

Klein Tools, Inc.

TEST REPORT

SCOPE OF WORK

FCC TESTING– TI290

REPORT NUMBER

220412039SZN-001

ISSUE DATE

19 July 2022

[REVISED DATE]

[-----]

PAGES

53

DOCUMENT CONTROL NUMBER

FCC SAR_b

© 2017 INTERTEK

SAR TEST REPORT*For*

Klein Tools, Inc.

Product Description: Pro Thermal Imager

FCC ID: 2AI28-TI290

Model No.: TI290

Report No.: 220412039SZN-001

Issue Date: 19 July 2022

Prepared and Checked by:

Allen Qin
Engineer

Approved by:

Damon Wang
Team Leader
19 July 2022

- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
- The test report only allows to be revised only within the report defined retention period unless further standard or the requirement was noticed

Intertek Testing Services Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, P.R. China

Telephone: 86-755-8601 6288 Fax: 86-755-8601 6751

Table of Contents

1. GENERAL INFORMATION.....	3
2. STATEMENT OF COMPLIANCE	4
3. EQUIPMENT UNDER TEST (EUT) TECHNICAL DESCRIPTION	5
4. AUXILIARY EQUIPMENT DETAILS.....	6
5. TEST FACILITY	6
6. GUIDANCE STANDARD	7
7. EUT ANTENNA LOCATIONS.....	8
8. RF EXPOSURE	10
8.1 LIMITS.....	10
8.2 EVALUATION	11
9. SPECIFIC ABSORPTION RATE (SAR)	12
9.1 INTRODUCTION	12
9.2 SAR DEFINITION	12
10. SAR MEASUREMENTS SYSTEM CONFIGURATION	13
10.1 SAR MEASUREMENT SET-UP	13
10.2 DASY5 E-FIELD PROBE SYSTEM.....	14
10.3 E-FIELD PROBE CALIBRATION	15
10.4 OTHER TEST EQUIPMENT	16
10.5 SCANNING PROCEDURE	18
10.6 DATA STORAGE AND EVALUATION	21
10.7 TISSUE-EQUIVALENT LIQUID	23
10.8 SYSTEM CHECK	24
11. MEASUREMENT PROCEDURES	26
11.1 GENERAL DESCRIPTION OF TEST PROCEDURES	26
11.2 MEASUREMENT VARIABILITY	27
12. TEST RESULTS.....	28
12.1 Conducted Power Results	28
12.2 SAR TEST RESULTS	29
12.3 Simultaneous Transmission SAR Analysis.....	29
12.4 MAXIMUM GRAPH RESULTS	29
13. MEASUREMENT UNCERTAINTY	29
14. MAIN TEST INSTRUMENT	30
ANNEX A: TEST LAYOUT AND SETUP.....	31
ANNEX B: SYSTEM CHECK RESULTS	32
ANNEX C: MAXIMUM GRAPH RESULTS	33
ANNEX D: SYSTEM VALIDATION	34
ANNEX E: PROBE, DAE AND DIPOLE CALIBRATION CERTIFICATE	36

1. GENERAL INFORMATION

Applicant:	Klein Tools, Inc. 450 Bond Street LINCOLNSHIRE IL 60069, USA
Manufacturer:	Klein Tools, Inc. 450 Bond Street LINCOLNSHIRE IL 60069, USA
Product Description:	Pro Thermal Imager
Model Number:	TI290
Sample Number:	Z220407009-001
File Number:	220412039SZN-001
Date of Test:	12 April 2022 to 24 April 2022

The above equipment was tested by Intertek Testing Services Shenzhen Ltd. Longhua Branch. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in IEEE 1528-2013 and KDB 865664. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in ANSI/IEEE C95.1-1992.

The test results of this report relate only to the tested sample identified in this report.

2. STATEMENT OF COMPLIANCE

The Maximum reported SAR1g

Band	Mode	Test Position	Channel /Frequency (MHz)	Limit SAR1g 1.6 W/kg	
				Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
WIFI 2.4GHz	802.11b	Left Side	11/2462	0.256	0.346

The SAR values found for the Pro Thermal Imager are below the maximum recommended levels of 1.6 W/kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The maximum reported SAR value is: 0.346 W/kg (1g).

3. Equipment Under Test (EUT) TECHNICAL DESCRIPTION

Characteristics	Description	
Product Name:	Pro Thermal Imager	
Device type:	Portable device	
Exposure Category:	Uncontrolled Environment/General Population	
Test Mode(s):	WiFi 2.4G (DSSS/OFDM)	
Device Class:	B	
Antenna Type:	FPC Antenna	
Antenna Gain:	WiFi 2.4G: 3.28dBi	
Operating Frequency Range(s)	Band	Frequency Range (MHz)
	WiFi 2.4G	2400-2483.5
WiFi 2.4G: 802.11b/g/n 20M: 1-6-11 802.11n 40M: 3-6-9		
Power supply:	D.C. 3.7V with Li-ion battery	
Product Software Version:	NA	
Product Hardware Version:	NA	

Note:

1. NA is Not Applicable
2. For more details, please refer to the User's manual of the EUT.
3. The sample under test was selected by the Client.

