

TEST REPORT

APPLICANT : Guilin Zhishen Information Technology Co.,Ltd.
PRODUCT NAME : TransMount Image Transmission Transmitter 2.0
MODEL NAME : COV-03
BRAND NAME : ZHIYUN
FCC ID : 2AIHFZYCOV-03
STANDARD(S) : 47CFR 2.1093
IEEE 1528-2013
RECEIPT DATE : 2020-09-20
TEST DATE : 2020-09-21 to 2020-10-14
ISSUE DATE : 2020-10-15

Edited by:

Peng Fuwei (Rapporteur)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525

[Http://www.morlab.cn](http://www.morlab.cn) E-mail: service@morlab.cn

DIRECTORY

1	SAR Results Summary	5
2	Technical Information	6
2.1	Applicant and Manufacturer Information	6
2.2	Equipment Under Test (EUT) Description	6
2.3	Environment of Test Site	7
3	Introduction	8
3.1	Introduction	8
3.2	SAR Definition	8
4	RF Exposure Limits	9
5	Applied Reference Documents	10
6	SAR Measurement System	11
6.1	E-Field Probe	12
6.2	Data Acquisition Electronics (DAE)	12
6.3	Robot	13
6.4	Measurement Server	13
6.5	Light Beam Unit	13
6.6	Phantom	14
6.7	Device Holder	14
6.8	Data storage and Evaluation	15
6.9	Test Equipment List	17
7	Tissue Simulating Liquids	19
8	SAR System Verification	22
9	EUT Testing Position	24
9.1.	Body Configurations	24
10	Measurement Procedures	25
10.1	Spatial Peak SAR Evaluation	25
10.2	Power Reference Measurement	26
10.3	Area Scan Procedures	26
10.4	Zoom Scan Procedures	26

10.5 SAR Averaged Methods	26
10.6 Power Drift Monitoring	26
11. SAR Test Procedure	27
11.1. General scan Requirements	27
11.2. Test procedure.....	28
11.3. Description of interpolation/extrapolation scheme	28
12. SAR Test Configuration.....	29
13. Conducted RF Output Power	31
14. EUT Antenna Location.....	34
15. Block diagram of the tests to be performed	35
16. Test Results List	36
16.1. Test Guidance	36
16.2. Body SAR Data	37
16.3. Repeated SAR Measurement.....	38
17. Simultaneous Transmission Evaluation	39
18 Measurement Uncertainty.....	40
19 Measurement Conclusion	42
Annex A General Information	43
Annex B Test Setup Photos	
Annex C Plots of System Performance Check	
Annex D Plots of Maximum SAR Test Results	
Annex E DASY Calibration Certificate	

REPORT No.: SZ20090099S01

Change History		
Version	Date	Description
1.0	2020-10-15	Original

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

1 SAR Results Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

<Highest Reported standalone SAR Summary>

Frequency Band	Highest SAR Summary (1-g SAR,W/kg)
	Body (Separation 5mm)
Max. 5GHz WLAN ANT A	0.615
Max. 5GHz WLAN ANT B	0.880
Max. 5GHz WLAN ANT A+ANT B	1.495
Max Scaled SAR _{1g} (W/Kg):	0.880

Note:

1. This device is compliance with Specific Absorption Rate (SAR) for general population or uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.
2. When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% risk level.

2 Technical Information

Note: Provide by applicant.

2.1 Applicant and Manufacturer Information

Applicant:	Guilin Zhishen Information Technology Co.,Ltd.
Applicant Address:	09 Huangtong Road, Tieshan Industrial Zone, Qixing District, Guilin, Guangxi, China
Manufacturer:	Guilin Zhishen Information Technology Co.,Ltd.
Manufacturer Address:	09 Huangtong Road, Tieshan Industrial Zone, Qixing District, Guilin, Guangxi, China

2.2 Equipment Under Test (EUT) Description

EUT Type:	TransMount Image Transmission Transmitter 2.0
Hardware Version:	V1.0
Software Version:	V2.07
Frequency Bands:	WLAN 5.2GHz: 5180 MHz ~ 5240 MHz WLAN 5.8GHz: 5745 MHz ~ 5825 MHz
Modulation Mode:	802.11a/n-HT20/HT40
Hotspot Mode:	Not support
Antenna Type:	External Antenna
Antenna Gain:	Ant A:3.34dBi Ant B:3.44dBi
Battery:	3.8V/3100mAh

Note: For a more detailed description, please refer to specification or user's manual supplied by the applicant and/or manufacturer.

