

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 1710RSU02508 Report Version: V01 Issue Date: 11-16-2017

MEASUREMENT REPORT

FCC PART 15.407 WLAN 802.11a/n/ac

FCC ID : 2Al3G-A7215

APPLICANT : Pico Technology Co., Ltd.

Application Type : Certification

Product : VR All-In-One Headset

Model No. : A7215

Brand Name : OPICO

FCC Classification : Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s) : Part 15.407

Test Procedure(s) : ANSI C63.10-2013, KDB 789033 D02v01r04

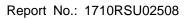
Test Date : October 30 ~ November 16, 2017

Reviewed By : Jame yuan

(Jame Yuan)

Approved By : Marlinchen

(Marlin Chen)



The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v01r04. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2Al3G-A7215 Page Number: 1 of 251

Revision History

Report No.	Version	Description	Issue Date	Note
1710RSU02508	Rev. 01	Initial report	11-16-2017	Valid

FCC ID: 2Al3G-A7215 Page Number: 2 of 251

CONTENTS

De	scriptio	n	Page
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Operation Frequency / Channel list	8
	2.4.	Test Mode	9
	2.5.	Description of Test Software	10
	2.6.	Device Capabilities	12
	2.7.	Test Configuration	13
	2.8.	EMI Suppression Device(s)/Modifications	13
	2.9.	Labeling Requirements	13
3.	DESC	RIPTION OF TEST	14
	3.1.	Evaluation Procedure	14
	3.2.	AC Line Conducted Emissions	
	3.3.	Radiated Emissions	
4.	ANTE	NNA REQUIREMENTS	16
5.	TEST	EQUIPMENT CALIBRATION DATE	17
6.	MEAS	SUREMENT UNCERTAINTY	18
7.	TEST	RESULT	19
	7.1.	Summary	19
	7.2.	26dB Bandwidth Measurement	
	7.2.1.	Test Limit	20
	7.2.2.	Test Procedure used	20
	7.2.3.	Test Setting	20
	7.2.4.	Test Setup	20
	7.2.5.	Test Result	21
	7.3.	6dB Bandwidth Measurement	36
	7.3.1.	Test Limit	36
	7.3.2.	Test Procedure used	36
	7.3.3.	Test Setting	36
	7.3.4.	Test Setup	36

7.3.5.	Test Result	37
7.4.	Output Power Measurement	42
7.4.1.	Test Limit	42
7.4.2.	Test Procedure Used	42
7.4.3.	Test Setting	42
7.4.4.	Test Setup	42
7.4.5.	Test Result	43
7.5.	Power Spectral Density Measurement	48
7.5.1.	Test Limit	48
7.5.2.	Test Procedure Used	48
7.5.3.	Test Setting	48
7.5.4.	Test Setup	49
7.5.5.	Test Result	50
7.6.	Frequency Stability Measurement	65
7.6.1.	Test Limit	65
7.6.2.	Test Procedure Used	65
7.6.3.	Test Setup	65
7.6.4.	Test Result	66
7.7.	Radiated Spurious Emission Measurement	67
7.7.1.	Test Limit	67
7.7.2.	Test Procedure Used	67
7.7.3.	Test Setting	67
7.7.4.	Test Setup	69
7.7.5.	Test Result	71
7.8.	Radiated Restricted Band Edge Measurement	. 135
7.8.1.	Test Limit	135
7.8.2.	Test Result	. 137
CONC		251

Report No.: 1710RSU02508

§2.1033 General Information

Applicant:	Pico Technology Co., Ltd.			
Applicant Address:	Room 2101, Shining Tower, No.35 Xueyuan Road, HaiDian District,			
	Beijing, The People's Republic of China			
Manufacturer:	Pico Technology Co., Ltd.			
Manufacturer Address:	Room 2101, Shining Tower, No.35 Xueyuan Road, HaiDian District,			
	Beijing, The People's Republic of China			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong			
	Economic Development Zone, Suzhou, China			
MRT FCC Registration No.:	893164			
Model:	A7215			
FCC ID:	2Al3G-A7215			
Test Device Serial No.:	N/A ☐ Production ☐ Pre-Production ☐ Engineering			
FCC Classification	Unlicensed National Information Infrastructure (UNII)			

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

FCC ID: 2Al3G-A7215 Page Number: 5 of 251

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

FCC ID: 2Al3G-A7215 Page Number: 6 of 251

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	VR All-In-One Headset
Model No.	A7215
Wi-Fi Specification	802.11a/b/g/n/ac
Bluetooth Version	v4.2 dual mode
Components	
Adapter	M/N: HUUS090200-K00
	INPUT: 100-240V ~ 50/60Hz, 0.5A
	OUTPUT: 5Vdc, 2.0A OR 9Vdc, 2.0A