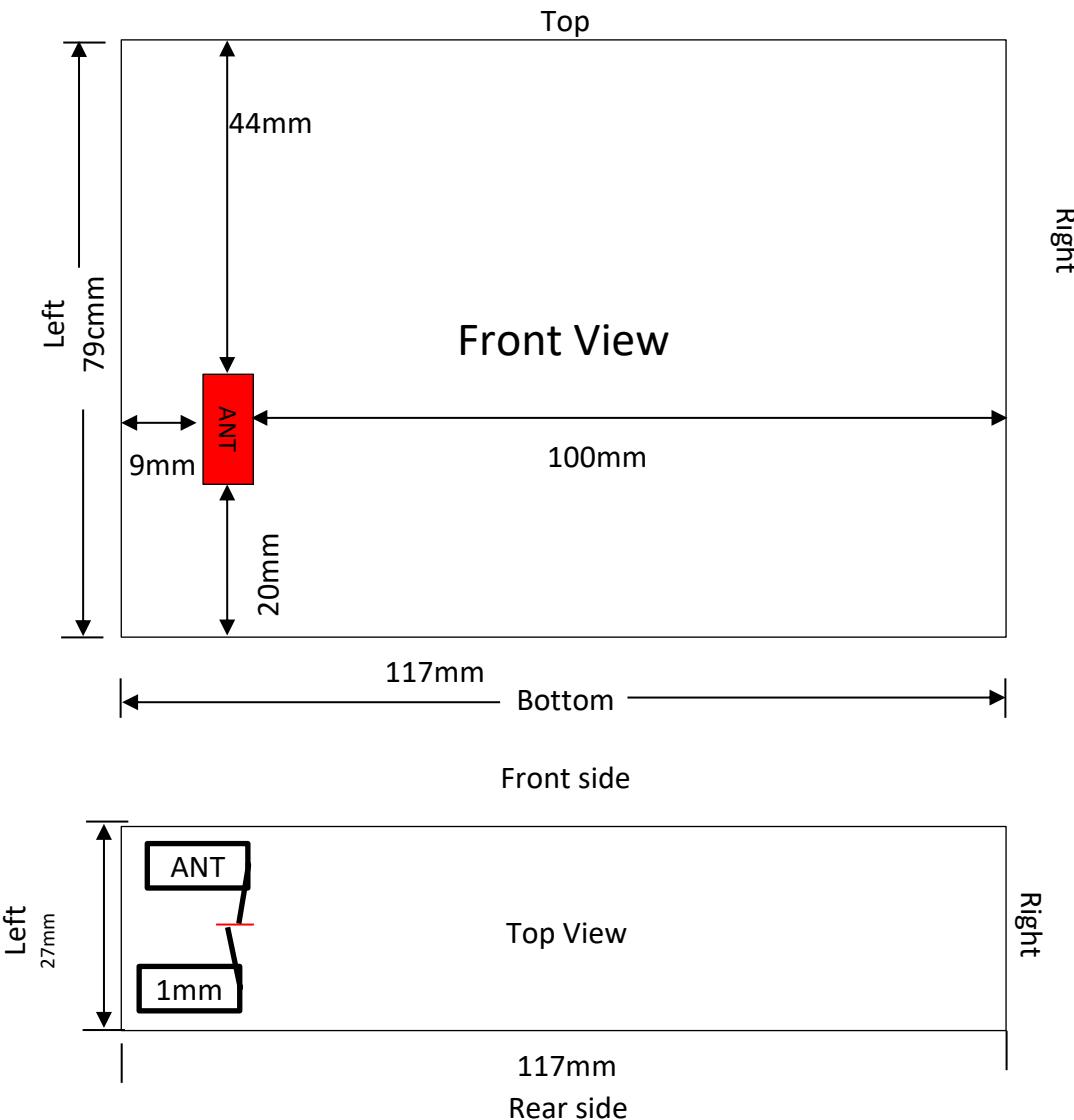
4. Auxiliary Equipment Details

Description	Manufacturer	Description
Power Adapter	SHENZHEN TEKA TECHNOLOGY CO., LTD	Model: TEKA-UCA20US Input: 100-240V~, 50/60Hz, 0.35A Output: DC 5V, 2A
USB cable (Provided by Intertek)	(Provided by Intertek)	Unshielded, Length: 20cm

5. Test Facility

Site Description	
EMC Lab.	The Laboratory has been assessed and proved to be in compliance with CNAS/CL01: 2006(identical to ISO/IEC17025: 2005) The Certificate Registration Number is L0327
	FCC Registration Number:435976 FCC Designation Number:CN1188 ISED Registration Number: 2055C ISED Cab Identifier: CN0038
Name of Firm	Intertek Testing Services Shenzhen Ltd. Longhua Branch
Site Location	101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, ShenZhen, P.R. China

6. Guidance Standard


The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices
- ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. (IEEE Std C95.1-1991)
- IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz
- KDB 865664 D02 SAR Reporting v01r02
- KDB 690783 D01 SAR Listings on Grants v01r03
- KDB 447498 D01 Mobile Portable RF Exposure v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
- KDB 941225 D06 Hotspot Mode v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
- KDB 248227 D01 SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
- KDB 616217 D04 SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers

Remark:

This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 11 of this test report are below limits specified in the relevant standards for the tested bands only.

7. EUT Antenna Locations

Test position consideration:

Distance of EUT antenna-to-edge/surface(mm), Test distance: 0mm

Rear	Front	Left	Right	Top	Bottom
13	13	9	100	44	20

All Sides for SAR Testing Evaluation (Test distance: 0mm):

Mode	Location	Distance from ANT (mm)	Max. tune-up Power (mW)	Exemption with Max. Allowed Power (mW)	SAR Test
2.4G WIFI	Front Side	13mm	31.6	24.8	YES
	Rear Side	13mm		24.8	YES
	Top Side	44mm		84.1	N/A
	Bottom Side	20mm		38.2	N/A
	Left Side	9mm		17.2	YES
	Right Side	100mm		595.6	N/A

Note: SAR testing exemption according to KDB 447498 D01 Clause 4.3.1 with the following formula.

a) For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g SAR test exclusion thresholds are determined by the following:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance mm})] \cdot [Vf(\text{GHz})] \leq 3.0$ for 1-g SAR,

*where $f(\text{GHz})$ is the RF channel transmit frequency in GHz

*When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

b) For 100 MHz to 6 GHz and test separation distances $>$ 50 mm, the 1-g SAR test exclusion thresholds are determined by the following

a) $\{[\text{Power allowed at numeric threshold for 50 mm in step a}] + [(\text{test separation distance} - 50 \text{ mm}) \cdot 10]\} \text{ mW}$, for > 1500 MHz and ≤ 6 GHz

8. RF Exposure

8.1 LIMITS

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

8.2 EVALUATION

According to FCC KDB447498 D01 and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

- 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f_{(\text{GHz})}}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR,}^{16} \text{ where}$$

- $f_{(\text{GHz})}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation¹⁷
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum *test separation distance* is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum *test separation distance* is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. Portable transmitters with output power greater than the applicable low threshold require SAR testing to qualify for TCB approval.

$$\text{Exclusion Thresholds} = P\sqrt{F}/D$$

P= Maximum turn-up power in mW

F= Channel frequency in GHz

D= Minimum test separation distance in mm

Test Distance (5mm)

Band	Mode	Frequency (GHz)	MAX Power (dBm)	Tune Up Power (dBm)	Max Tune Up Power (dBm)	Max Tune Up Power (mW)	Exclusion Thresholds	Limit
WIFI 2.4GHz	802.11b	2.462	13.7	13.0±2	15.0	31.6	9.91	3

Result: SAR measurement for WIFI is required.

