Figure 22) with the 3 slots on the cradle plate, and pushing in, then pushing down to clip in as shown below. While doing this, push in any excess cables but make sure the rubber boot does not dislodge from the groove.

Figure 24: Compact Validator Mounting on Cradle

4. Press the lock button to secure the device in place on the cradle.

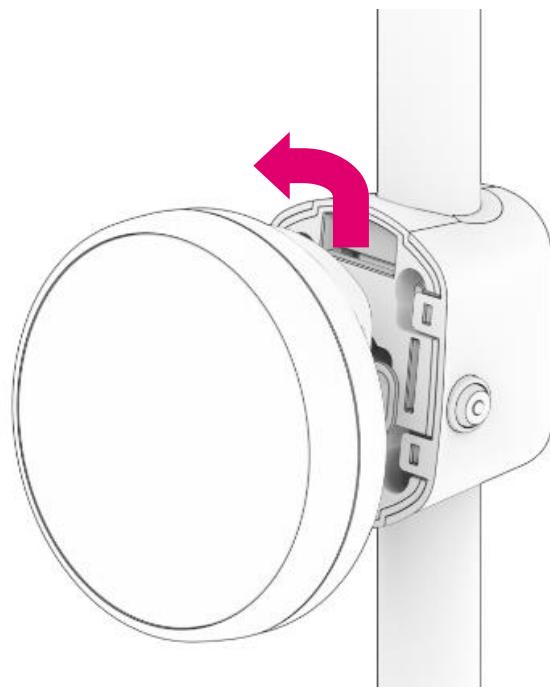
Note: *By default, the lock button is on the right of the cradle viewing from the front, if the left side is preferred, inform VIX prior to order.*

Figure 25: Device Locking

Note: *Once the device is locked in place, a key is required to unlock it from the cradle. One key is supplied along with the Cradle.*

Note: *Whenever field maintenance or maintenance is complete, remember to lock the device.*

6.5 Validator Demounting Instructions


Caution: *The unit connector present a low risk of accidental short circuit or electric shock if the unit is removed when powered, hence it is recommended the power is turned off prior to disconnection.*

1. Unlock the cradle lock by pushing in the key slightly and rotating anti-clockwise or clockwise until the lock button bounces out.

Figure 26: Device Unlocking

2. Push the device upwards and then slowly pull forward.

Figure 27: Compact Validator Removal

3. Pull the rubber boot out from the connector groove then press locking clips on the connector and carefully disconnect the cables.

Figure 28: Cable Disconnection

Note:	Care must be taken not to damage the cables/connector during unit removal.
--------------	--

6.6 Cradle Demounting Instructions

1. Carefully remove the rubber boot from the cables.

Note: *Care must be taken not to damage the cables/connector during rubber boot removal.*

Figure 29: Rubber Boot Removal

2. Remove the external cover by lifting the 4 clips. Do not lose the 4 seals (Figure 19) in the external cover.

Figure 30: External Cover Removal

3. Open both cradle mount flaps.

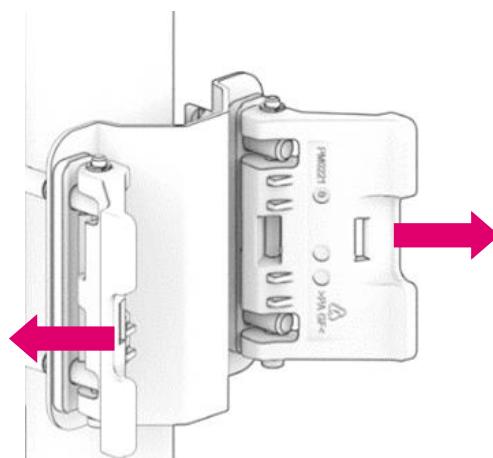


Figure 31: Opening Cradle Arms

4. Remove the cradle rear from the cradle front by pressing the indicated metal part (on both sides) to release the 4 pins.

Note: One may prefer to do this step on one side at a time.

