

FCC TEST REPORT

FOR

Shenzhen Merrytek Technology Co.,Ltd

Lighting Control Switch

TEST Model No.: MC609V RC A

Additional Model No.: MC609V RC B, MC609V RC C, MC609V RC D

Prepared for	:	Shenzhen Merrytek Technology Co.,Ltd
Address	:	2nd and 3rd Floor, No.3 building, 380 Xiangshan Avenue, Luotian, Yanluo, Baoan, Shenzhen, China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	August 13, 2018
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	August 13, 2018 ~ August 31, 2018
Date of Report	:	September 03, 2018

FCC TEST REPORT

FCC CFR 47 PART 15 C (15.249): 2017

Report Reference No. : LCS180810002AEA

Date of Issue : September 03, 2018

Testing Laboratory Name : **Shenzhen LCS Compliance Testing Laboratory Ltd.**

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure :
Full application of Harmonised standards
Partial application of Harmonised standards
Other standard testing method

Applicant's Name : **Shenzhen Merrytek Technology Co.,Ltd**

Address : 2nd and 3rd Floor, No.3 building, 380 Xiangshan Avenue, Luotian, Yanluo, Baoan, Shenzhen, China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.249): 2017 / ANSI C63.10: 2013

Test Report Form No. : LCSEMC-1.0

TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description : Lighting Control Switch

Trade Mark :

Test Model : MC609V RC A

Ratings :
Input: AC 120/277/347V, 50/ 60Hz
Output: 120VAC: 3.6A; 277VAC: 3.4A; 347VAC: 3.3A

Result : **Positive**

Compiled by:


Aking Jin / File administrators

Supervised by:

Calvin Weng/ Technique principal

Approved by:

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. :	LCS180810002AEA	<u>September 03, 2018</u>
		Date of issue

Test Model.....	: MC609V RC A
EUT.....	: Lighting Control Switch
Applicant.....	: Shenzhen Merrytek Technology Co.,Ltd
Address.....	: 2nd and 3rd Floor, No.3 building, 380 Xiangshan Avenue, Luotian, Yanluo, Baoan, Shenzhen, China
Telephone.....	: /
Fax.....	: /
Manufacturer.....	: Shenzhen Merrytek Technology Co.,Ltd
Address.....	: 2nd and 3rd Floor, No.3 building, 380 Xiangshan Avenue, Luotian, Yanluo, Baoan, Shenzhen, China
Telephone.....	: /
Fax.....	: /
Factory.....	: Shenzhen Merrytek Technology Co.,Ltd
Address.....	: 2nd and 3rd Floor, No.3 building, 380 Xiangshan Avenue, Luotian, Yanluo, Baoan, Shenzhen, China
Telephone.....	: /
Fax.....	: /

Test Result	Positive
--------------------	-----------------

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	September 03, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Support equipment List	6
1.3 External I/O Cable	6
1.4 Description of Test Facility	6
1.5 Statement of the Measurement Uncertainty	7
1.6 Measurement Uncertainty	7
1.7 Description of Test Modes	7
1.8 Channel List and Frequency	8
2. TEST METHODOLOGY	9
2.1 EUT Configuration	9
2.2 EUT Exercise	9
2.3 General Test Procedures	9
2.3.1 Conducted Emissions	9
2.3.2 Radiated Emissions	9
3. SYSTEM TEST CONFIGURATION	10
3.1 Justification	10
3.2 EUT Exercise Software	10
3.3. Special Accessories	10
3.4 Block Diagram/Schematics	10
3.5 Equipment Modifications	10
3.6 Test Setup	10
4. SUMMARY OF TEST RESULT	11
5. SUMMARY OF TEST EQUIPMENT	12
6. ANTENNA REQUIREMENT	13
6.1. Standard Applicable	13
6.2. Antenna Connected Construction	13
6.3. Result: Compliance	13
7. RADIATED EMISSION MEASUREMENT	14
7.1. Standard Applicable	14
7.2. Instruments Setting	14
7.3. Test Procedure	15
7.4. Block Diagram of Test Setup	19
7.5. Test Results	20
8. 99% AND 20 DB BANDWIDTH MEASUREMENT	23
8.1. Standard Applicable	23
8.2. Block Diagram of Test Setup	23
8.3. Test Procedure	23
8.4. Test Results	23
9. AC POWER LINE CONDUCTED EMISSIONS	25
9.1 Standard Applicable	25
9.2 Block Diagram of Test Setup	25
9.3 Test Results	25
10. TEST SETUP PHOTOGRAPHS	27
11. EXTERIOR PHOTOGRAPHS OF THE EUT	27
12. INTERIOR PHOTOGRAPHS OF THE EUT	27

