

TEST REPORT

Part 15 Subpart C 15.249

Equipment under test Remote Control Transmitter

Model name LOBIT 100FR

FCC ID 2AICO- LOBIT100FR

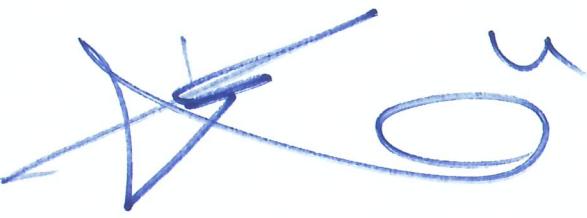
Applicant DROGEN Co., Ltd.

Manufacturer DROGEN Co., Ltd.

Date of test(s) 2016.06.03 ~2016.06.20

Date of issue 2016.06.28

Issued to


DROGEN Co., Ltd.

D-1004, Smart Vally, 30 Songdomirae-ro,
Yeonsu-gu, Incheon, 21990, Korea
Tel: +82-70-5066-1234 / Fax: +82-32-720-4622

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Hyeon-Su Jang Test engineer	Jeff Do Technical manager

Revision history

Revision	Date of issue	Test report No.	Description
-	2016.06.28	KES-RF-16T0053	Initial

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.
The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General information	4
1.1.	EUT description	4
1.2.	Test configuration	4
1.3.	Frequency/channel operations	5
1.4.	Accessory information	5
1.5.	Device modifications	5
1.6.	Derivation model information	5
2.	Summary of tests	6
3.	Test results	7
3.1	Field strength of fundamental & Radiated spurious emission & Out-of-band emission	7
3.2	20 dB bandwidth	14
Appendix A.	Measurement equipment	17
Appendix B.	Test setup photo	18

1. General information

Applicant: DROGEN Co., Ltd.
Applicant address: D-1004, Smart Vally, 30 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Korea
Test site: KES Co., Ltd.
Test site address: C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea
FCC rule part(s): Part 15.249
FCC ID: 2AICO-LOBIT100FR
Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test Remote Control Transmitter

Model: LOBIT 100FR

Derivative model N/A

Power source DC 6.0 V

- For 2.4G Band

Frequency range 2410 MHz ~ 2465 MHz

Modulation technique GFSK

Number of channels 12ch

Antenna specification Antenna type: PCB, Peak gain: 2.0 dBi

- For 5.8G Band (Only Receiving)

Frequency range 5735 MHz ~ 5815 MHz

Modulation technique FM

Number of channels 17ch

Antenna specification Antenna type: Wire, Peak gain: 2.0 dBi

1.2. Test configuration

The **DROGEN Co., Ltd. Remote Control Transmitter FCC ID: 2AICO-LOBIT100FR** was tested per the guidance ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