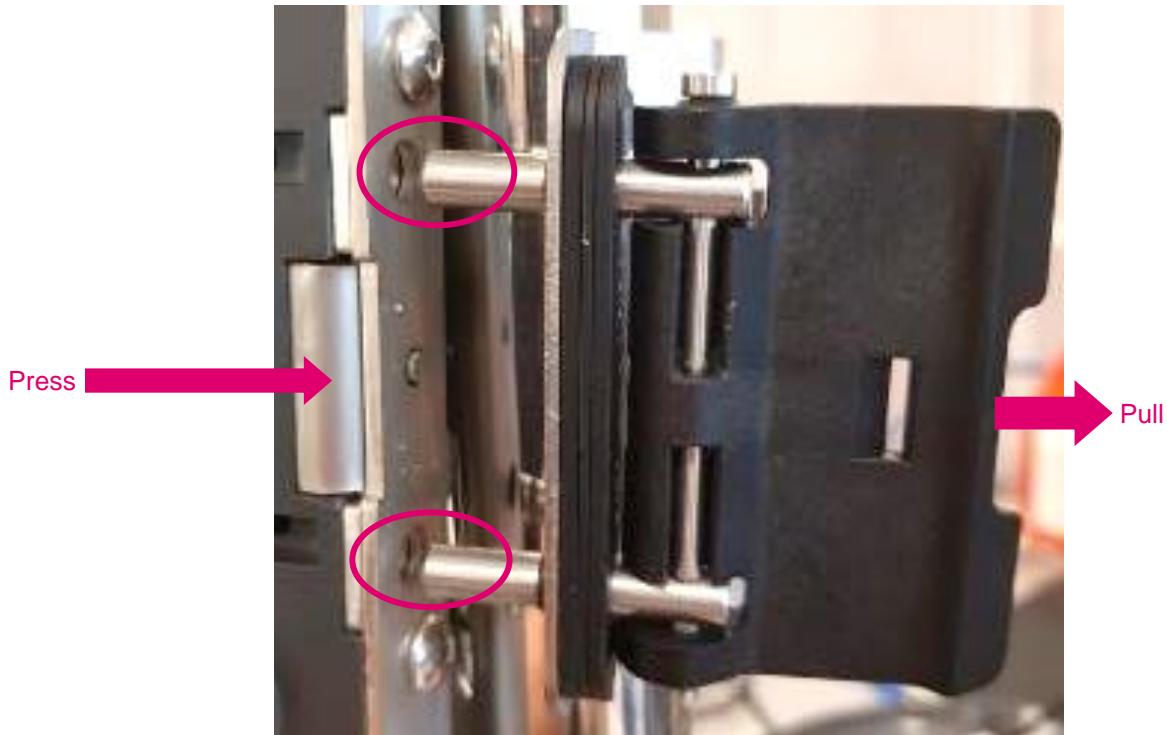


Figure 32: Cradle Front and Rear Separation

5. Remove the cradle front by carefully pulling it out from the pole.

Note: Care must be taken not to damage the cables/connector during cradle front removal.

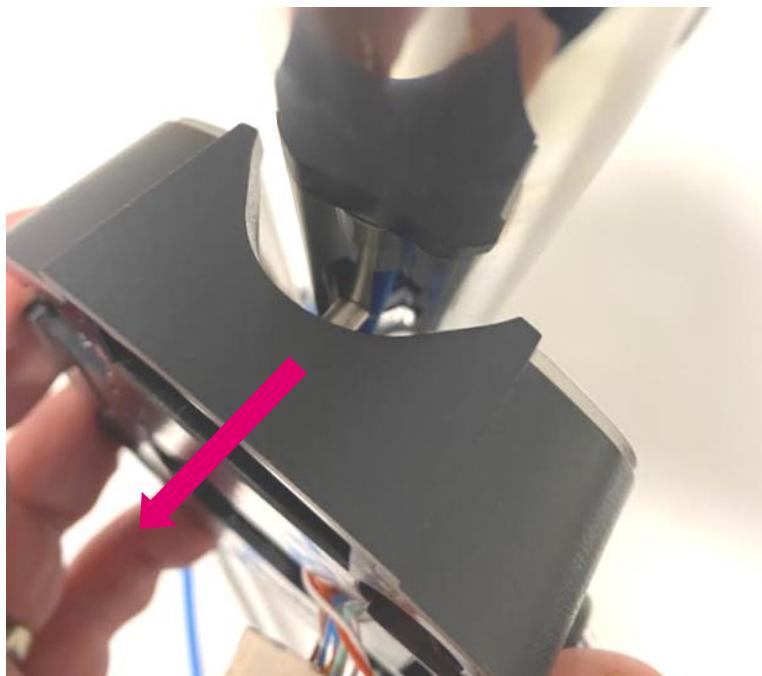


Figure 33: Cradle Front Removal

6.7 Cradle Covering

In the case where the installed cradle is not being used, i.e. no validator is mounted on it, a cradle cover should be used to provide ingress protection to the cradle and cables.

The cradle cover could be obtained from VIX with the part number being PROD1001-x.