9. Specific Absorption Rate (SAR)

9.1 INTRODUCTION

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

9.2 SAR DEFINITION

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

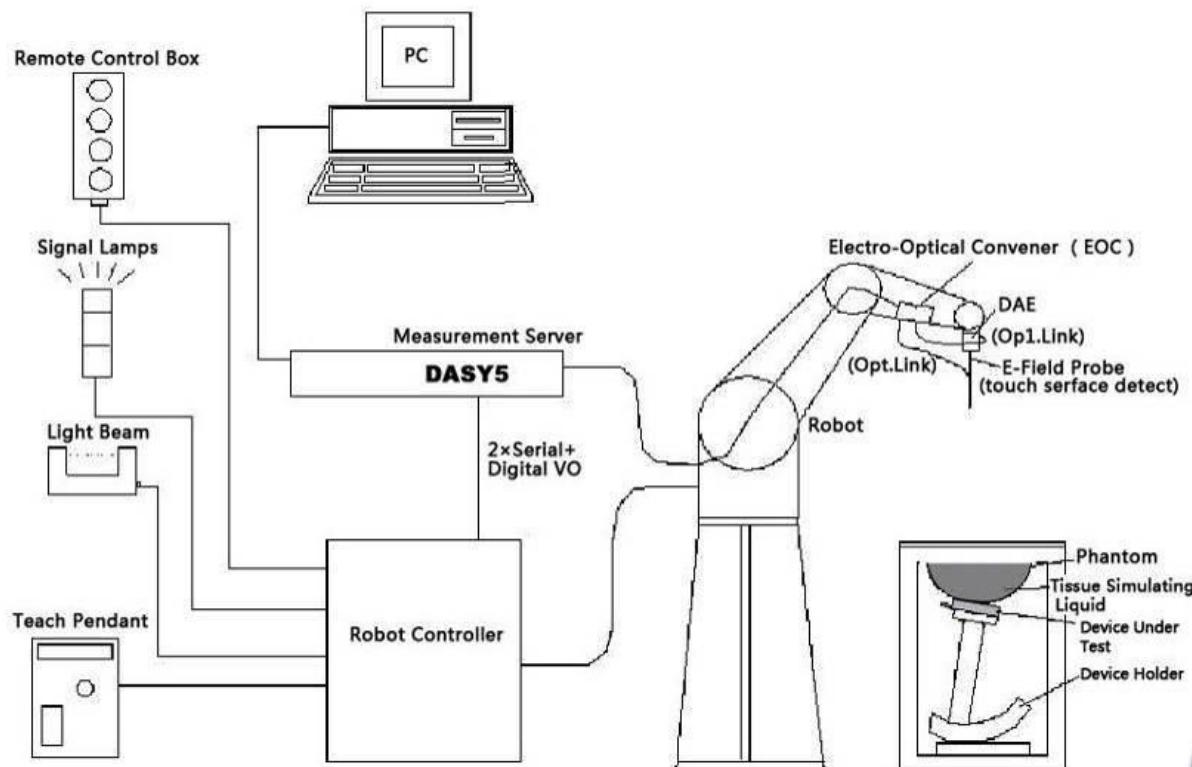
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue ρ is the mass density of tissue and E is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

10. SAR Measurements System Configuration

10.1 SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win 7 professional operating system and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Picture 1 SAR Lab Test Measurement Set-up

10.2 DASY5 E-FIELD PROBE SYSTEM

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection turning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	EX3DV4
Calibration:	ISO/IEC 17025 calibration service available
Probe Length:	337 mm
Probe Tip Length:	9 mm
Body Diameter:	10 mm
Tip Diameter:	2.5 mm
Application:	High Precision dosimetric measurements in any exposure scenario (e.g., very strong Picture 2 E-field Probe gradient fields).

Picture 2 E-field Probe

10.3 E-FIELD PROBE CALIBRATION

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equate to 1 mw/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

ρ = Tissue density (kg/m³).

10.4 OTHER TEST EQUIPMENT

10.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture 3 DAE

10.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 4 DASY 5

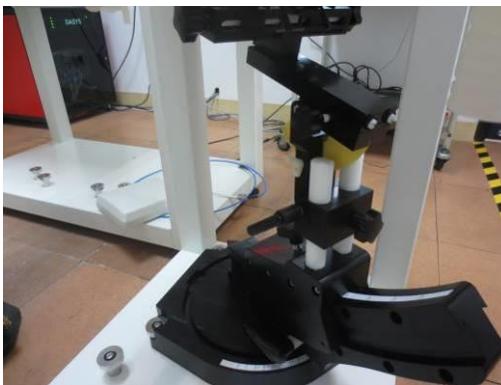
10.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

Picture 5 Server for DASY 5

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

10.4.4 Device Holder for Phantom


The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

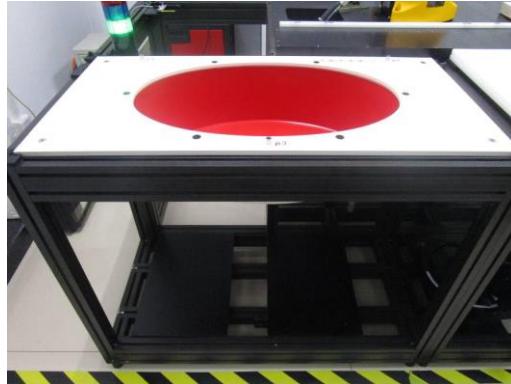
The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture 6 Device Holder


10.4.5 Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Shell Thickness: 2 ± 0.2 mm

Filling Volume: Approx. 30 liters

Dimensions: 190×600×0 mm (H x L x W)

Picture 7 ELI Phantom

10.5 SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.

The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard’s method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard’s method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) (Δx_{area} , Δy_{area})	Maximum Zoom Scan Resolution (mm) (Δx_{zoom} , Δy_{zoom})	Maximum Zoom Scan Spatial Resolution (mm) (Δz_{zoom})	Minimum Zoom Scan Volume (mm) (x,y,z)
≤2 GHz	≤15	≤8	≤5	≥ 30
2-3 GHz	≤12	≤5	≤5	≥30
3-4 GHz	≤12	≤5	≤4	≥28
4-5 GHz	≤10	≤4	≤3	≥25
5-6 GHz	≤10	≤4	≤2	≥22

10.6 DATA STORAGE AND EVALUATION

10.6.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DAE4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device set up, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a loss less media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

10.6.2 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:

- Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}
- Conversion factor ConvF_i
- Diode compression point Dcp_i

Device parameters:

- Frequency f
- Crest factor cf

Media parameters:

- Conductivity
- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / dcp_i$$

With V_i = compensated signal of channel i ($i = x, y, z$)

U_i = input signal of channel i ($i = x, y, z$)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i ($i = x, y, z$)

$Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)

[mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m ; H_{tot} = total magnetic field strength in A/m