1.3. Frequency/channel operations

- For 2.4G Band

Ch.	Frequency (MHz)	Mode
01	2 412	GFSK
.	.	.
06	2437	GFSK
.	.	.
11	2 462	GFSK

- For 5.8G Band

Ch.	Frequency (MHz)	Mode
01	2 412	FM
.	.	.
06	2437	FM
.	.	.
11	2 462	FM

1.4. Accessory information

Applicant	Equipment	Manufacturer	Model	Power source

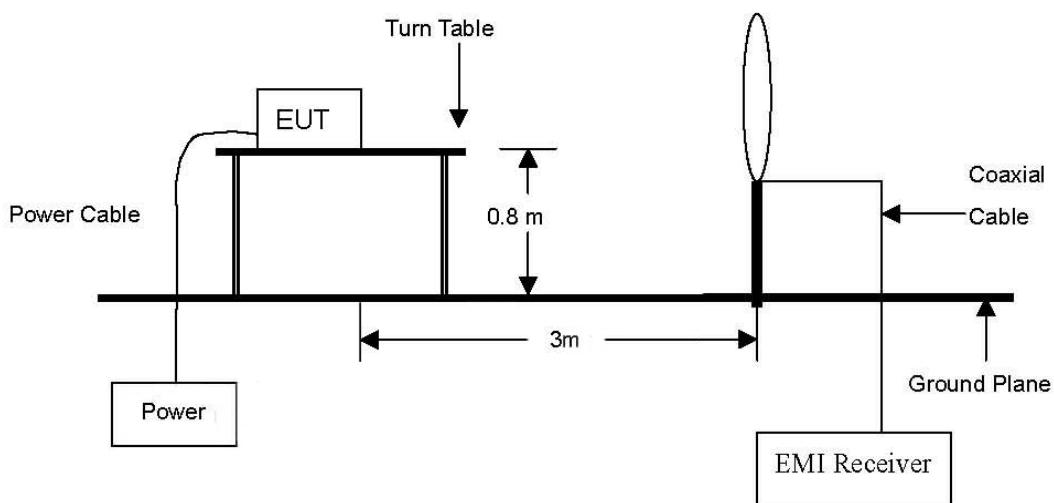
1.5. Device modifications

N/A

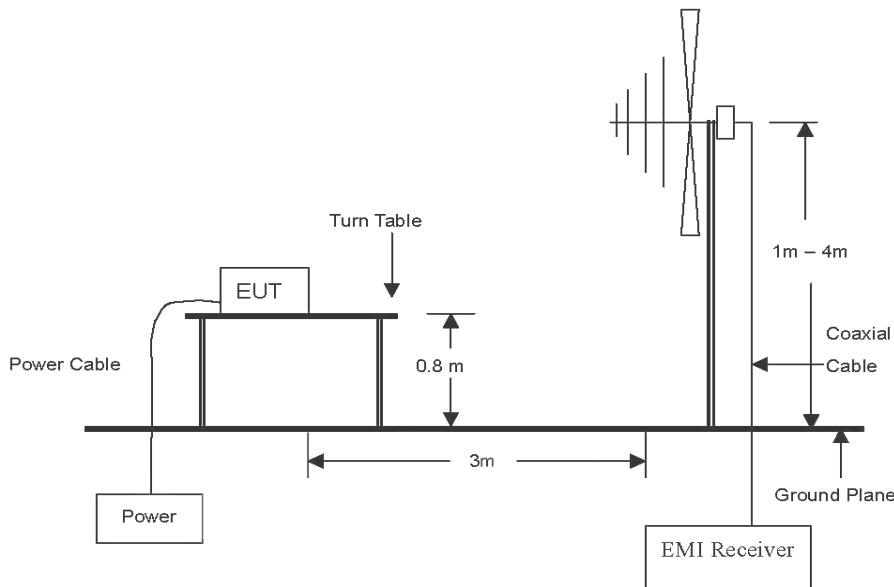
1.6. Derivation model information

N/A

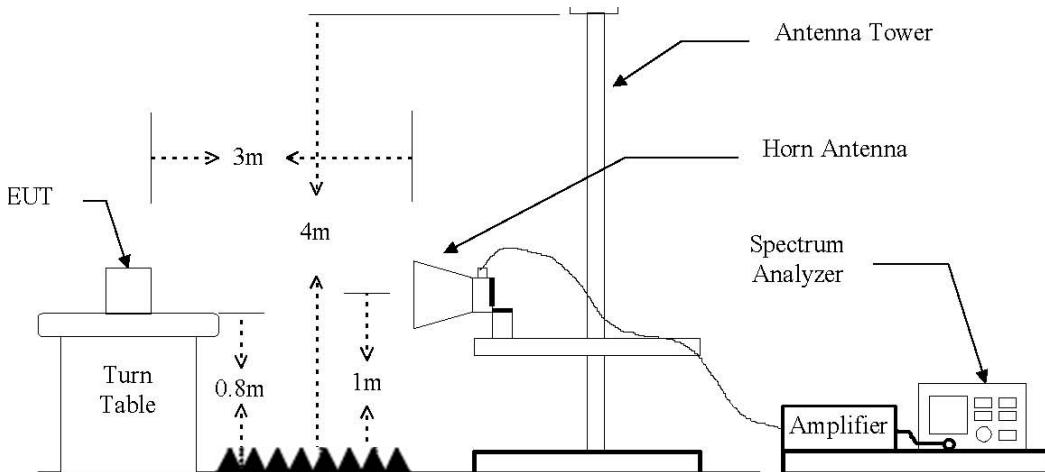
2. Summary of tests


Reference	Parameter	Test results
15.249(a)	Field strength of fundamental	Pass
15.205 15.209 15.249(d)	Radiated spurious emission, Out-of-band emission	Pass
15.215(c)	20 dB bandwidth	Pass