2.2. Product Specification Subjective to this Report

Frequency Range	For 802.11a/n-HT20:
	5180~5320MHz, 5500~5700MHz, 5745~5825MHz
	For 802.11ac-VHT20:
	5180~5320MHz, 5500~5720MHz, 5745~5825MHz
	For 802.11n-HT40:
	5190~5310MHz, 5510~5670MHz, 5755~5795MHz
	For 802.11ac-VHT40:
	5190~5310MHz, 5510~5710MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5290MHz, 5530MHz, 5610MHz, 5690MHz, 5775MHz
Type of Modulation	802.11a/n/ac: OFDM
Data Rate:	802.11a: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 150Mbps
	802.11ac: up to 433.3Mbps
Maximum Average Output	802.11a: 13.27dBm
Power	802.11n-HT20: 13.01dBm
	802.11n-HT40: 13.36dBm
	802.11ac-VHT20: 13.02dBm
	802.11ac-VHT40: 13.37dBm
	802.11ac-VHT80: 12.38dBm
Antenna Type	Stamping Antenna
Antenna Gain	2.73dBi

Note: For other features of this EUT, test report will be issued separately.

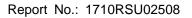
FCC ID: 2Al3G-A7215 Page Number: 7 of 251

Report No.: 1710RSU02508

2.3. Operation Frequency / Channel list

802.11a/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	149	5745 MHz	153	5765 MHz
157	5785 MHz	161	5805 MHz	165	5825 MHz


802.11ac-VHT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	144	5720 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz
165	5825 MHz				

802.11n-HT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz
62	5310 MHz	102	5510 MHz	110	5550 MHz
118	5590 MHz	126	5630 MHz	134	5670 MHz
151	5755 MHz	159	5795 MHz		

FCC ID: 2Al3G-A7215 Page Number: 8 of 251

802.11ac-VHT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz
62	5310 MHz	102	5510 MHz	110	5550 MHz
118	5590 MHz	126	5630 MHz	134	5670 MHz
142	5710 MHz	151	5755 MHz	159	5795 MHz

802.11ac-VHT80

Channel	Frequency	Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz	106	5530 MHz
122	5610 MHz	138	5690 MHz	155	5775 MHz

2.4. Test Mode

Test Mode	Mode 1: Transmit by 802.11a
	Mode 2: Transmit by 802.11n-HT20
	Mode 3: Transmit by 802.11n-HT40
	Mode 4: Transmit by 802.11ac-VHT20
	Mode 5: Transmit by 802.11ac-VHT40
	Mode 6: Transmit by 802.11ac-VHT80

FCC ID: 2Al3G-A7215 Page Number: 9 of 251



2.5. Description of Test Software

The test utility software used during testing was "QRCT", and the version was "3.0.210.0".

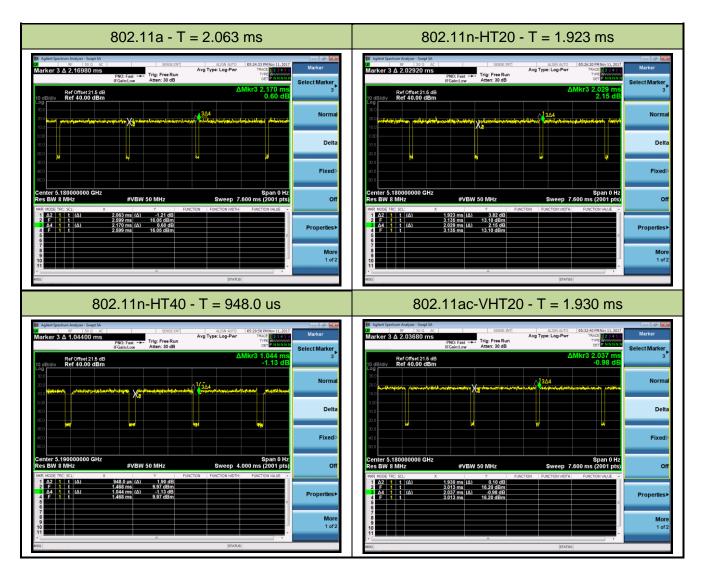
Mode	Channel	Frequency	Power	Mode	Channel	Frequency	Power
	No.	(MHz)	Parameter		No.	(MHz)	Parameter
			Value				Value
	36	5180	12.0		36	5180	12.0
	44	5220	12.0		44	5220	12.0
	48	5240	12.0		48	5240	12.0
	52	5260	12.0		52	5260	12.0
	60	5300	12.0	902.11	60	5300	12.0
802.11a	64	5320	12.0	802.11	64	5320	12.0
002.11a	100	5500	12.0	n-HT20	100	5500	12.0
	120	5600	12.0		120	5600	12.0
	140	5700	12.0		140	5700	12.0
	149	5745	12.0		149	5745	12.0
	157	5785	12.0		157	5785	12.0
	165	5825	12.0		165	5825	12.0
	38	5190	12.0		36	5180	12.0
	46	5230	12.0		44	5220	12.0
	54	5270	12.0		48	5240	12.0
	62	5310	12.0		52	5260	12.0
	102	5510	12.0		60	5300	12.0
802.11	118	5590	12.0	802.11	64	5320	12.0
n-HT40	134	5670	12.0	ac-VHT20	100	5500	12.0
11-111-40	151	5755	12.0	ac-viii20	120	5600	12.0
	159	5795	12.0		140	5700	12.0
					144	5720	12.0
					149	5745	12.0
					157	5785	12.0
					165	5825	12.0