1. Cover the cradle by aligning the three locating plates, pushing forward, then pushing down to clip in as shown below.

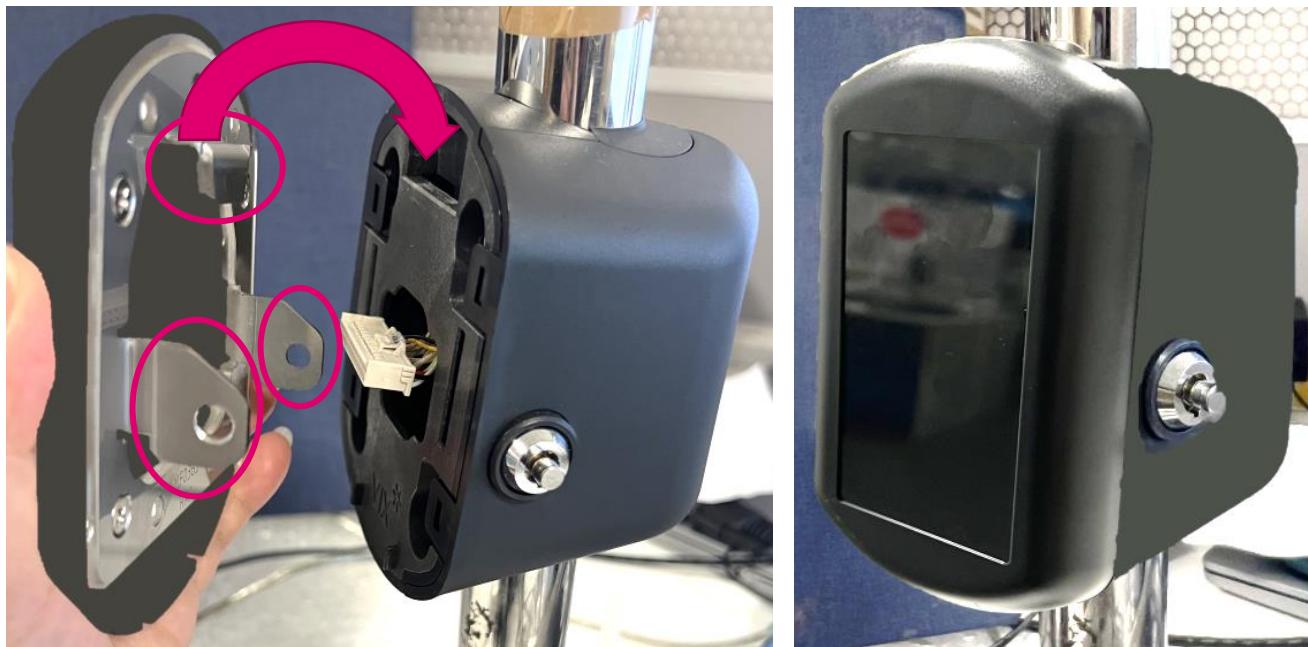


Figure 34: Cradle Covering

2. Press the lock button to secure the cover in place on the cradle.

Figure 35: Cradle Cover Locking

7 Quality Assurance and Testing

A Quality Assurance Technician will conduct a separate review of the installation to confirm the installation was completed successfully. Any issues will be immediately addressed, and the QA Technician will re-inspect.

7.1 Installation Review

1. Make sure all cables are terminated properly
2. Make sure the cables are properly connected to the Compact Validator
3. Make sure the rubber boot sits securely
4. Make sure the Compact Validator is properly secured to the pole/surface with the lock in locked position
5. Make sure the key is not left in the lock

7.2 Testing

1. Does the device boot up/have power?
2. Depending on the available software application, does the device ping the back office and download CD?
3. Depending on the available software application, does the device read cards?
4. Put the device out of service after installation unless it's ready for revenue service

7.3 Sign-off

Once the installation and testing has been completed and inspected/tested by the Quality Assurance Technician, the QA Technician will sign off on the transit agency Platform Installation Acceptance document.

A transit agency representative will need to be present while the Quality Assurance Technician inspects/tests the installation.