10.7 TISSUE-EQUIVALENT LIQUID

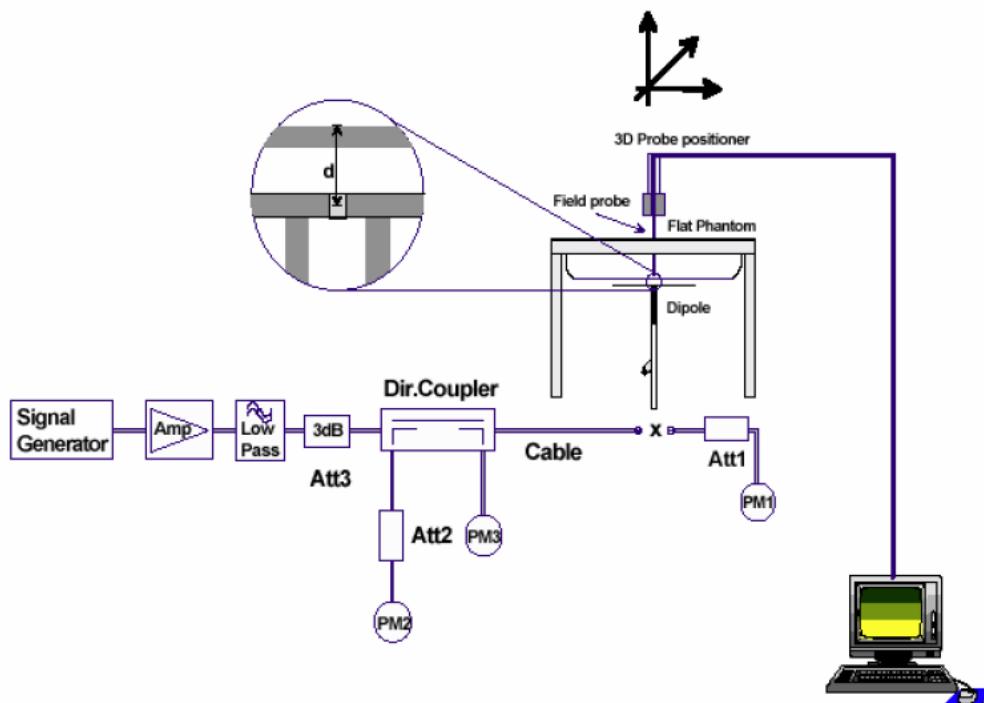
10.7.1 Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt and Glycol. The liquid has previously been proven to be suited for worst-case. The Table 2 & 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 2: Recommended Dielectric Performance of Tissue

MIXTURE (%)	FREQUENCY (Head) 2450MHz
Water	55
TWEEN	45
Dielectric Parameters Target Value	f=2450MHz $\epsilon_r=39.2$ $\sigma=1.80$

10.7.2 Tissue-equivalent Liquid Properties


Table 3: Dielectric Performance of HeadTissue Simulating Liquid

Temperature: 21°C Relative humidity: 57%				
Frequency (MHz)	Measured Date	Description	Dielectric Parameters	
			ϵ_r	$\sigma(s/m)$
2450	13 April 2022	Target Value $\pm 5\%$ window	39.2 37.24—41.16	1.80 1.71 — 1.89
		Measurement Value	40.19	1.86

10.8 SYSTEM CHECK

10.8.1 Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 5. System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$). System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Picture 8 system Check Set-up

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

10.8.2 System Check Results

Table 5: System Check for Simulating Liquid

Measurement Date	Frequency (MHz)	Liquid Type (head/body)	1W Target SAR1g (W/kg)	Measured SAR1g (W/kg)	1W Normalized SAR1g (W/kg)	Limit ($\pm 10\%$ Deviation)
13 April 2022	2450	Head	52.40	13.90	55.60	6.1

Note:

For 2450MHz system check input power: 250mW

11. Measurement Procedures

11.1 GENERAL DESCRIPTION OF TEST PROCEDURES

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11a/b/g/n/ac SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Provided higher maximum output power is not specified for the other channels, channels 1, 6, 11, 36, 40, 48, 46, 42 are used to configure 22 MHz DSSS and 20/40/80MHz OFDM channels for SAR measurements; otherwise, the closest adjacent channel with the highest maximum output power specified for production units should be tested instead of channels 1, 6, 11, 40, 48, 46 or 42. In addition, SAR test reduction with respect to reported SAR and transmission band width according to 4.3.3 of KDB Publication 447498 D01 may also be applied.

802.11a/b/g/n/ac operating modes are tested independently according to the service requirements in each frequency band. 802.11a/b/g/n/ac modes are tested on the maximum average output channel.

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a) When the reported SAR of the highest measured maximum output power channel (see 3.1) for the exposure configuration is $\leq 0.8 \text{ W/kg}$, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the reported SAR is $> 0.8 \text{ W/kg}$, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is $> 1.2 \text{ W/kg}$, SAR is required for the third channel; i.e., all channels require testing.

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (see 11.1.2, including subclauses). SAR is not required for the following 2.4 GHz OFDM conditions.

- a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

11.2 MEASUREMENT VARIABILITY

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

1. Repeated measurement is not required when the original highest measured SAR is $< 0.80 \text{ W/kg}$; steps 2) through 4) do not apply.
2. When the original highest measured SAR is $\geq 0.80 \text{ W/kg}$, repeat that measurement once.
3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is $\geq 1.45 \text{ W/kg}$ ($\sim 10\%$ from the 1-g SAR limit).
4. Perform a third repeated measurement only if the original, first or second repeated measurement is $\geq 1.5 \text{ W/kg}$ and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

12. TEST RESULTS

12.1 Conducted Power Results

Test Condition:

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power. The base station simulator was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is $\pm 1.5\text{dB}$.

3	Environmental Conditions	Temperature	22°C
		Relative Humidity	55%
		Atmospheric Pressure	1009mbar

4. Test Date: 07 April 2022

Test Procedures:

The output power was measured using power meter at low, mid, and hi channels.