FCC ID: 2Al3G-A7215 Page Number: 10 of 251

Mode	Channel No.	Frequency (MHz)	Power Parameter Value	Mode	Channel No.	Frequency (MHz)	Power Parameter Value
	38	5190	12.0		42	5210	12.0
	46	5230	12.0		58	5290	12.0
	54	5270	12.0		106	5530	12.0
	62	5310	12.0		122	5610	12.0
802.11	102	5510	12.0	802.11	138	5690	12.0
ac-VHT40	118	5590	12.0	ac-VHT80	155	5775	12.0
	134	5670	12.0				
	142	5710	12.0				
	151	5755	12.0				
	159	5795	12.0				

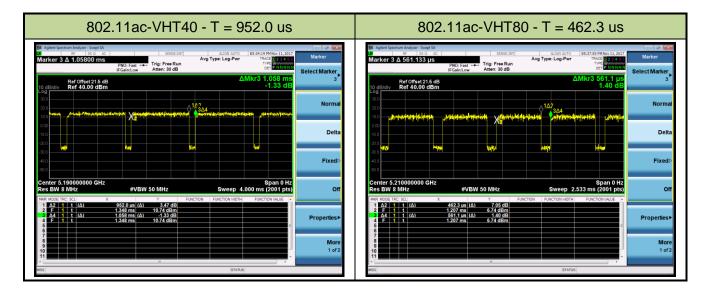
FCC ID: 2Al3G-A7215 Page Number: 11 of 251

2.6. Device Capabilities


This device contains the following capabilities:

2.4GHz WLAN (DTS), 5GHz WLAN (UNII), Bluetooth (v4.2 dual mode)

Note: 5GHz (UNII) operation is possible in 20MHz and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz.


The duty cycles are as follows:

Test Mode	Duty Cycle
802.11a	95.07%
802.11n-HT20	94.78%
802.11n-HT40	90.80%
802.11ac-VHT20	94.75%
802.11ac-VHT40	89.98%
802.11ac-VHT80	82.39%

FCC ID: 2Al3G-A7215 Page Number: 12 of 251

2.7. Test Configuration

The **VR All-In-One Headset** was tested per the guidance of KDB 789033 D02v01r04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.9. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

FCC ID: 2Al3G-A7215 Page Number: 13 of 251

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v01r04 were used in the measurement of the **VR All-In-One Headset.**

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.9.

FCC ID: 2Al3G-A7215 Page Number: 14 of 251

Report No.: 1710RSU02508

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

FCC ID: 2Al3G-A7215 Page Number: 15 of 251

Report No.: 1710RSU02508

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the VR All-In-One Headset is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The VR All-In-One Headset unit complies with the requirement of §15.203.

FCC ID: 2Al3G-A7215 Page Number: 16 of 251

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2018/04/25
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2018/06/21
Two-Line V-Network	R&S	ENV216	MRTSUE06003	1 year	2018/06/21
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06181	1 year	2017/12/22
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06214	1 year	2018/05/10

Radiated Emission - AC1

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2018/05/07
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2018/06/21
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2018/03/28
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2018/04/16
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2017/11/21
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2017/12/10
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2018/10/21
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2018/01/04
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06183	1 year	2017/12/22
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2018/05/10

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2018/05/07
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2017/12/06
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE06180	1 year	2017/12/22

Software	Version	Function
e3	V8.3.5	EMI Test Software

FCC ID: 2Al3G-A7215 Page Number: 17 of 251

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

150kHz~30MHz: 3.46dB

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: 4.18dB 1GHz ~ 25GHz: 4.76dB

Spurious Emissions, Conducted - TR3

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.78dB

Output Power - TR3

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

1.13dB

Occupied Bandwidth - TR3

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.28%

FCC ID: 2Al3G-A7215 Page Number: 18 of 251

7. TEST RESULT

7.1. Summary

Company Name: <u>Pico Technology Co., Ltd.</u>

FCC ID: <u>2AI3G-A7215</u>

FCC Classification: Unlicensed National Information Infrastructure (UNII)

Data Rate / MCS 6Mbps for 802.11a;

Tested: MCS0 for 802.11n-HT20MHz;

MCS0 for 802.11n-HT40MHz;

MCS0 for 802.11ac-VHT20MHz;

MCS0 for 802.11ac-VHT40MHz;