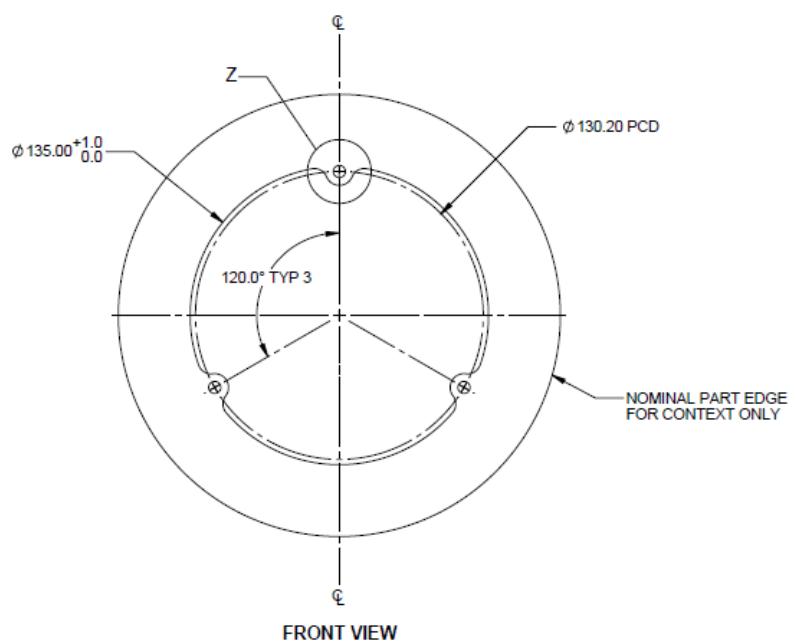
The transit agency representative will need to raise any issues at the time of inspecting/testing that will be addressed immediately.

Once the transit agency representative is satisfied the work was completed correctly they will sign off on the Platform Installation Acceptance document.

Appendix A Cut-out for Surface Mount Compact Validator

Details of cut-out required for surface mounting the Compact Validator are shown below.

PERSPECTIVE VIEWS



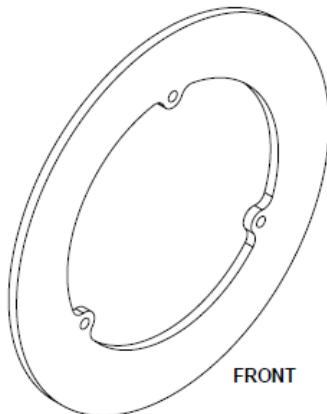


Figure 36: Cut-out for Surface Mount Compact Validator

Appendix B Dimensions and Weight

Pole mounted Compact Validator's physical dimension are approximately 150mm(w) x 54mm(d), without cradle.

Unit's weight is approximately 0.7 kg, without cradle.

Dimensions are Approximate

Figure 37: Dimensions and Weight

Appendix C Pole Cut-out

Recommended cut-out for the pole is shown below.