2.3 Environment of Test Site

Temperature:	20 ... 25 ° C
Humidity:	30 ... 75 %
Atmospheric Pressure:	980 ... 1020 hPa

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the Factory. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

3 Introduction

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational or controlled and general population or uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational or controlled exposure limits are higher than the limits for general population or uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\text{SAR} = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$\text{SAR} = \frac{\sigma \cdot E^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4 RF Exposure Limits

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for head and trunk)	1.60W/kg
Spatial Peak SAR (10g cube tissue for limbs)	4.00W/kg
Spatial Peak SAR (1g cube tissue for whole body)	0.08W/kg

Note:

1. This limit is according to recommendation 1999/519/EC, Annex II (Basic Restrictions)
2. Occupational/Uncontrolled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure,(i.e. as a result of employment or occupation)

5 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title	Method determination /Remark
1	47 CFR§2.1093	Radio Frequency Radiation Exposure Evaluation: Portable Devices	No deviation
2	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	No deviation
3	KDB 447498 D01v06	General RF Exposure Guidance	No deviation
4	KDB 248227 D01v02r02	SAR Measurement Procedures for 802.11 Transmitters	No deviation
5	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz	No deviation
6	KDB 865664 D02v01r02	RF Exposure Reporting	No deviation
7	KDB 941225 D06v02r01	SAR Evaluation Procedures For Portable Devices With Wireless Router Capabilities	No deviation

Note 1: The test item is not applicable.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

6 SAR Measurement System

Fig.6.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remote control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Component details are described in the following sub-sections.

6.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

➤ E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μ W/g to 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Fig. 6.1 Photo of Probe

➤ E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y and Norm Z), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to Annex E of this report.

6.2 Data Acquisition Electronics (DAE)

The Data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



Fig. 6.2 Photo of DAE

6.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeat ability 0.02 mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Fig. 6.3 Photo of Robot

6.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY 5: 400MHz, Intel Celeron), chip-disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig. 6.4 Photo of Server for DASY5

6.5 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeat ability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Fig. 6.5 Photo of Light Beam

6.6 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%) Center ear point: 6 ± 0.2 mm	
Filling Volume Dimensions	Approx. 25 liters Length: 1000 mm; Width: 500 mm; Height: adjustable feet	
Measurement Areas	Left Head, Right Head, Flat phantom	

Fig. 6.6 Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

6.7 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ±0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).

Thus the device needs no repositioning when changing the angles.

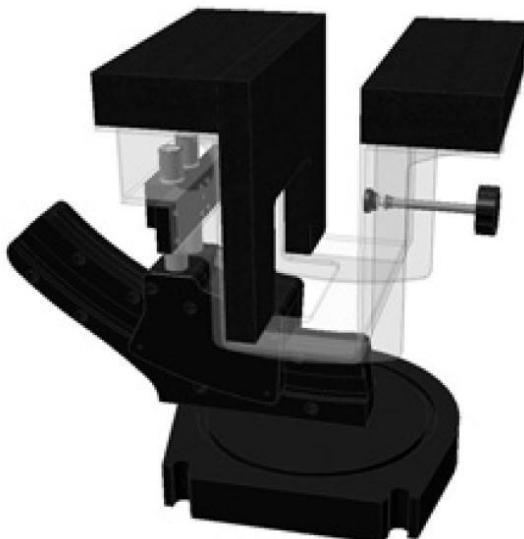

The DASY device holder is constructed of low-low POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 6.7 Photo of Device Holder

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Fig 6.8 Laptop Extension Kit

6.8 Data storage and Evaluation

➤ Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verifications of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

➤ Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion	ConvF _i
	- Diode compression point	dcp _i
Device Parameters:	- Frequency	f
	- Crest	cf
Media Parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With V_i = compensated signal of channel i, (i = x, y, z)

U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcpⁱ = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$E\text{-Field Probes: } E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H\text{-Field Probes: } H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), μ V/(V/m)²