MCS0 for 802.11ac-VHT80MHz

FCC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference	
15.407(a)	26dB Bandwidth	N/A		Pass	Section 7.2	
15.407(e)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.3	
15.407(a)(1)(iv), (2), (3)	Maximum Conducted Output Power	Refer to section 7.4	Conducted Pass Pass		Section 7.4	
15.407(a)(1)(iv), (2), (3), (5)	Peak Power Spectral Density	Refer to section 7.5			Section 7.5	
15.407(g)	Frequency Stability	N/A		Pass	Section 7.6	
15.407(b)(1), (2), (3), (4)(i)	Undesirable Emissions	≤ -27dBm/MHz EIRP Detail see section 7.8		Pass		
15.205, 15.209 15.407(b)(5), (6), (7)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.7 & 7.8	
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.9	

Notes:

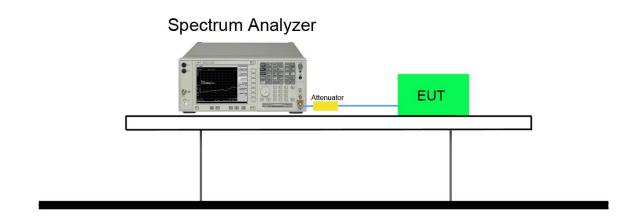
- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions (X axis, detail see test setup photo).
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

FCC ID: 2Al3G-A7215 Page Number: 19 of 251

7.2. 26dB Bandwidth Measurement

7.2.1.Test Limit

N/A


7.2.2.Test Procedure used

KDB 789033 D02v01r04 - Section C.1

7.2.3.Test Setting

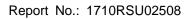
- 1. The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. $VBW \ge 3 \times RBW$.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

7.2.4.Test Setup

FCC ID: 2Al3G-A7215 Page Number: 20 of 251

7.2.5.Test Result

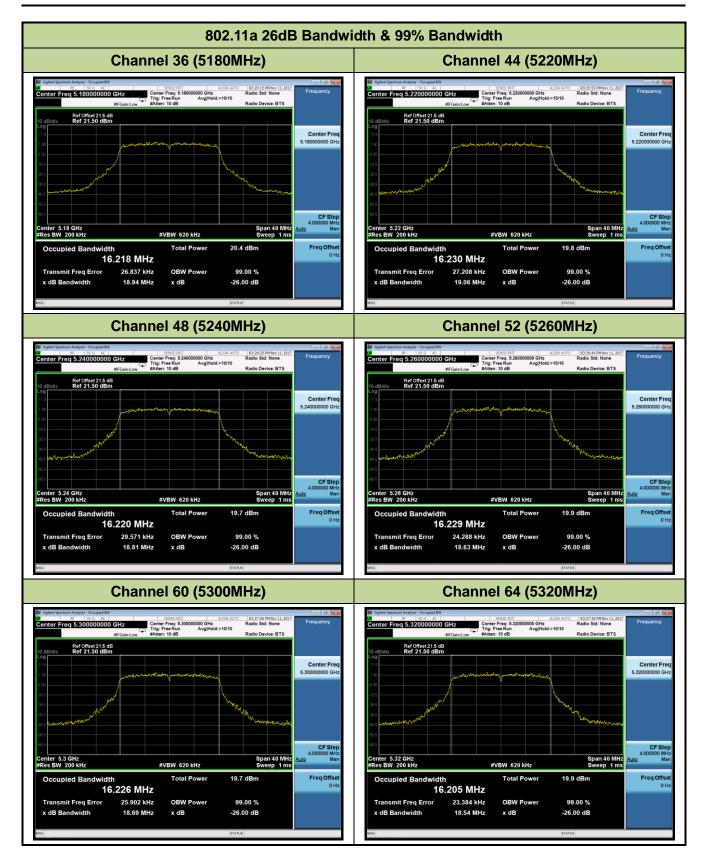
Product	VR All-In-One Headset	Temperature	22°C
Test Engineer	Hunk Li	Relative Humidity	54%
Test Site	TR3	Test Date	2017/11/11


Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
802.11a	6	36	5180	18.94	16.22	Pass
802.11a	6	44	5220	19.06	16.23	Pass
802.11a	6	48	5240	18.81	16.22	Pass
802.11a	6	52	5260	18.63	16.23	Pass
802.11a	6	60	5300	18.69	16.23	Pass
802.11a	6	64	5320	18.54	16.21	Pass
802.11a	6	100	5500	19.38	16.26	Pass
802.11a	6	120	5600	18.57	16.24	Pass
802.11a	6	140	5700	18.33	16.24	Pass
802.11a	6	149	5745	19.45	16.23	Pass
802.11a	6	157	5785	19.91	16.25	Pass
802.11a	6	165	5825	18.44	16.24	Pass
802.11n-HT20	6.5	36	5180	19.80	17.39	Pass
802.11n-HT20	6.5	44	5220	19.05	17.38	Pass
802.11n-HT20	6.5	48	5240	19.59	17.38	Pass
802.11n-HT20	6.5	52	5260	19.41	17.38	Pass
802.11n-HT20	6.5	60	5300	19.38	17.36	Pass
802.11n-HT20	6.5	64	5320	20.05	17.39	Pass
802.11n-HT20	6.5	100	5500	19.38	17.38	Pass
802.11n-HT20	6.5	120	5600	19.30	17.36	Pass
802.11n-HT20	6.5	140	5700	19.58	17.40	Pass
802.11n-HT20	6.5	149	5745	19.41	17.37	Pass
802.11n-HT20	6.5	157	5785	20.21	17.39	Pass
802.11n-HT20	6.5	165	5825	19.56	17.36	Pass