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT	:	Lighting Control Switch
Model No.	:	MC609V RC A, MC609V RC B, MC609V RC C, MC609V RC D PCB board, structure and internal of these model(s) are the same, Only
Model Declaration	:	model name, Installation method, and the color of shell are different for these models. (Each product has a white shell and a black shell)
Test Model	:	MC609V RC A
Power Supply	:	Input: AC 120/277/347V, 50/ 60Hz Output: 120VAC: 3.6A; 277VAC: 3.4A; 347VAC: 3.3A
Hardware Version	:	A0
Software Version	:	A0
Frequency Range	:	5725 MHz~5875 MHz
Modulation Type	:	No modulation
Antenna Description	:	Internal antenna, 0dBi (max.)

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
--	--	--	--	--

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
--	--	--

1.4 Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)
	26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	150kHz~30MHz	1.63dB	(1)
Power disturbance	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report.

The EUT is considered a portable unit and was set to transmit at 100% duty cycle. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of operations	Transmitting frequency (MHz)
GFSK	5725
	5805
	5875
For Conducted Emission	
Test Mode	TX Mode
For Radiated Emission	
Test Mode	TX Mode

Worst-case mode and channel used for 150 KHz - 30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be TX-5725MHz.

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, which was determined to be TX-5725MHz.

***Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

1.8 Channel List and Frequency

Test Mode	Channel	Frequency Range (MHz)
TX/RX	1	5725
TX/RX	2	5805
TX/RX	3	5875
Standby	--	--

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in FCC MP-5 for Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in FCC MP-5 for radiated emission.

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting.

The EUT After the power is switched on, the hand is placed over the microwave module, and the signal will switch from 5725MHz to 5805MHz and 5875MHz in turn.

3.2 EUT Exercise Software

N/A.

3.3. Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULT

FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	Compliant
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant
§15.205	Band Edges Measurement	Compliant
§15.249, §15.215	99% and 20 dB Bandwidth	Compliant

5. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2018-06-16	2019-06-15
2	Power Sensor	R&S	NRV-Z81	100458	2018-06-16	2019-06-15
3	Power Sensor	R&S	NRV-Z32	10057	2018-06-16	2019-06-15
4	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15
6	SPECTRUM ANALYZER	R&S	FSP	100503	2018-06-16	2019-06-15
7	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
8	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30
14	Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1925	2018-07-02	2019-07-01
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20
16	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20
17	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15
19	TEST RECEIVER	R&S	ESCI	101142	2018-06-16	2019-06-15
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2018-06-16	2019-06-15
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2018-06-16	2019-06-15
22	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15
23	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2017-10-28	2018-10-27
24	JS1120-3 BT/WIFI Test Software	JS Tonscend Corporation	JS1120-3	/	N/A	N/A

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

6. ANTENNA REQUIREMENT

6.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connect to PCB board and no consideration of replacement, meet FCC §15.203 antenna requirement.