WIFI Mode (2.4G)

Mode	Channel number	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)	Average Tune up limited (dBm)
802.11b	1	2412	1	13.3	13.0 ± 2
	6	2437	1	13.2	13.0 ± 2
	11	2462	1	13.7	13.0 ± 2
802.11g	1	2412	6	11.4	11.0 ± 2
	6	2437	6	11.6	11.0 ± 2
	11	2462	6	12.3	11.0 ± 2
802.11n(HT20)	1	2412	MCS0	11.2	11.0 ± 2
	6	2437	MCS0	11.4	11.0 ± 2
	11	2462	MCS0	12.1	11.0 ± 2
802.11n(HT40)	3	2422	MCS0	10.5	11.0 ± 2
	6	2437	MCS0	10.9	11.0 ± 2
	9	2452	MCS0	11.3	11.0 ± 2

12.2 SAR TEST RESULTS

Table 6: SAR Values

Test Position	Channel / Frequency (MHz)	Modulation Mode	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift ± 0.21 dB	Limit SAR _{1g} 1.6 W/kg		
					Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)
Test Position of extremity (Distance Between EUT and Flat Phatom:0mm)								
Left Face	11/2462	DSSS	15.0	13.7	0.03	0.256	1.35	0.346
Front Face	11/2462	DSSS	15.0	13.7	0.13	0.053	1.35	0.072
Rear Face	11/2462	DSSS	15.0	13.7	0.06	0.061	1.35	0.082

Note:

1. The value with blue color is the maximum SAR Value of each test band.
2. When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
3. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
4. The EUT exercise program (provided by client) used during SAR testing was designed to exercise the various system components in a manner similar to a typical use. During the test, Channel and test mode software provided by the applicant was used to control the operating channel as well as the test mode. The worst case configuration is used in all specified testing.

Table 7: 2.4 GHz OFDM SAR Test Exclusion Requirements

Test Position	Channel/ Frequency (MHz)	802.11b Max. Allowed Power (dBm)	802.11g/n Max. Allowed Power (dBm)	Limit SAR _{1g} : 1.6W/kg		
				802.11b Report SAR _{1g} (W/kg)	Scaling Factor	Adjusted SAR _{1g} (W/kg)
Left Side	11/2462	15.0	13.0	0.346	0.63	0.219

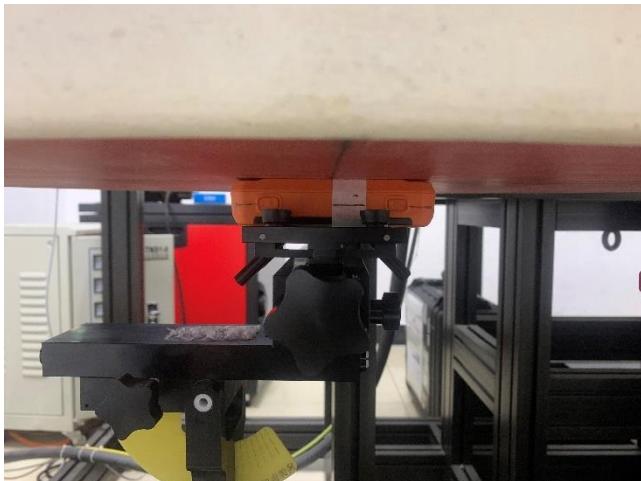
Note: SAR is not required for the 2.4 GHz OFDM conditions if When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

12.3 Simultaneous Transmission SAR Analysis.

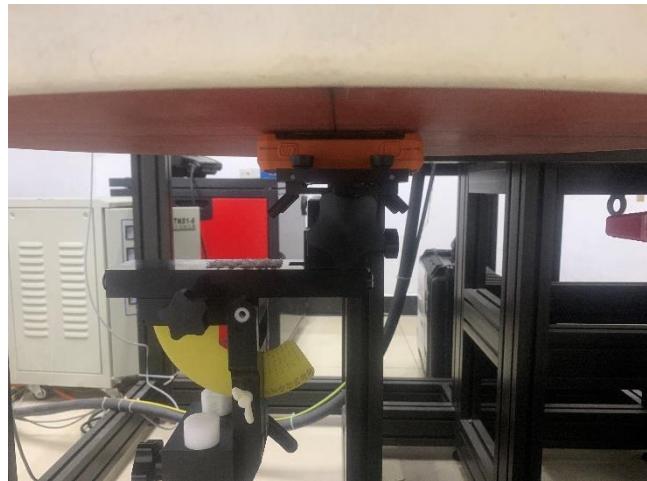
Not applicable.

12.4 MAXIMUM GRAPH RESULTS

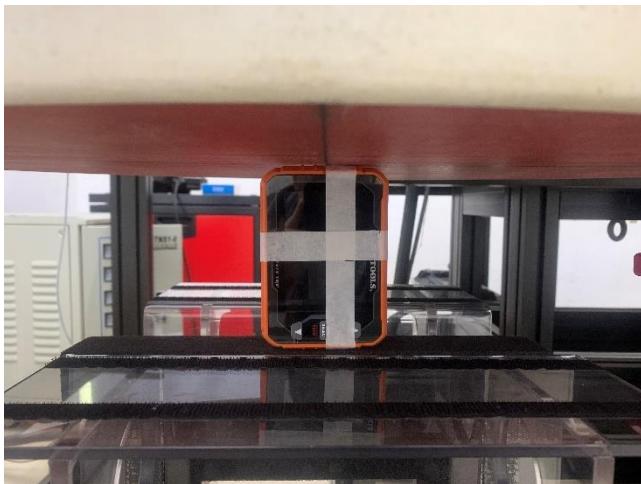
The graph results see ANNEX C.

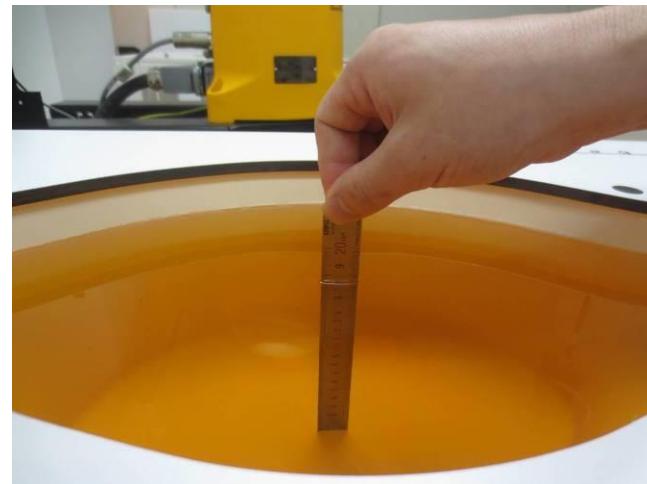

13. Measurement Uncertainty

When the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.