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency (GHz)

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

With

SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in (mho/m) or (Siemens/m)

ρ = equipment tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

6.9 Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	5000MHz System Validation Kit	D5GHzV2	1176	2018.11.06	2021.11.05
SPEAG	Dosimetric E-Field Probe	EX3DV4	3823	2020.01.03	2021.01.02
SPEAG	Data Acquisition Electronics	DAE4	1516	2019.11.11	2020.11.11
SPEAG	Dielectric Assessment KIT	DAK-3.5	1279	2019.11.03	2020.11.02
SPEAG	SAM Twin Phantom 1	QD 000 P40 CB	TP-1471	NCR	NCR
SPEAG	SAM Twin Phantom 2	QD 000 P40 CB	TP-1464	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
R&S	Network Emulator	CMW500	124534	2020.03.31	2021.03.30
Agilent	Network Analyzer	E5071B	MY42404762	2020.04.01	2021.03.31
mini-circuits	Amplifier	ZHL-42W+	608501717	NCR	NCR
mini-circuits	Amplifier	ZVE-8G+	754401735	NCR	NCR
Agilent	Signal Generator	N5182B	MY53050509	2020.03.31	2021.03.30
Agilent	Power Senor	N8482A	MY41090849	2019.10.28	2020.10.27
Agilent	Power Meter	E4416A	MY45102093	2019.10.28	2020.10.27
Anritsu	Power Sensor	MA2411B	N/A	2019.10.28	2020.10.27
Anritsu	Power Meter	NRVD	101066	2019.10.28	2020.10.27
Agilent	Dual Directional Coupler	778D	50422	NA	NA
MCL	Attenuation1	351-218-010	N/A	NA	NA
THERMOMETER	Thermo meter	DC-803	N/A	2020.01.22	2021.01.21
N/A	Tissue Simulating Liquids	700-6000MHz	N/A	24H	

Note:

1. The calibration certificate of DASY can be referred to Annex E of this report.
2. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
3. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Speag.
4. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

REPORT No.: SZ20090099S01

5. Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check.
6. N.C.R means No Calibration Requirement.

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
[Http://www.morlab.cn](http://www.morlab.cn) E-mail: service@morlab.cn

7 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 7.1, for body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger than 15 cm, which is shown in Fig. 7.2.

Fig 7.1 Photo of Liquid Height for Head SAR

Fig 7.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquids

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (ϵ_r)
Head								
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
Body								
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.96	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

REPORT No.: SZ20090099S01

The relative permittivity and conductivity of the tissue material should be within $\pm 5\%$ of the values given in the table below recommended by the FCC OET 65supplement C and RSS 102 Issue 5.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

REPORT No.: SZ20090099S01

The dielectric parameters of liquids were verified prior to the SAR evaluation using a Speag Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Conductivity Target (σ)	Delta (σ) (%)	Limit (%)	Date
5250	HSL	21.2	4.710	4.71	0.00	±5	2020.09.21
5750	HSL	21.4	5.376	5.22	2.99	±5	2020.09.22
5750	HSL	21.9	5.25	5.22	0.54	±5	2020.10.14

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Permittivity (εr)	Permittivity Target (εr)	Delta (εr) (%)	Limit (%)	Date
5250	HSL	21.2	34.601	35.95	-3.76	±5	2020.09.21
5750	HSL	21.4	35.941	35.35	1.67	±5	2020.09.22
5750	HSL	21.9	35.640	35.35	0.82	±5	2020.10.14