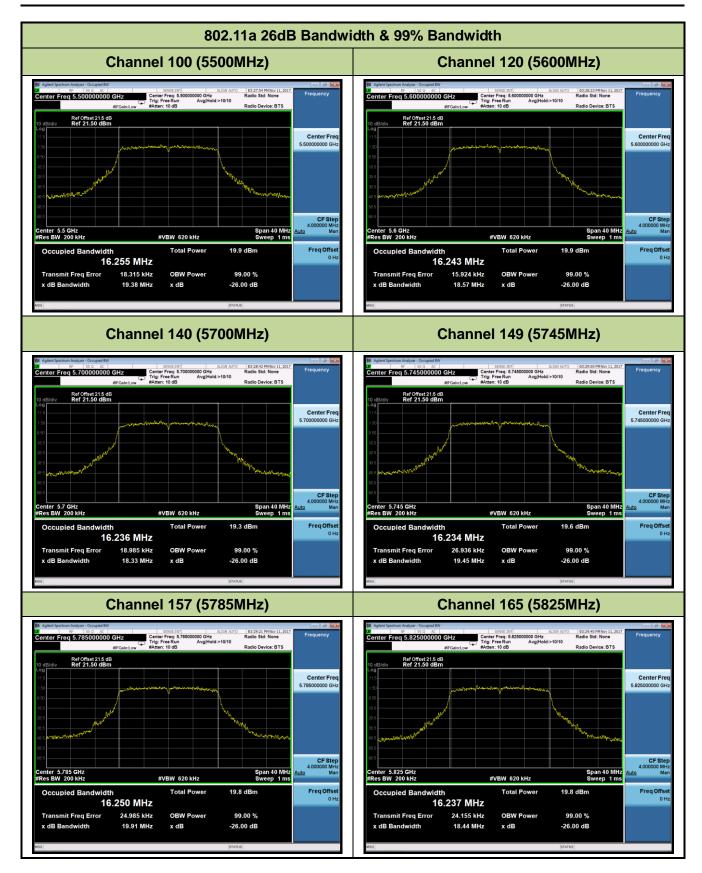
FCC ID: 2Al3G-A7215 Page Number: 21 of 251

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
802.11n-HT40	13.5	38	5190	40.26	35.83	Pass
802.11n-HT40	13.5	46	5230	40.13	35.76	Pass
802.11n-HT40	13.5	54	5270	39.83	35.80	Pass
802.11n-HT40	13.5	62	5310	40.05	35.80	Pass
802.11n-HT40	13.5	102	5510	39.81	35.84	Pass
802.11n-HT40	13.5	118	5590	40.27	35.80	Pass
802.11n-HT40	13.5	134	5670	39.83	35.83	Pass
802.11n-HT40	13.5	151	5755	39.95	35.80	Pass
802.11n-HT40	13.5	159	5795	40.17	35.79	Pass
802.11ac-VHT20	6.5	36	5180	19.45	17.36	Pass
802.11ac-VHT20	6.5	44	5220	19.43	17.41	Pass
802.11ac-VHT20	6.5	48	5240	19.30	17.39	Pass
802.11ac-VHT20	6.5	52	5260	19.62	17.35	Pass
802.11ac-VHT20	6.5	60	5300	19.56	17.39	Pass
802.11ac-VHT20	6.5	64	5320	19.43	17.41	Pass
802.11ac-VHT20	6.5	100	5500	19.65	17.38	Pass
802.11ac-VHT20	6.5	120	5600	19.69	17.38	Pass
802.11ac-VHT20	6.5	140	5700	19.61	17.39	Pass
802.11ac-VHT20	6.5	144	5720	19.46	17.40	Pass
802.11ac-VHT20	6.5	149	5745	19.67	17.38	Pass
802.11ac-VHT20	6.5	157	5785	19.42	17.37	Pass
802.11ac-VHT20	6.5	165	5825	19.23	17.37	Pass
802.11ac-VHT40	13.5	38	5190	40.08	35.80	Pass
802.11ac-VHT40	13.5	46	5230	40.03	35.76	Pass
802.11ac-VHT40	13.5	54	5270	40.03	35.76	Pass
802.11ac-VHT40	13.5	62	5310	40.80	35.78	Pass
802.11ac-VHT40	13.5	102	5510	40.00	35.79	Pass
802.11ac-VHT40	13.5	118	5590	40.05	35.82	Pass
802.11ac-VHT40	13.5	134	5670	40.34	35.77	Pass
802.11ac-VHT40	13.5	142	5710	39.94	35.79	Pass
802.11ac-VHT40	13.5	151	5755	40.06	35.77	Pass
802.11ac-VHT40	13.5	159	5795	40.21	35.75	Pass