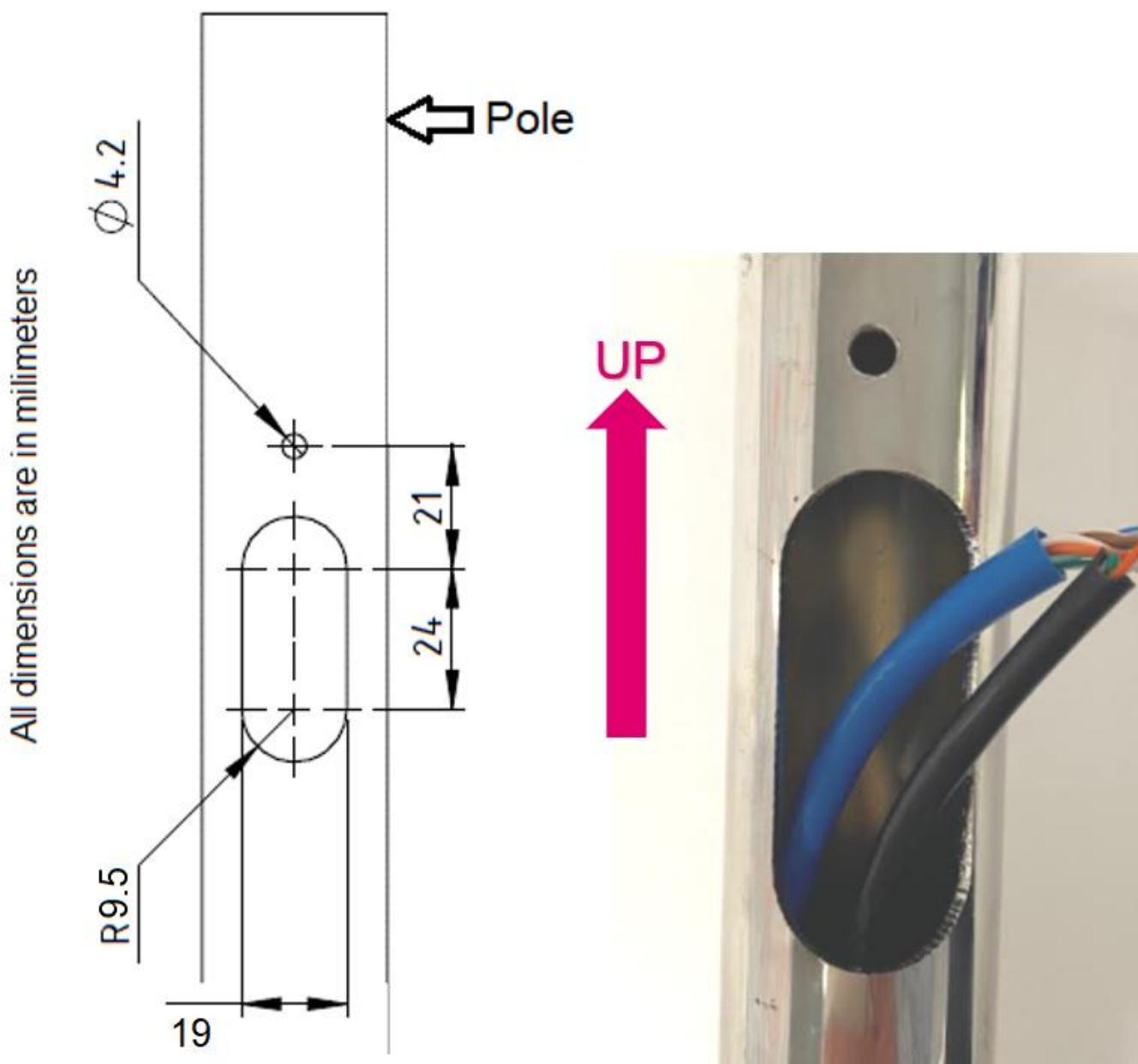


Figure 38: Pole Cut-out

Appendix D Example Rolling Stock Wiring Diagram

The below diagram shows an example of the power wiring for the rolling stock application, other connections stay the same as Figure 7. Refer to section 5 for further information on the connectors, crimps, cables, ferrites, etc.

More than one DC/DC converter can be used to control different groups of validators, routers and switches.

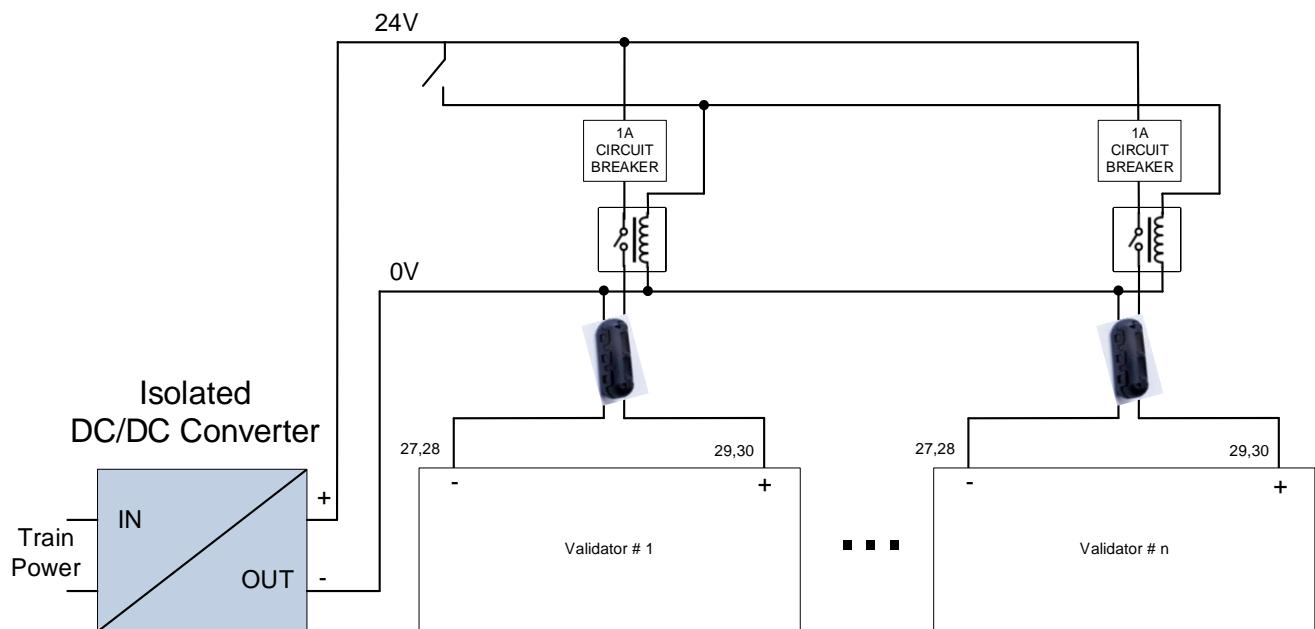


Figure 39: Example Rolling Stock Power Wiring Diagram