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

8 SAR System Verification

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

➤ Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

➤ System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

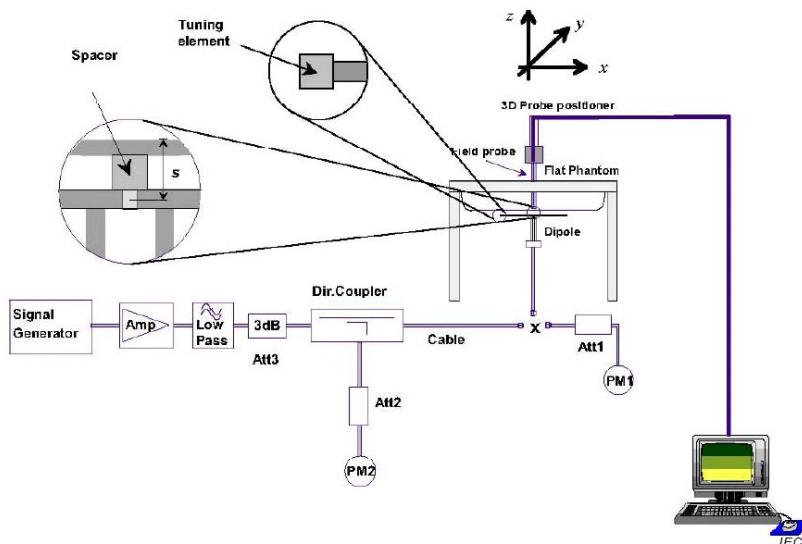


Fig.8.1 System Verification Setup Diagram

Fig.8.2 Photo of Dipole setup

➤ **System Verification Results**

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Annex C of this report.

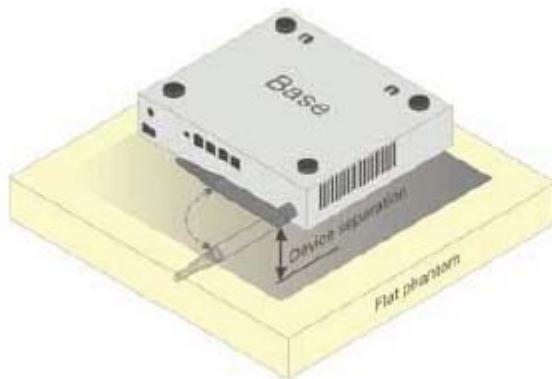
Dipole S/N	Probe S/N	DAE S/N
D5GHzV2-1176	3823	1516

<1g SAR>

Date	Freq. (MHz)	Tissue Type	Input Power (mW)	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2020.09.21	5250	HSL	100	8.18	78.90	81.8	3.68
2020.09.22	5750	HSL	100	8.15	80.00	81.5	1.88
2020.10.14	5750	HSL	100	7.96	80.00	79.6	-0.5

<10g SAR>

Date	Freq. (MHz)	Tissue Type	Input Power (mW)	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2020.09.21	5250	HSL	100	2.36	22.50	23.6	4.89
2020.09.22	5750	HSL	100	2.31	22.60	23.1	2.21
2020.10.14	5750	HSL	100	2.25	22.6	22.5	-0.44


Note: System checks the specific test data please see Annex C

9 EUT Testing Position

This EUT was tested in five different positions. The EUT with phantom 5 mm gap, as illustrated below, please refer to Appendix B for the test setup photos.

9.1. Body Configurations

For devices that employ one or more external antennas with variable positions (e.g. antenna extended, retracted, rotated), these shall be positioned in accordance with the user instructions provided by the manufacturer. For a device with only one antenna, if no intended antenna position is specified, tests shall be performed if applicable in both the horizontal and vertical positions relative to the phantom, and with the antenna oriented away from the body of the DUT and/or with the antenna extended and retracted such as to obtain the highest exposure condition. For antennas that may be rotated through one or two planes, an evaluation should be made and documented in the measurement report to the highest exposure scenario and only that position(s) need(s) to be tested.

Fig 9.1 Device with swivel antenna

10 Measurement Procedures

The measurement procedures are as bellows:

<Conducted power measurement>

- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power.

<Conducted power measurement>

- Use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- Place the EUT in positions as Annex B demonstrates.
- Set scan area, grid size and other setting on the DASY software.
- Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band.
- Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement.
- Area scan.
- Zoom scan.
- Power drift measurement.

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a “cube” measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan.
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- Generation of a high-resolution mesh within the measured volume.
- Interpolation of all measured values from the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

- Calculation of the averaged SAR within masses of 1g and 10g.

10.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

10.3 Area Scan Procedures

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm^2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum.