6.3. Result: Compliance.

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.2. Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 0.8 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premereasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height scan range is 1 meter to 2.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

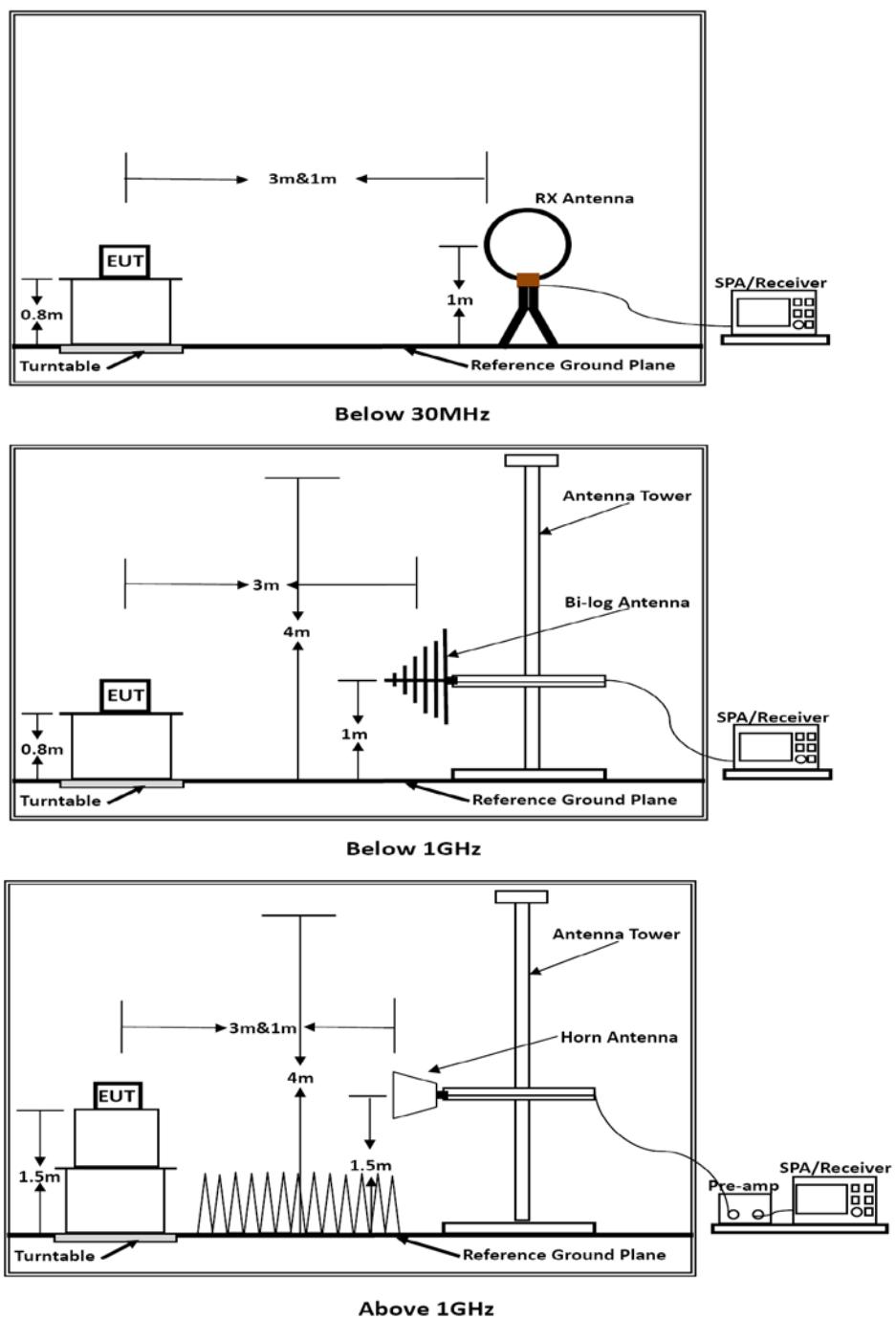
Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 1 meter.
- The EUT was set into operation.