14. Main Test Instrument

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
SZ060-01	SAR Test System	SPEAG	DASY52 SAR TX90XL	F14/5YJ0B1/A/01	12/30/2021	1 year
SZ060-01-01	E-Field Probe	SPEAG	EX3DV4	7322	1/17/2022	1 year
SZ060-01-10	System Validation Dipole	SPEAG	D2450V2	966	10/21/2021	3 year
SZ060-01-12	System Validation Dipole	SPEAG	D5GHzV2	1218	10/15/2021	3 year
SZ060-01-13	Data Acquisition Unit	SPEAG	DAE4	1473	12/30/2021	1 year
SZ060-01-14	Dielectric Assessment Kit	SPEAG	DAKS 3.5	1056	N/A	N/A
SZ060-01-15	Vector Reflectometer	Copper Mountain Technologies	Planar R140	0090614	N/A	N/A
SZ060-01-16	Thermometer	LKM electronics GmbH	DTM3000	3477	12/23/2021	1 year
SZ060-01-17	Power Amplifier	Mini Circuits	ZHL-42W+	QA1449003	5/7/2021	1 year
SZ060-01-18	Power Amplifier	Mini Circuits	ZVE-8G+	111701437	5/7/2021	1 year
SZ060-01-21	ELI Phantom	SPEAG	ELI Phantom V6.0	2033	N/A	N/A
SZ180-13	MXG Vector Signal Generator	Keysight	N5182B	MY53051328	10/25/2021	1 year
SZ070-04	Directional Bridge	Agilent	86205A	MY31402141	12/21/2021	1 year
SZ182-02	RF Power Meter	Anritsu	ML2496A	1302005	5/10/2021	1 year
SZ182-03	Average power sensor	R&S	NRP-Z22	101689	5/10/2021	1 year
N/A	Device Holder	SPEAG	N/A	N/A	N/A	N/A


ANNEX A: Test Layout and Setup


Front Face

Rear Face

Left Face

Liquid Depth in the flat phantom(18.2cm)

ANNEX B: System Check Results

Date: 4/13/2022

Test Laboratory: Intertek Service

System Check H2450

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used: $f = 2450$ MHz; $\sigma = 1.857$ S/m; $\epsilon_r = 40.189$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.0 °C; Liquid Temperature: 21.5 °C

DASY Configuration:

Probe: EX3DV4 - SN7322; ConvF(7.28, 7.28, 7.28) @ 2450 MHz; Calibrated: 1/17/2022

Sensor-Surface: 3mm (Mechanical Surface Detection)

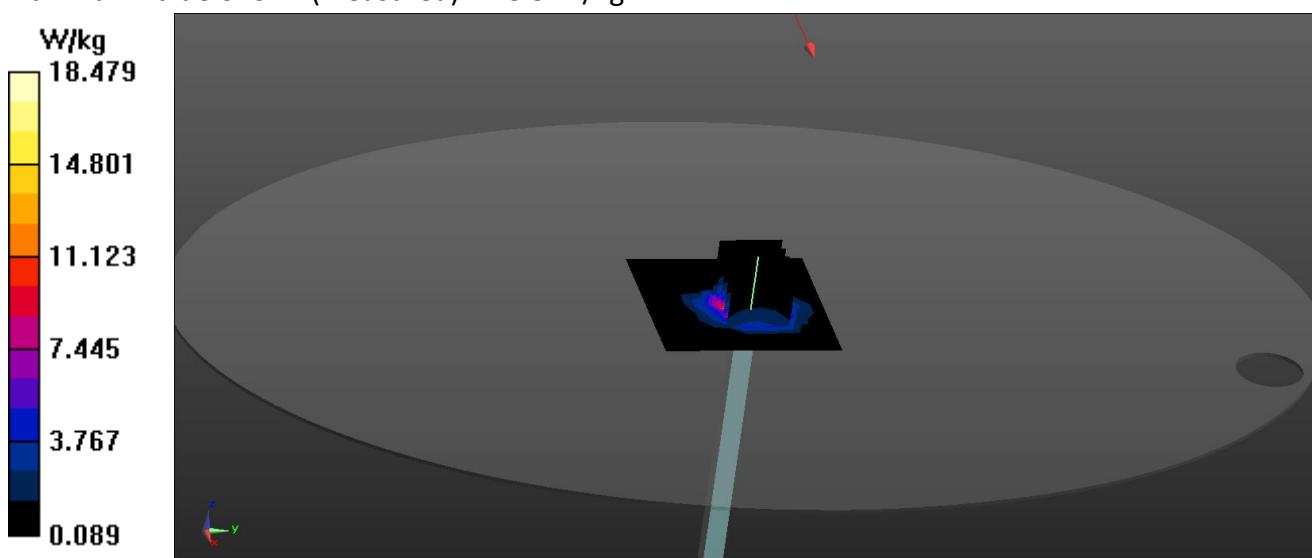
Electronics: DAE4 Sn1473; Calibrated: 12/30/2021

Phantom: ELI V6.0 (20deg probe tilt); Type: QD OVA 003 AA; Serial: 2033

DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 13.8 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 96.25 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

ANNEX C: MAXIMUM GRAPH RESULTS

Date: 4/13/2022

Test Laboratory: Intertek Service

WIFI b_Right Side_CH 11

Communication System: UID 0, WiFi 802.11 b (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used: $f = 2462$ MHz; $\sigma = 1.868$ S/m; $\epsilon_r = 40.183$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.0 °C; Liquid Temperature: 21.5 °C

DASY Configuration:

Probe: EX3DV4 - SN7322; ConvF(7.28, 7.28, 7.28) @ 2462 MHz; Calibrated: 1/17/2022

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

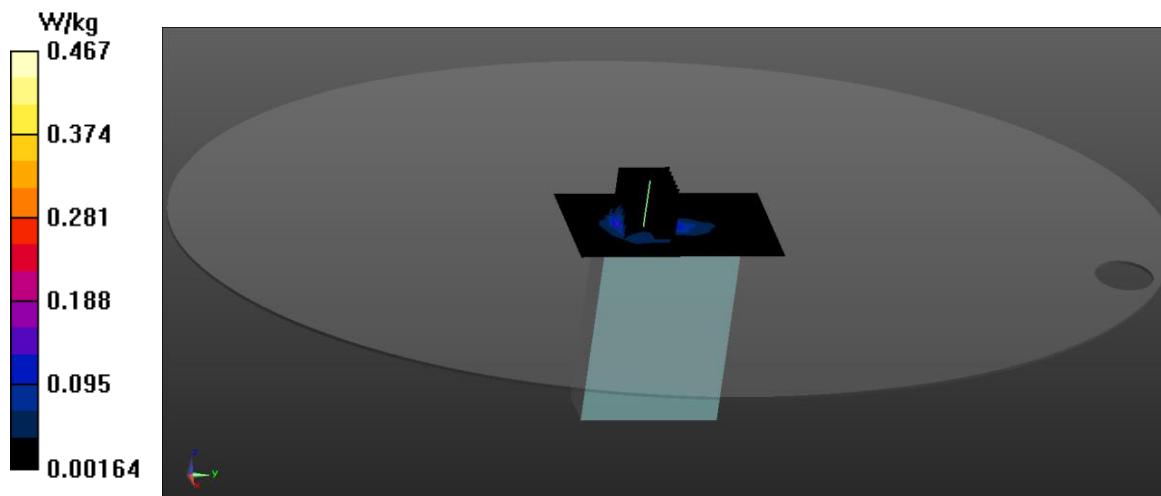
Electronics: DAE4 Sn1473; Calibrated: 12/30/2021