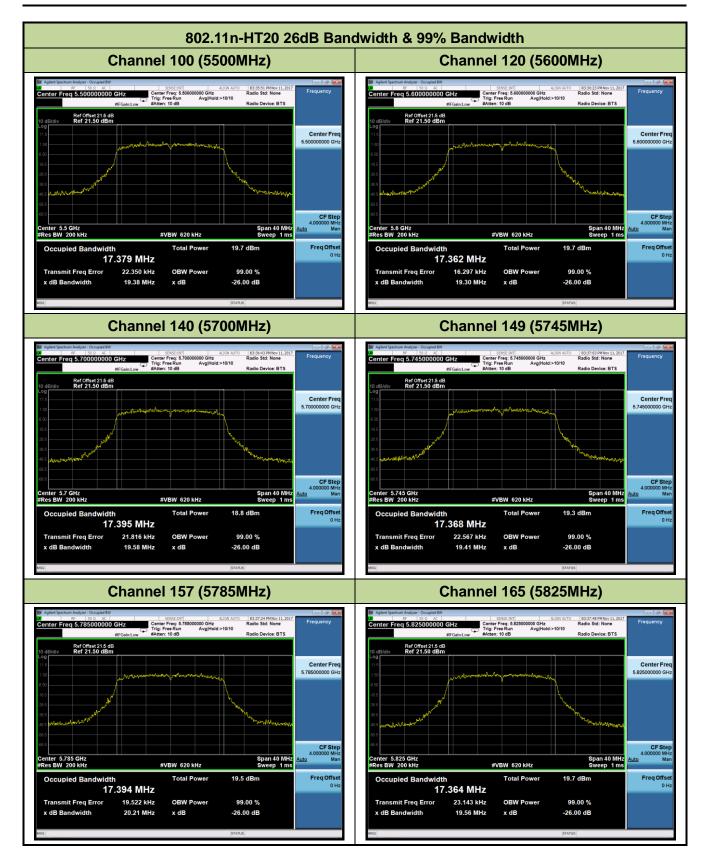
FCC ID: 2Al3G-A7215 Page Number: 22 of 251



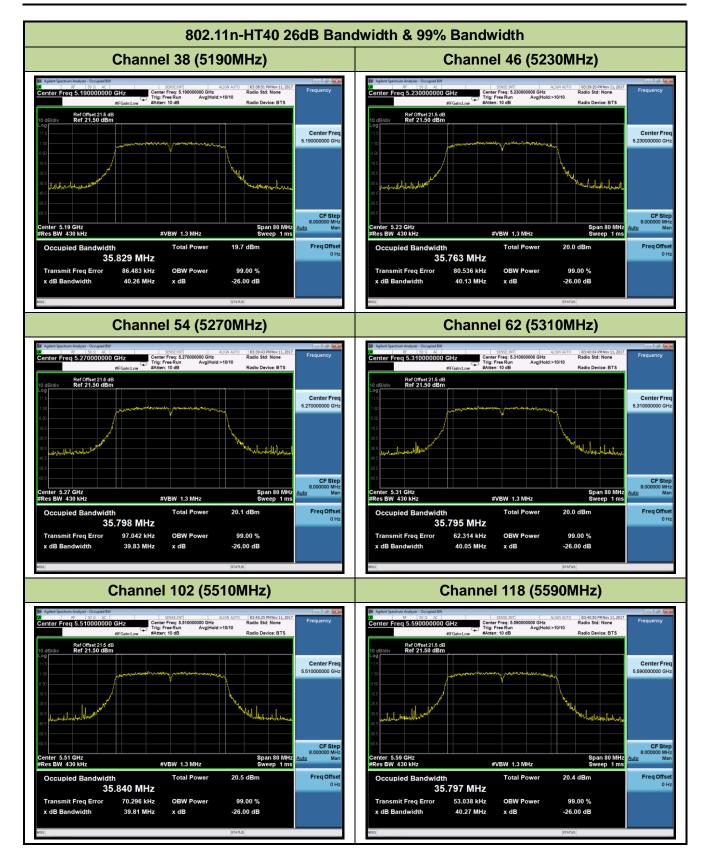
Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
802.11ac-VHT80	29.3	42	5210	82.09	74.91	Pass
802.11ac-VHT80	29.3	58	5290	81.67	75.00	Pass
802.11ac-VHT80	29.3	106	5530	81.49	74.97	Pass
802.11ac-VHT80	29.3	122	5610	82.20	75.03	Pass
802.11ac-VHT80	29.3	138	5690	81.16	74.98	Pass
802.11ac-VHT80	29.3	155	5775	82.00	75.09	Pass