Premeasurement:

- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

7.4. Block Diagram of Test Setup

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

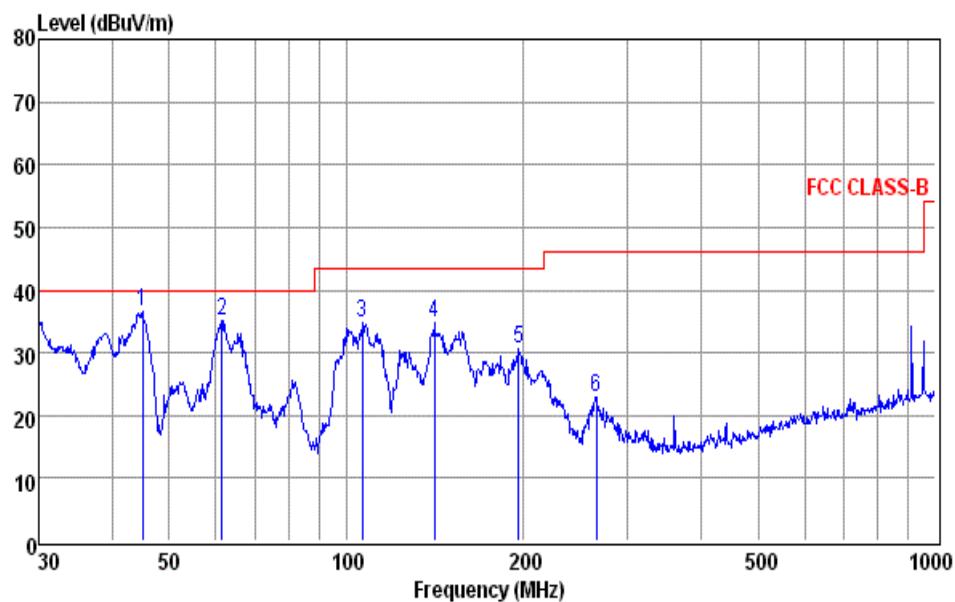
Distance extrapolation factor = $20 \log (\text{specific distance [3m]} / \text{test distance [1m]})$ (dB);
 Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

7.5. Test Results

Results of Radiated Emissions (9 KHz – 30 MHz)

Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

Note:


The radiated emissions from 9 KHz to 30 MHz are at least 20dB below the official limit and no need to report.

Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);
Limit line = specific limits (dBuV) + distance extrapolation factor.

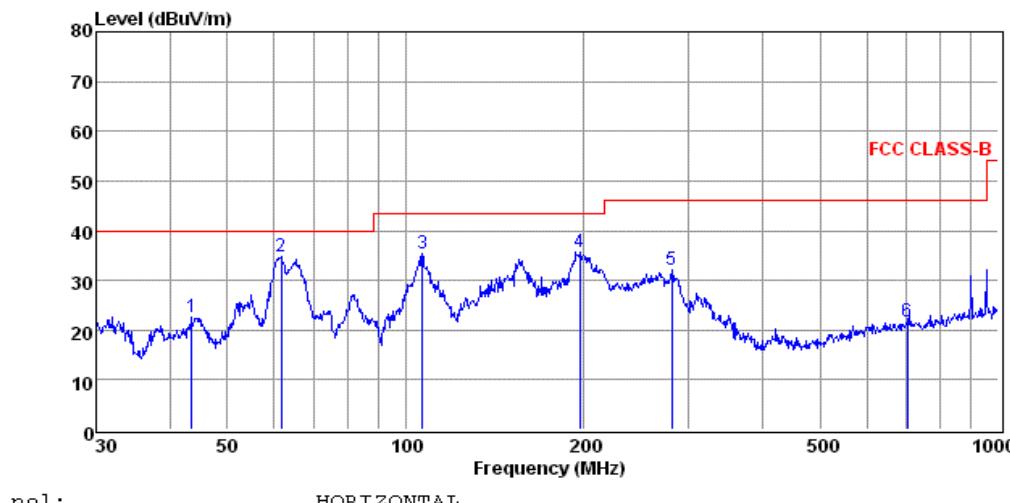
Results of Radiated Emissions (30 MHz – 1000 MHz)

Temperature	23.5 °C	Humidity	52.4%
Test Engineer	Mina Xu	Test Date	August 20, 2018
Test Mode	TX-5725MHz		

Vertical

pol:

VERTICAL


	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	45.06	22.66	0.41	13.55	36.62	40.00	-3.38	QP
2	61.35	22.57	0.48	12.16	35.21	40.00	-4.79	QP
3	106.39	21.41	0.68	12.58	34.67	43.50	-8.83	QP
4	140.84	25.92	0.75	8.20	34.87	43.50	-8.63	QP
5	195.82	19.22	0.96	10.57	30.75	43.50	-12.75	QP
6	265.68	9.63	1.03	12.23	22.89	46.00	-23.11	QP

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offcial limit are not reported

Horizontal

pol: HORIZONTAL

Freq	Reading	CabLos	Antfac	Measured		Limit	Over	Remark
				MHz	dBuV	dB	dB/m	
1	43.51	8.52	0.41	13.56	22.49	40.00	-17.51	QP
2	61.56	22.12	0.48	12.07	34.67	40.00	-5.33	QP
3	106.76	22.16	0.68	12.54	35.38	43.50	-8.12	QP
4	196.51	24.26	0.96	10.57	35.79	43.50	-7.71	QP
5	281.01	18.25	1.06	12.69	32.00	46.00	-14.00	QP
6	701.76	1.04	1.70	18.83	21.57	46.00	-24.43	QP

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the official limit are not reported

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report.
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.

Results for Radiated Emissions (Above 1GHz)

Field Strength of Fundamental (TX-5725MHz)						
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result
5725.00	H	89.32	86.32	114.00	94.00	PASS
5725.00	V	85.48	81.95	114.00	94.00	PASS

Freq. MHz	Reading dBuV	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11450	47.49	33.06	35.04	3.94	49.45	74.00	-24.55	Peak	Horizontal
11450	30.46	33.06	35.04	3.94	32.42	54.00	-21.58	Average	Horizontal
11450	49.26	33.06	35.04	3.94	51.22	74.00	-22.78	Peak	Vertical
11450	33.86	33.06	35.04	3.94	35.82	54.00	-18.18	Average	Vertical

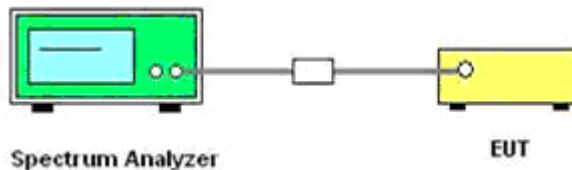
Field Strength of Fundamental (TX-5805MHz)						
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result
5805.00	H	88.62	86.33	114.00	94.00	PASS
5805.00	V	84.32	82.15	114.00	94.00	PASS

Freq. MHz	Reading dBuV	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11610	47.21	33.16	35.15	3.96	49.18	74.00	-24.82	Peak	Horizontal
11610	33.00	33.16	35.15	3.96	34.97	54.00	-19.03	Average	Horizontal
11610	50.87	33.16	35.15	3.96	52.84	74.00	-21.16	Peak	Vertical
11610	34.30	33.16	35.15	3.96	36.27	54.00	-17.73	Average	Vertical

Field Strength of Fundamental (TX-5875MHz)						
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result
5875.00	H	87.95	85.66	114.00	94.00	PASS
5875.00	V	85.32	83.14	114.00	94.00	PASS

Freq. MHz	Reading dBuV	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11750	47.72	33.26	35.14	3.98	49.82	74.00	-24.18	Peak	Horizontal
11750	34.21	33.26	35.14	3.98	36.31	54.00	-17.69	Average	Horizontal
11750	49.82	33.26	35.14	3.98	51.92	74.00	-22.08	Peak	Vertical
11750	33.54	33.26	35.14	3.98	35.64	54.00	-18.36	Average	Vertical

Notes:


- 1). Measuring frequencies from 9 KHz - 10th harmonic (ex. 40GHz), No emission found between lowest internal used/generated frequency to 30 MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz - 10th harmonic (ex. 40GHz) were made with an instrument using Peak detector mode.
- 3). 18~40GHz at least have 20dB margin. No recording in the test report.