Phantom: ELI V6.0 (20deg probe tilt); Type: QD OVA 003 AA; Serial: 2033

DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.467 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.507 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.256 W/kg; SAR(10 g) = 0.098 W/kg

Maximum value of SAR (measured) = 0.467 W/kg

ANNEX D: SYSTEM VALIDATION

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (≤ 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Table D.1: Antenna Parameters with Body Tissue Simulating Liquid

Table D.1: System Validation Part 1

Dipole D2450V2 SN: 966				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	$\Delta\Omega$
2021-10-21	-26.0	-	54.2+3.04j	-

Table D.2: System Validation Part 2

System No.	Probe SN.	Liquid name	Validation date	Frequency point	Permittivity ϵ	Conductivity σ (S/m)
1	966	Head	4/13/2022	2450MHz	40.19	1.86

Table D.3: System Validation Part 3

CW Validation	Sensitivity	PASS	PASS
	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
Mod. Validation	MOD.type	QPSK	QPSK
	Duty factor	PASS	PASS
	PAR	PASS	PASS

ANNEX E: PROBE, DAE and DIPOLE CALIBRATION CERTIFICATE

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Client Intertek Certificate No: Z21-60556

CALIBRATION CERTIFICATE

Object EX3DV4 - SN : 7322

Calibration Procedure(s) FF-Z11-004-02
Calibration Procedures for Dosimetric E-field Probes

Calibration date: January 17, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-Z91	101547	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-Z91	101548	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Reference 10dBAttenuator	18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22
Reference 20dBAttenuator	18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22
Reference Probe EX3DV4	SN 3617	27-Jan-21(SPEAG, No.EX3-3617_Jan21)	Jan-22
DAE4	SN 1555	20-Aug-21(SPEAG, No.DAE4-1555_Aug21/2)	Aug-22

Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	16-Jun-21(CTTL, No.J21X04467)	Jun-22
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan -23

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: January 19, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TS	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM_{(f)x,y,z}** = $NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}**: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}**: C_{x,y,z} are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle**: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7322

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.85	9.85	9.85	0.14	1.35	±12.1%
835	41.5	0.90	9.48	9.48	9.48	0.16	1.31	±12.1%
1750	40.1	1.37	8.16	8.16	8.16	0.26	1.01	±12.1%
1900	40.0	1.40	7.90	7.90	7.90	0.23	1.10	±12.1%
2300	39.5	1.67	7.58	7.58	7.58	0.57	0.71	±12.1%
2450	39.2	1.80	7.28	7.28	7.28	0.48	0.83	±12.1%
2600	39.0	1.96	7.12	7.12	7.12	0.51	0.79	±12.1%
5250	35.9	4.71	5.23	5.23	5.23	0.55	1.17	±13.3%
5600	35.5	5.07	4.74	4.74	4.74	0.55	1.20	±13.3%
5750	35.4	5.22	4.78	4.78	4.78	0.55	1.20	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7322

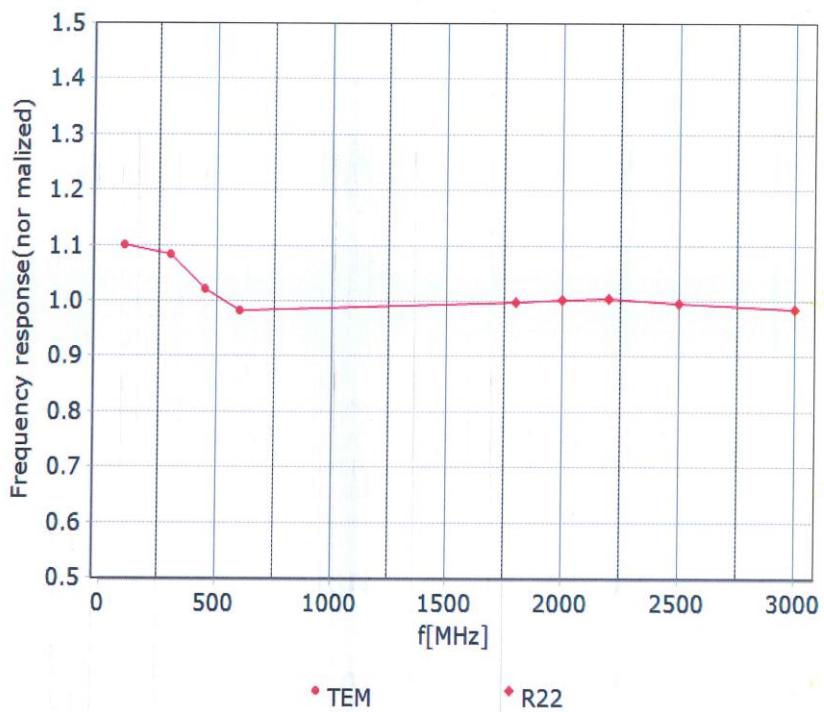
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.84	9.84	9.84	0.40	0.85	±12.1%
835	55.2	0.97	9.50	9.50	9.50	0.18	1.40	±12.1%
1750	53.4	1.49	7.95	7.95	7.95	0.26	1.07	±12.1%
1900	53.3	1.52	7.73	7.73	7.73	0.21	1.22	±12.1%
2300	52.9	1.81	7.50	7.50	7.50	0.59	0.74	±12.1%
2450	52.7	1.95	7.33	7.33	7.33	0.50	0.83	±12.1%
2600	52.5	2.16	7.19	7.19	7.19	0.60	0.70	±12.1%
5250	48.9	5.36	4.60	4.60	4.60	0.50	1.55	±13.3%
5600	48.5	5.77	4.12	4.12	4.12	0.60	1.40	±13.3%
5750	48.3	5.94	4.20	4.20	4.20	0.55	1.50	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