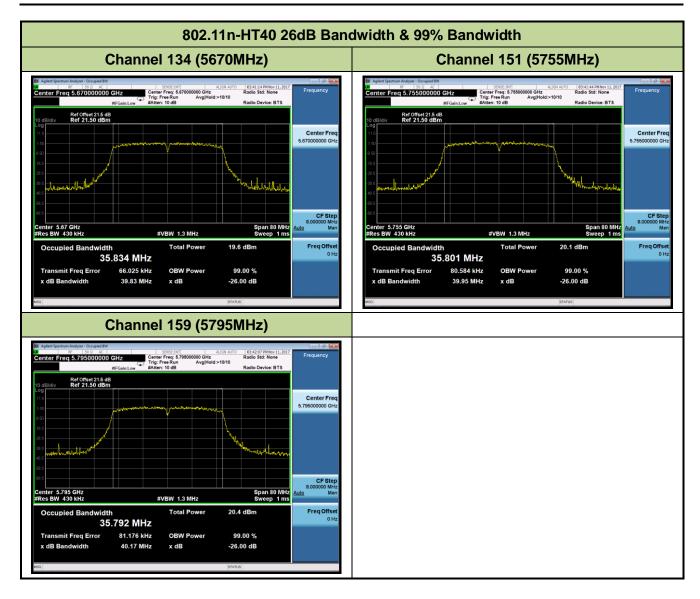

FCC ID: 2Al3G-A7215 Page Number: 23 of 251

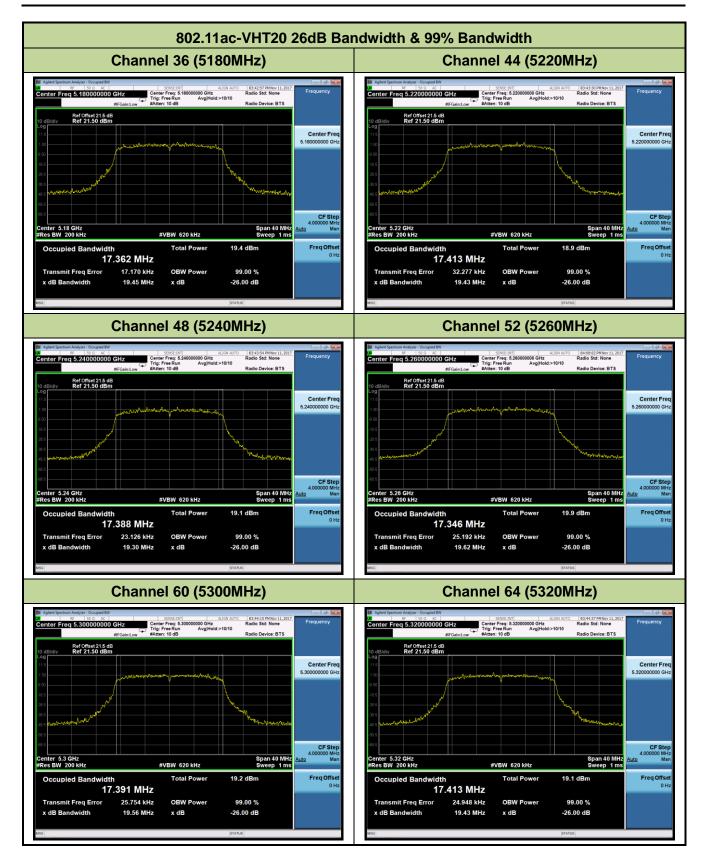
FCC ID: 2Al3G-A7215 Page Number: 24 of 251