10.4 Zoom Scan Procedures

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10 g cube 21,5mm. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 5x5x7 (8mmx8mmx5mm)providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

10.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Sheppard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

10.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

11. SAR Test Procedure

11.1. General scan Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		$\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 12 \text{ mm}$ $4 - 6 \text{ GHz: } \leq 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		$\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz: } \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \leq 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 4 \text{ mm}$ $4 - 5 \text{ GHz: } \leq 3 \text{ mm}$ $5 - 6 \text{ GHz: } \leq 2 \text{ mm}$
	graded grid	$\Delta z_{\text{Zoom}}(1): \text{ between } 1^\circ \text{ two points closest to phantom surface}$	$3 - 4 \text{ GHz: } \leq 3 \text{ mm}$ $4 - 5 \text{ GHz: } \leq 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \leq 2 \text{ mm}$
		$\Delta z_{\text{Zoom}}(n>1): \text{ between subsequent points}$	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1) \text{ mm}$
Minimum zoom scan volume	x, y, z	$\geq 30 \text{ mm}$	$3 - 4 \text{ GHz: } \geq 28 \text{ mm}$ $4 - 5 \text{ GHz: } \geq 25 \text{ mm}$ $5 - 6 \text{ GHz: } \geq 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the reported SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

11.2. Test procedure

The Following steps are used for each test position

1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

11.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is used to determine this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

12. SAR Test Configuration

<WLAN 5GHz>

A)U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- 3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

B)U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 – 5.65 GHz must be included to apply the SAR test reduction and measurement procedures. When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing.

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

C)OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the

default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

1) The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.

2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.

3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.

4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

1) The channel closest to mid-band frequency is selected for SAR measurement.

2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

D) SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

13. Conducted RF Output Power

5GHz WLAN:

ANT A

5.2 GHz WLAN ANT A	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Power Setting	Duty Cycle %
	802.11a 6Mbps	CH 36	5180	15.81	16.00	13	100.00
		CH 44	5220	17.25	17.50	13	
		CH 48	5240	17.57	18.00	13	
	802.11n- HT20 MCS0	CH 36	5180	15.31	15.50	13	98.33
		CH 44	5220	16.24	16.50	13	
		CH 48	5240	16.76	17.00	13	
	802.11n- HT40 MCS0	CH 38	5190	15.68	16.00	13	96.67
		CH 46	5230	16.20	16.50	13	

5.8 GHz WLAN ANT A	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Power Setting	Duty Cycle %
	802.11a 6Mbps	CH 149	5745	10.02	10.50	11	100.00
		CH 157	5785	9.56	10.00	11	
		CH 165	5825	8.03	8.50	11	
	802.11n- HT20 MCS0	CH 149	5745	10.33	10.50	11	98.33
		CH 157	5785	8.63	9.00	11	
		CH 165	5825	8.14	8.50	11	
	802.11n- HT40 MCS0	CH 151	5755	10.20	10.50	11	96.67
		CH 159	5795	8.97	9.00	11	

Note: The WLAN 5G Antenna A gain is 3.34dBi

ANT B

5.2 GHz WLAN ANT B	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Power Setting	Duty Cycle %
	802.11a 6Mbps	CH 36	5180	13.3	13.50	13	100.00
		CH 44	5220	14.07	14.50	13	
		CH 48	5240	14.41	14.50	13	
	802.11n- HT20 MCS0	CH 36	5180	14.56	15.00	13	98.33
		CH 44	5220	14.97	15.00	13	
		CH 48	5240	15.17	15.50	13	
	802.11n- HT40 MCS0	CH 38	5190	14.15	14.50	13	96.67
		CH 46	5230	14.64	15.00	13	

5.8 GHz WLAN ANT B	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Power Setting	Duty Cycle %
	802.11a 6Mbps	CH 149	5745	12.66	13.00	13	100.00
		CH 157	5785	11.39	11.50	13	
		CH 165	5825	11.7	12.00	13	
	802.11n- HT20 MCS0	CH 149	5745	13.45	13.50	13	98.33
		CH 157	5785	12.4	12.50	13	
		CH 165	5825	11.99	12.00	13	
	802.11n- HT40 MCS0	CH 151	5755	12.09	12.50	13	96.67
		CH 159	5795	11.55	12.00	13	