3. Test results


3.1 Field strength of fundamental & Radiated spurious emission & Out-of-band emission

Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Test procedure below 30 MHz

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 MHz

1. Spectrum analyzer settings for $f < 1$ GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - ② RBW = 100 kHz
 - ③ VBW \geq RBW
 - ④ Detector = quasi peak
 - ⑤ Sweep time = auto
 - ⑥ Trace = max hold
2. Spectrum analyzer settings for $f \geq 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 MHz
 - ③ VBW \geq 3 MHz
 - ④ Detector = peak
 - ⑤ Sweep time = auto
 - ⑥ Trace = max hold
 - ⑦ Trace was allowed to stabilize

3. Spectrum analyzer settings for $f \geq 1$ GHz: Average

- ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- ② RBW = 1 MHz
- ③ VBW = 10 Hz
- ④ Set detector = Peak.
- ⑤ Set sweep time = auto.
- ⑥ Sweep = auto
- ⑦ Trace = max hold
- ⑧ Allow sweeps to continue until the trace stabilizes.

Note.

- 1. $f < 30$ MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/D_s)$
- $f \geq 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20\log(D_m/D_s)$

Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters

- 3. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d (dB)
- 4. Field strength(dB μ V/m) = Level(dB μ V) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) - Field strength(dB μ V/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (MHz)	Distance (Meters)	Radiated (μ V/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to 15.249(a)

Fundamental frequency	Field strength of fundamental		Field strength of harmonics	
	mV/m	dBuV/m	uV/m	dBuV/m
902-928 MHz	50	94	500	54
2400-2483.5 MHz	50	94	500	54
5725-5875 MHz	50	94	500	54
24.0-24.25 GHz	250	108	2500	68

According to 15.249(d)

Emission radiated outside of the specified frequency bands, except harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated limit in FCC part 15C, Section 15.209, whichever is the lesser attenuation.

Test result (Fundamental) – For 2.4G Band

Operating Frequency: 2 410 MHz

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2410.25	91.57	Peak	H	-0.84	-	90.73	114.00	23.27
2410.25	86.15	Peak	V	-0.84	-	85.31	114.00	28.69

Operating Frequency: 2 435 MHz

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2435.13	93.05	Peak	H	-0.71	-	92.34	114.00	21.66
2435.17	89.70	Peak	V	-0.71	-	88.99	114.00	25.01

Operating Frequency: 2 465 MHz

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2465.11	93.45	Peak	H	-0.55	-	92.90	114.00	21.10
2465.12	89.71	Peak	V	-0.55	-	89.16	114.00	24.84

Test results (Spurious emission) – For 2.4G Band

- **Below 30 MHz**

Operating Frequency: 2 465 MHz (Worst case)

Frequency (MHz)	Level (dB μ V)	Ant. Pol. (H/V)	CF (dB)	F _d (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
No spurious emissions were detected within 20 dB of the limit							

- **Below 1 000 MHz**

Operating Frequency: 2 465 MHz (Worst case)

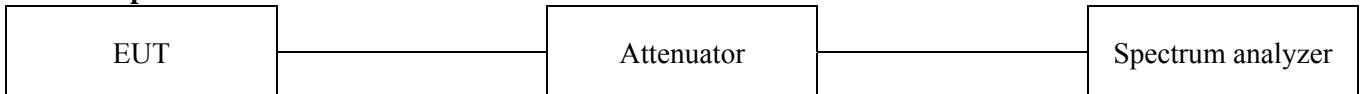
Frequency (MHz)	Level (dB μ V)	Ant. Pol. (H/V)	CF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
135.80	14.88	H	10.89	25.77	43.50	17.73
152.88	14.75	V	11.09	25.84	43.50	17.66
204.05	10.80	H	14.70	25.50	43.50	18.00
271.58	16.02	V	16.81	32.83	46.00	13.17
339.50	13.96	H	18.87	32.83	46.00	13.17
529.14	10.27	V	23.66	33.93	46.00	12.07