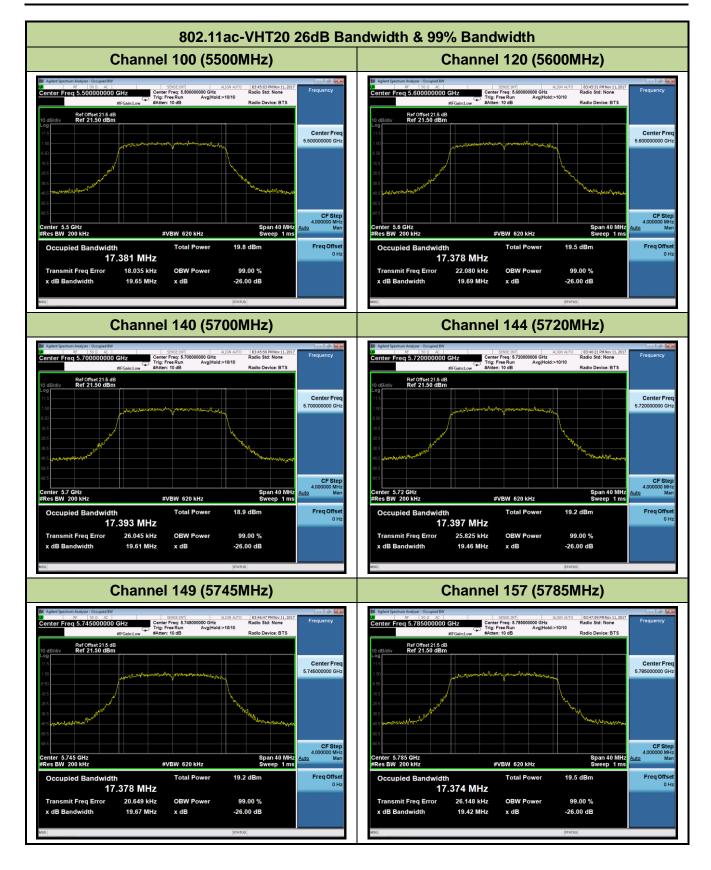

FCC ID: 2Al3G-A7215 Page Number: 25 of 251

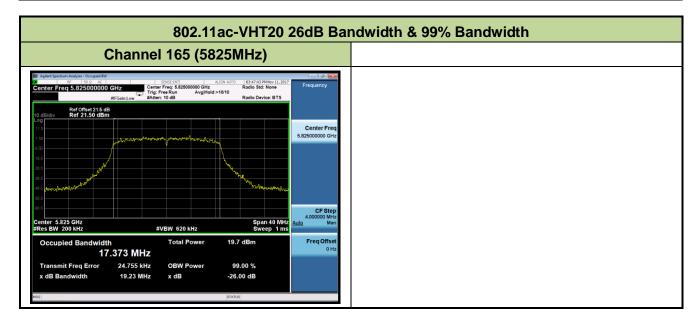
802.11n-HT20 26dB Bandwidth & 99% Bandwidth **Channel 36 (5180MHz)** Channel 44 (5220MHz) Center Freq: 5.180000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 10 dB RF | 90 2 AC | SENSE:INT | ALIGN AUT | Center Freq 5.220000000 GHz | Trig: Free Run | Avg|Hold:>10/10 | #FGalncl.ow #Atten: 10 dB Ref Offset 21.5 dB Ref 21.50 dBm Ref Offset 21.5 dB Ref 21.50 dBm Center Free Center Free CF Step 000000 MHz Man CF St Center 5.18 GHz Res BW 200 kH Span 40 MH Sweep 1 m enter 5.22 GHz Res BW 200 kHz Span 40 MH Sweep 1 m #VBW 620 kHz #VBW 620 kHz 19.3 dBm Freq Offset 19.0 dBm 17.392 MHz 17.377 MHz nit Freq Error 13.914 kHz OBW Power 99.00 % smit Freq Error 29.847 kHz OBW Power 99.00 % 19.80 MHz x dB -26.00 dB 19.05 MHz x dB -26.00 dB **Channel 48 (5240MHz)** Channel 52 (5260MHz) Ref Offset 21.5 dB Ref 21.50 dBm Ref Offset 21.5 dB Ref 21.50 dBm Center Free Center Free nter 5.26 GHz es BW 200 kHz #VBW 620 kHz #VBW 620 kHz Occupied Bandwidth 17.384 MHz Freq Offse 17.378 MHz 33.574 kHz OBW Power 99.00 % Transmit Freq Erro 16.883 kHz OBW Power 99.00 % x dB Bandwidth 19.59 MHz x dB -26.00 dB x dB Bandwidth 19.41 MHz x dB -26.00 dB Channel 60 (5300MHz) Channel 64 (5320MHz) Ref Offset 21.5 dB Ref 21.50 dBm Ref Offset 21.5 dB Ref 21.50 dBm Center Free Center Freq Span 40 MHz Sweep 1 ms Span 40 MHz Sweep 1 ms nter 5.32 GHz es BW 200 kH #VBW 620 kHz Occupied Bandwidth 17.363 MHz 19.4 dBm Freq Offse Total Power Total Power 17.391 MHz 18.066 kHz OBW Power 99.00 % Transmit Freq Error 15.595 kHz OBW Power 99.00 % 19.38 MHz 20.05 MHz x dB Bandwidth x dB -26.00 dB x dB Bandwidth x dB -26.00 dB


FCC ID: 2Al3G-A7215 Page Number: 26 of 251


FCC ID: 2Al3G-A7215 Page Number: 27 of 251


FCC ID: 2Al3G-A7215 Page Number: 28 of 251


FCC ID: 2Al3G-A7215 Page Number: 29 of 251


FCC ID: 2Al3G-A7215 Page Number: 30 of 251

FCC ID: 2Al3G-A7215 Page Number: 31 of 251

FCC ID: 2Al3G-A7215 Page Number: 32 of 251