Note: The WLAN 5G Antenna B gain is 3.44dBi

ANT A+ANT B

5.2 GHz WLAN ANT A+ANT B	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Power Setting	Duty Cycle %
	802.11a 6Mbps	CH 36	5180	17.71	18.00	13	100.00
		CH 44	5220	18.98	19.00	13	
		CH 48	5240	19.29	19.50	13	
	802.11n- HT20 MCS0	CH 36	5180	18.06	18.50	13	98.33
		CH 44	5220	18.75	19.00	13	
		CH 48	5240	19.14	19.50	13	
	802.11n- HT40 MCS0	CH 38	5190	18.13	18.50	13	96.67
		CH 46	5230	18.63	19.00	13	

5.8 GHz WLAN ANT A+ANT B	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Power Setting	Duty Cycle %
	802.11a 6Mbps	CH 149	5745	15.19	15.50	13	100.00
		CH 157	5785	13.98	14.00	13	
		CH 165	5825	13.80	14.00	13	
	802.11n- HT20 MCS0	CH 149	5745	15.91	16.00	13	98.33
		CH 157	5785	14.62	15.00	13	
		CH 165	5825	14.15	14.50	13	
	802.11n- HT40 MCS0	CH 151	5755	15.19	15.50	13	96.67

Note: The WLAN 5G Antenna A+B directional gain is 6.45dBi

14. EUT Antenna Location

	Main antenna supported TX bands : WLAN antenna supported bands : 5GHz
---	--

Evaluation:

Assessment		SAR Test distance: 5mm				
Test position	Ant in close 0 degrees	Ant in close 90 degrees	Ant in close 180 degrees	Ant in open 45 degrees	Ant in open 90 degrees	
WLAN Antenna A	Yes	Yes	Yes	Yes	Yes	
WLAN Antenna B	Yes	Yes	Yes	Yes	Yes	