- **Above 1 000 MHz**

Operating Frequency: 2 410 MHz

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2385.29	43.70	Peak	H	-0.97	-	42.73	74.00	31.27
2386.50	42.43	Peak	V	-0.97	-	41.46	74.00	32.54
4820.16	41.77	Peak	H	8.19	-	49.96	74.00	24.04
4820.16	39.80	Peak	V	8.19	-	47.99	74.00	26.01

Operating Frequency: 2 435 MHz


Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
4870.33	42.77	Peak	H	8.54	-	51.31	74.00	22.69
4870.42	39.96	Peak	V	8.54	-	48.50	74.00	25.50

Operating Frequency: 2 465 MHz

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
2483.63	43.12	Peak	H	-0.45	-	42.67	74.00	31.33
2483.63	42.56	Peak	V	-0.45	-	42.11	74.00	31.89
4930.50	43.13	Peak	H	8.97	-	52.10	74.00	21.90
4930.50	40.48	Peak	V	8.97	-	49.45	74.00	24.55

3.2 20 dB bandwidth

Test setup

Test procedure

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = approximately 2 to 3 times the 20dB bandwidth

RBW \geq 1 % of the 20dB bandwidth

VBW \geq 3 x RBW

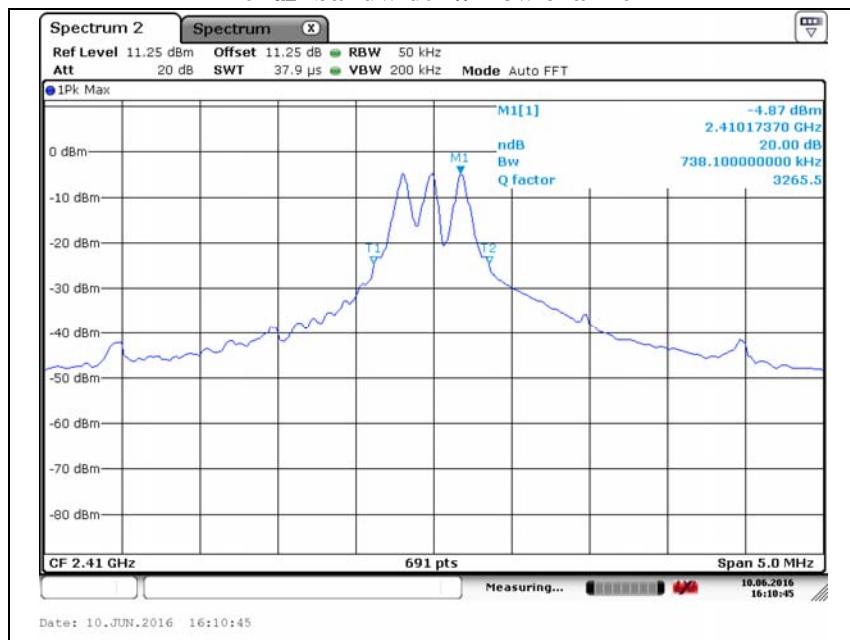
Sweep = auto

Detector function = peak

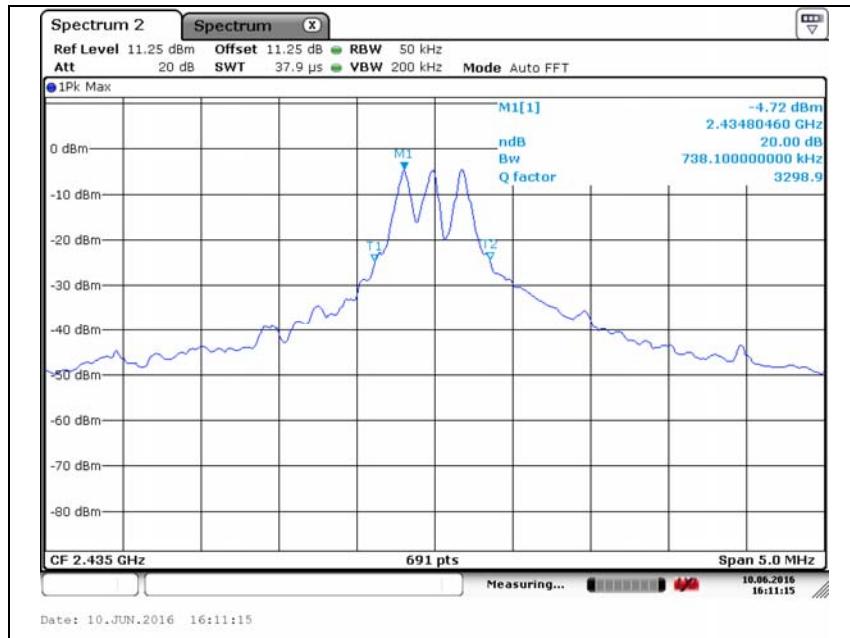
Trace = max hold

2. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

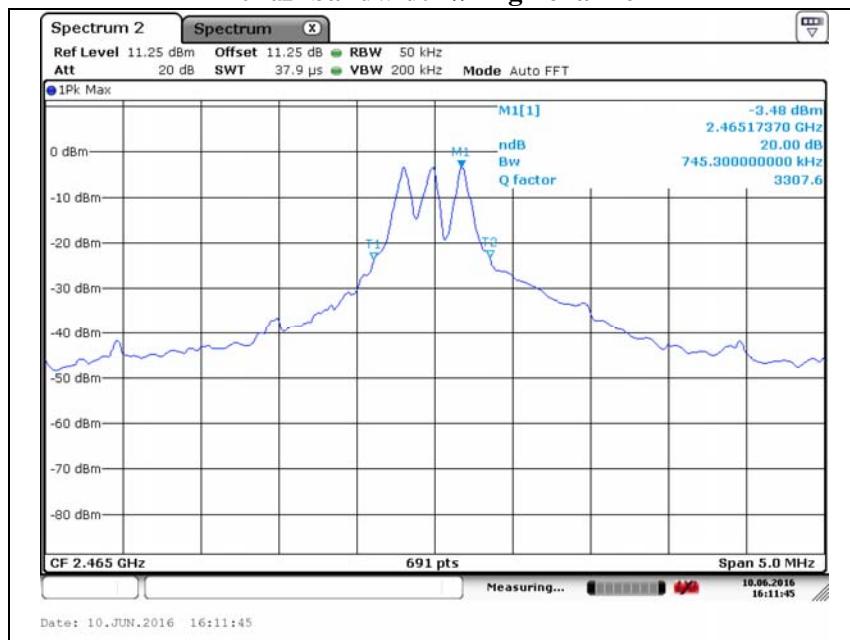
Limit


Not applicable

Test results


- For 2.4G Band

Operation mode	Frequency(MHz)	20 dB bandwidth(MHz)	Limit
Transmission	2 410	0.738	-
	2 435	0.738	-
	2 465	0.745	-


20 dB bandwidth // Low channel

20 dB bandwidth // Middle channel

20 dB bandwidth // High channel

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due
Spectrum analyzer	R&S	FSV30	100736	1 year	2016.07.25
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2017.01.25
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2016.07.24
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2016.07.24
Preamplifier	HP	8447F	2805A02570	1 year	2017.01.21
Brodband preamplifier	Schwarzbeck	BBV9718	9718-246	1 years	2016.10.23
Loop Antenna	R&S	HFH2-Z2.335.4711.52	826532	2 years	2017.03.03
Trilog-broadband antenna	Schwarzbeck	VULB 9168	9168-713	2 years	2017.05.15
Horn antenna	A.H.	SAS-571	781	2 years	2017.05.07
EMI Test Receiver	R&S	ESR3	101781	1 year	2017.05.03
EMI Test Receiver	R&S	ESU26	100552	1 year	2017.04.24

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
-	-	-	-