8. 99% AND 20 DB BANDWIDTH MEASUREMENT

8.1. Standard Applicable

No Limit

8.2. Block Diagram of Test Setup

8.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 3 MHz

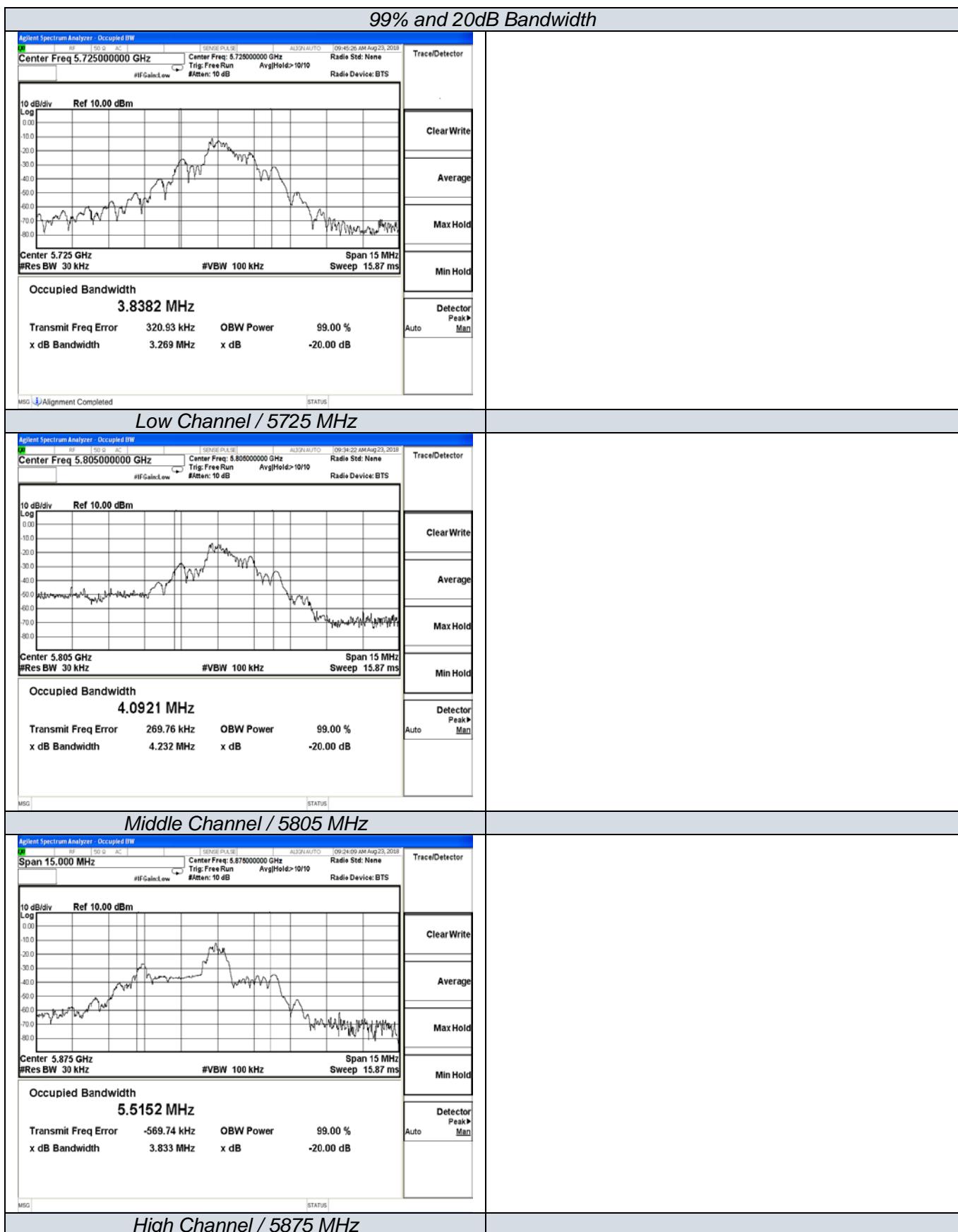
RBW = 100 KHz

VBW = 300 KHz

Sweep = auto

Detector function = peak

Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

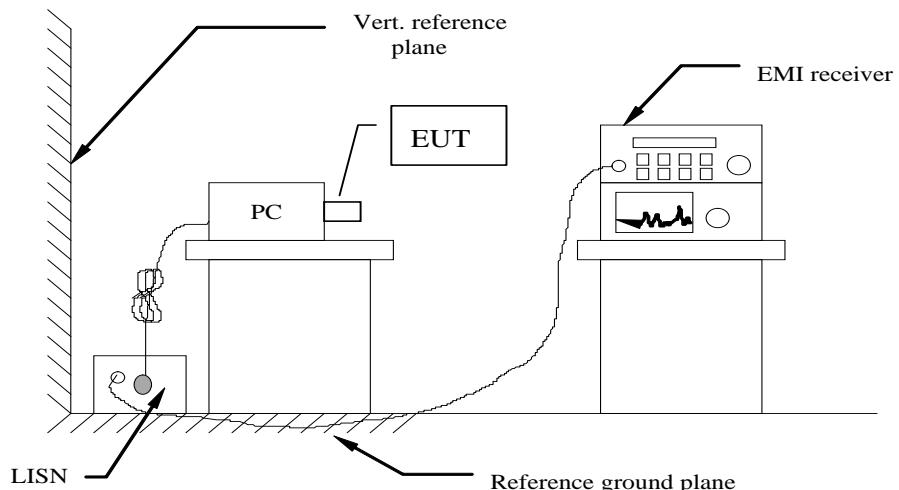
8.4. Test Results

Test Result of 99% and 20dB Bandwidth Measurement					
Test Mode	Frequency (MHz)	99% Bandwidth Measurement (MHz)	20dB Bandwidth Measurement (MHz)	Limits (MHz)	Verdict
No Modulation	5725	3.8382	3.269	No Limit	PASS
	5805	4.0921	4.232		
	5875	5.5152	3.833		

Remark:

1. Test results including cable loss;
2. Please refer to following plots;

9. AC POWER LINE CONDUCTED EMISSIONS

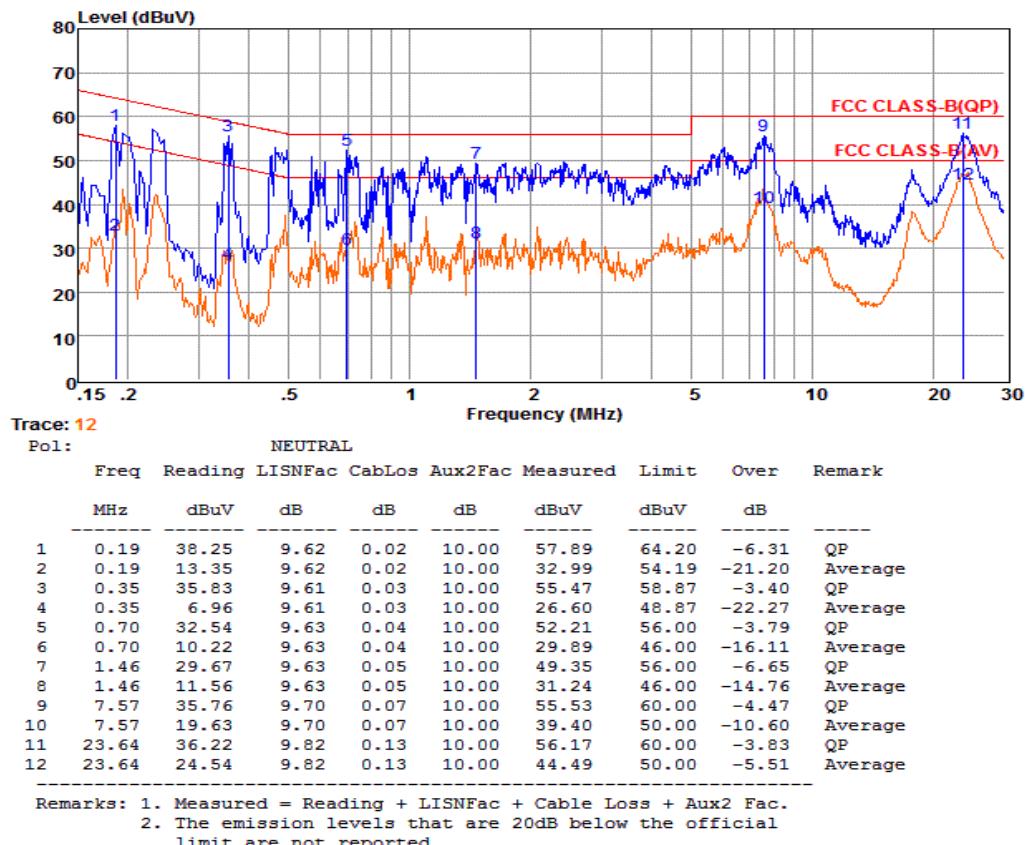

9.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

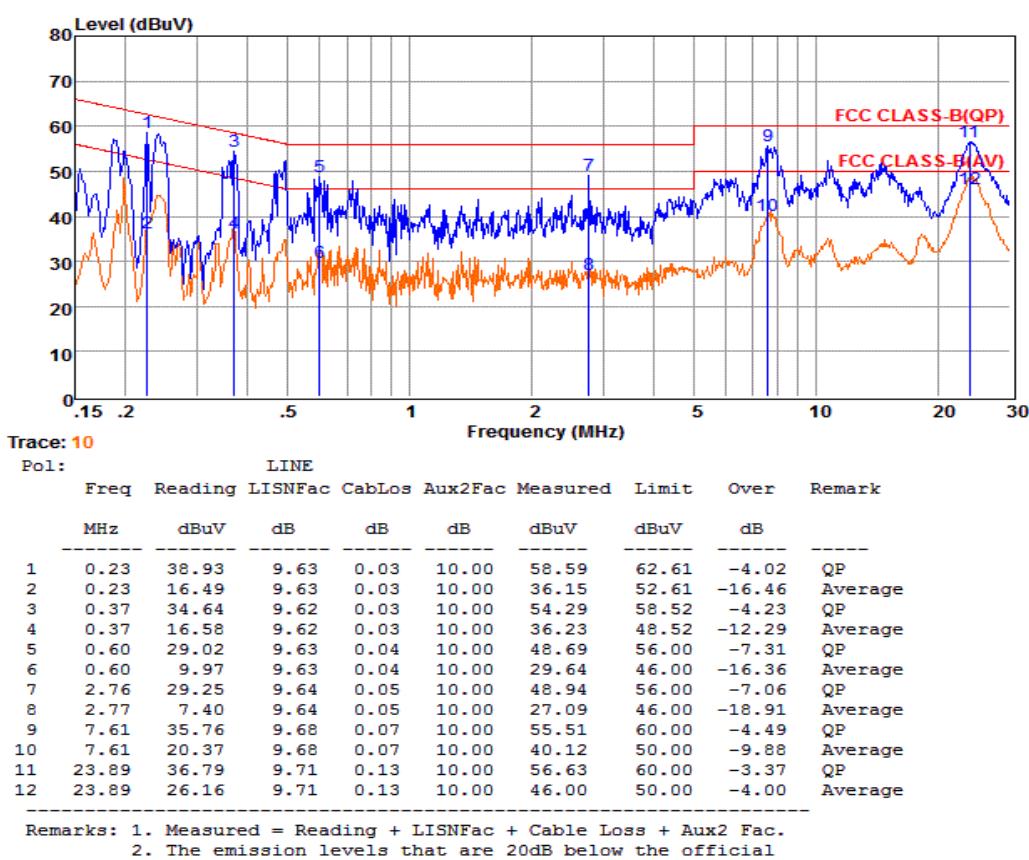
Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency

9.2 Block Diagram of Test Setup


9.3 Test Results

PASS


The test data please refer to following page.

AC Conducted Emission AC Mains @ 120V/60Hz @ 5725MHz (worst case)

Neutral

Line

***Note: Pre-scan all modes and recorded the worst case results in this report (5725MHz).

10. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

11. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Exterior Photographs of the EUT.

12. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Interior Photographs of the EUT.

-----THE END OF REPORT-----