15. Block diagram of the tests to be performed

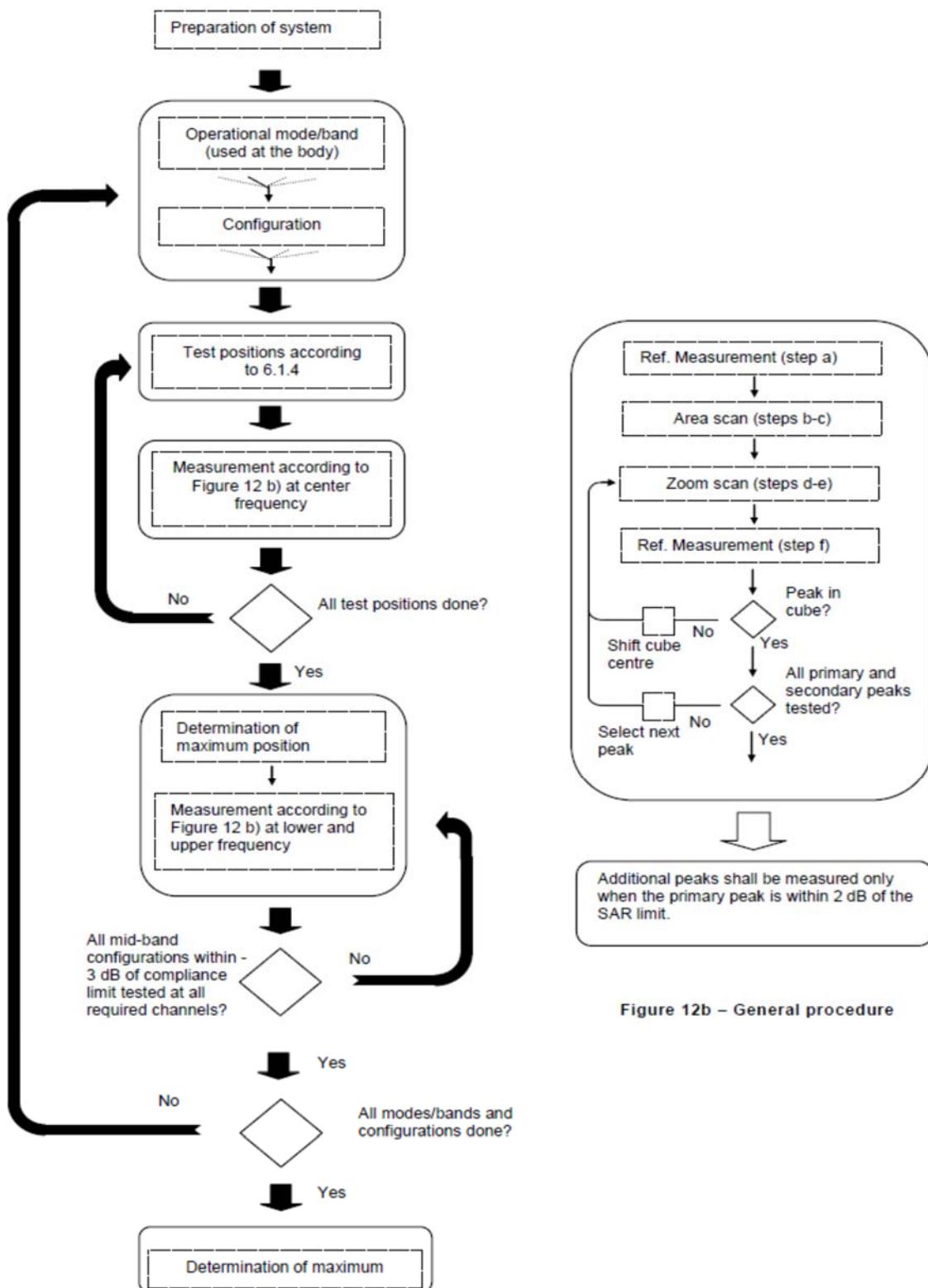


Figure 12b – General procedure

16. Test Results List

16.1. Test Guidance

1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
 - d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
4. Per KDB248227 D01v02r02, a Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies required for operations in the U.S. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. Unless it is permitted by specific KDB procedures or continuous transmission is specifically restricted by the device, the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. When a device is not capable of sustaining continuous transmission or the output can become nonlinear, and it is limited by hardware design and unable to transmit at higher than 85% duty factor, a periodic duty factor within 15% of the maximum duty factor the device is capable of transmitting should be used. The reported SAR must be scaled to the maximum transmission duty factor to determine compliance. Descriptions of the procedures applied to establish the specific duty factor used for SAR testing are required in SAR reports to support the test results.

16.2.Body SAR Data

<5G WLAN >

ANT A

Plot No.	Mode	Test Position	Ch.	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle Scaling Factor	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
Band 1									
	802.11a	close_0 degrees	48	17.57	18	1.104	1.000	0.153	0.169
	802.11a	close_90 degrees	48	17.57	18	1.104	1.000	0.107	0.118
1#	802.11a	close_180 degrees	48	17.57	18	1.104	1.000	0.557	0.615
	802.11a	open_45 degrees	48	17.57	18	1.104	1.000	0.260	0.287
	802.11a	open_90 degrees	48	17.57	18	1.104	1.000	0.234	0.258
Band 4									
	802.11n	close_0 degrees	149	10.33	10.5	1.091	1.017	0.178	0.188
	802.11n	close_90 degrees	149	10.33	10.5	1.072	1.017	0.027	0.029
2#	802.11n	close_180 degrees	149	10.33	10.5	1.072	1.017	0.452	0.478
	802.11n	open_45 degrees	149	10.33	10.5	1.072	1.017	0.137	0.145
	802.11n	open_90 degrees	149	10.33	10.5	1.072	1.017	0.137	0.145

ANT B

Plot No.	Mode	Test Position	Ch.	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle Scaling Factor	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
Band 1									
3#	802.11n	close_0 degrees	48	15.17	15.5	1.079	1.017	0.802	0.880
	802.11n	close_0 degrees	36	14.56	15	1.107	1.017	0.760	0.855
	802.11n	close_0 degrees	44	14.97	15	1.007	1.017	0.788	0.807
	802.11n	close_90 degrees	48	15.17	15.5	1.079	1.017	0.077	0.084
	802.11n	close_180 degrees	48	15.17	15.5	1.079	1.017	0.190	0.208
	802.11n	open_45 degrees	48	15.17	15.5	1.079	1.017	0.779	0.855
	802.11n	open_90 degrees	48	15.17	15.5	1.079	1.017	0.469	0.515
Band 4									
	802.11n	close_0 degrees	149	13.45	13.5	1.012	1.017	0.425	0.437
	802.11n	close_90 degrees	149	13.45	13.5	1.012	1.017	0.048	0.049
	802.11n	close_180 degrees	149	13.45	13.5	1.012	1.017	0.345	0.355
4#	802.11n	open_45 degrees	149	13.45	13.5	1.012	1.017	0.615	0.633
	802.11n	open_90 degrees	149	13.45	13.5	1.012	1.017	0.529	0.544

Note: The WLAN (802.11n) Reported 1g SAR (W/kg) has been calculated together with the duty cycle (98.33%) scaling factor.

16.3.Repeated SAR Measurement

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

Repeat test result

Mode	Test Position	Ch.	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle Scaling Factor	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Note
802.11n	close_0 degrees	48	15.17	15.5	1.079	1.017	0.802	0.880	Original
802.11n	close_0 degrees	48	15.17	15.5	1.079	1.017	0.792	0.869	Repeat

17. Simultaneous Transmission Evaluation

Simultaneous Evaluation:

No.	Simultaneous transmission Condition	Body
1	5GHz WLAN ANT A + ANT B	Yes

Note:

1. Per KDB 447498D01v06, Simultaneous Transmission SAR Evaluation procedures is as followed:
Step 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.
Step 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.
Step 3: If the ratio of SAR to peak separation distance is ≤ 0.04 , Simultaneous SAR measurement is not required.
Step 4: If the ratio of SAR to peak separation distance is > 0.04 , Simultaneous SAR measurement is required and simultaneous transmission SAR value is calculated.

(The ratio is determined by: $(\text{SAR1} + \text{SAR2}) ^ 1.5 / \text{Ri} \leq 0.04$,

Ri is the separation distance between the peak SAR locations for the antenna pair in mm.

Band	Exposure Position	5GHz WLAN ANT A	5GHz WLAN ANT B	WLAN ANT A+ ANT B Summed Max. 1g SAR (W/kg)
		Max. 1g SAR (W/kg)	Max. 1g SAR (W/kg)	
WLAN5GHz	close_0 degrees	0.188	0.880	1.495
	close_90 degrees	0.118	0.084	
	close_180 degrees	0.615	0.355	
	open_45 degrees	0.287	0.855	
	open_90 degrees	0.258	0.544	

18 Measurement Uncertainty

The component of uncertainty may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A Type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacturer's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in below Table.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor	$1/k(b)$	$1/\sqrt{3}$	$1/\sqrt{6}$	$1/\sqrt{2}$

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+ - %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+ - %)	10g Ui (+ - %)	Vi
Measurement System									
Probe calibration	E.2.1	5.83	N	1	1	1	5.83	5.83	∞
Axial Isotropy	E.2.2	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	E.2.2	5.9	R	$\sqrt{3}$	1	1	3.41	3.41	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	∞
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	E.5.2	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related									
Test sample positioning	E.4.2.1	2.6	N	1	1	1	2.6	2.6	N-1
Device Holder Uncertainty	E.4.1.1	3.0	N	1	1	1	5.11	5.11	∞
Output power Power drift - SAR drift measurement	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Liquid conductivity - deviation from target value	E.3.2	2.0	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	∞
Liquid conductivity - measurement uncertainty	E.3.3	2.5	N	1	0.64	0.43	3.20	2.15	M
Liquid permittivity - deviation from target value	E.3.2	2.5	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
Liquid permittivity - measurement uncertainty	E.3.3	5.0	N	1	0.6	0.49	6.00	4.90	M
Liquid conductivity – temperature uncertainty	E.3.4		R	$\sqrt{3}$	0.78	0.41			∞
Liquid permittivity –temperature uncertainty	E.3.4		R	$\sqrt{3}$	0.23	0.26			∞
Combined Standard Uncertainty			RSS				11.55	12.07	
Expanded Uncertainty (95% Confidence interval)			K=2				± 23.20	± 24.17	

19 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of FCC, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

Annex A General Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Laboratory Address:	FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address:	FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3. Facilities and Accreditations

The FCC designation number is CN1192, the test firm registration number is 226174.

Note:

The main report is end here and the other Annex (B,C,D,E) will be submitted separately.

***** END OF MAIN REPORT *****