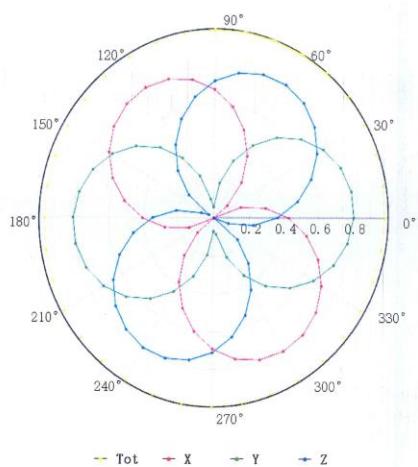


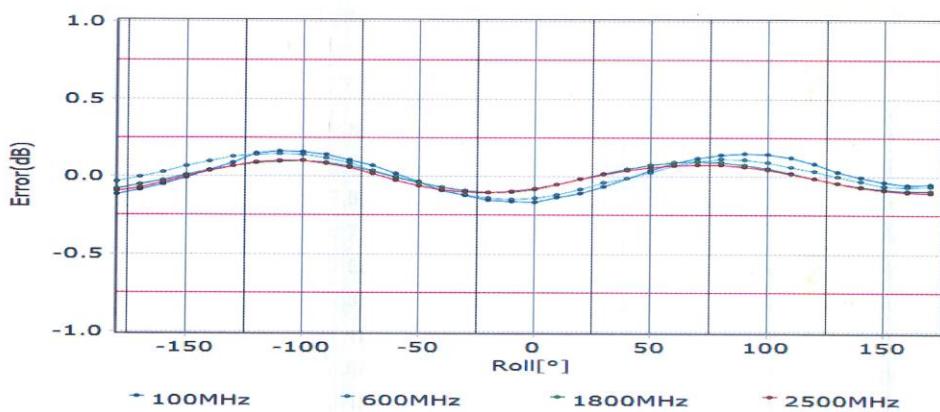
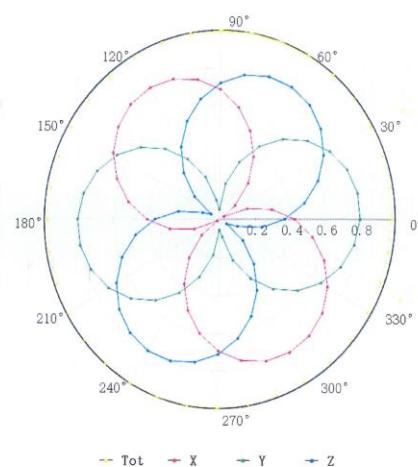
In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 7.4\%$ ($k=2$)

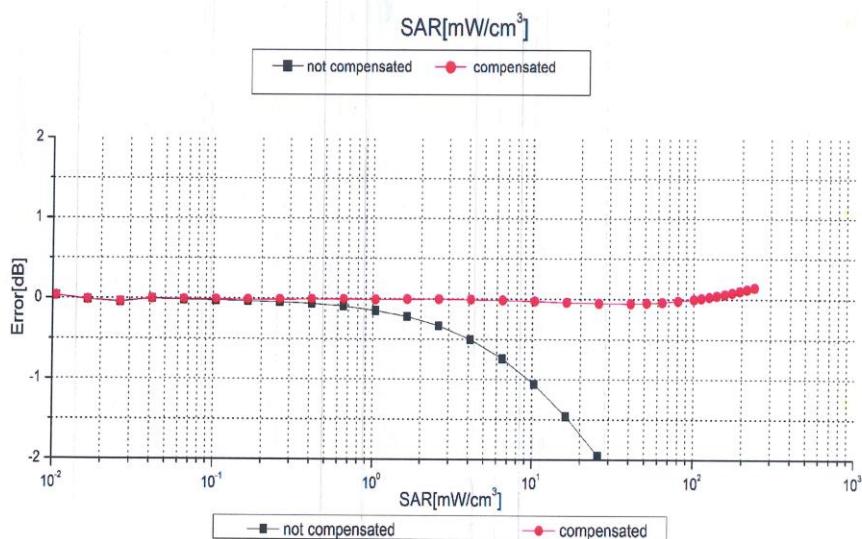
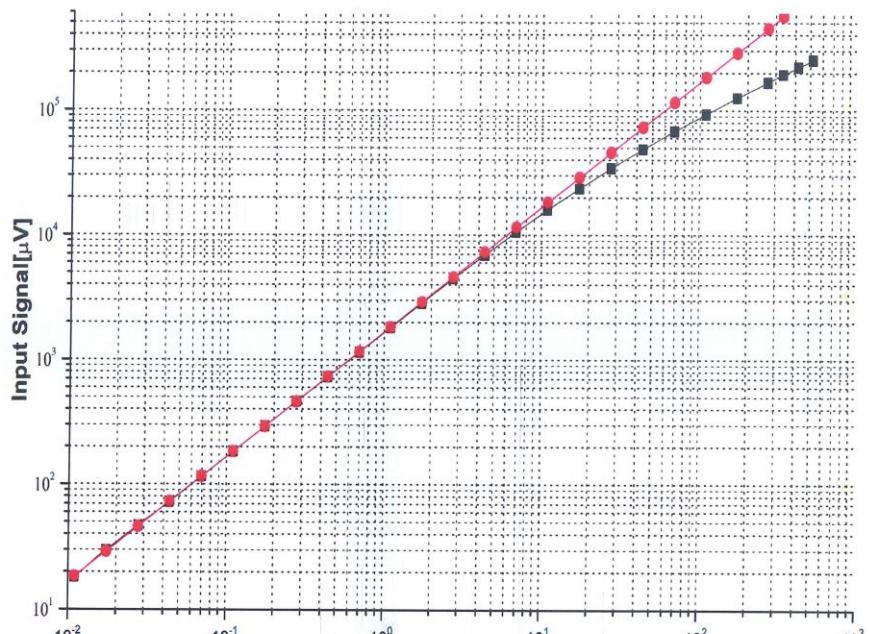

In Collaboration with
s p e a g
 CALIBRATION LABORATORY



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

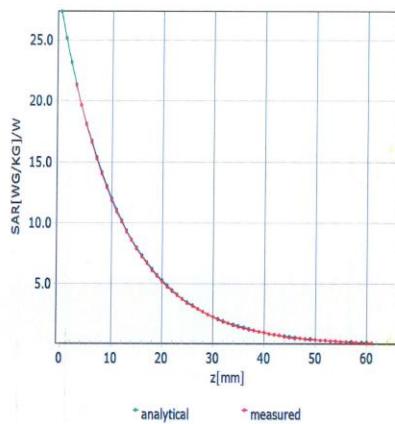
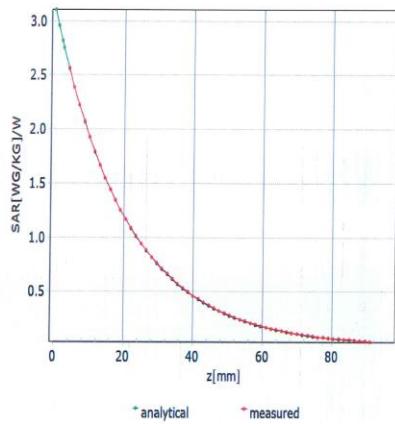
In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

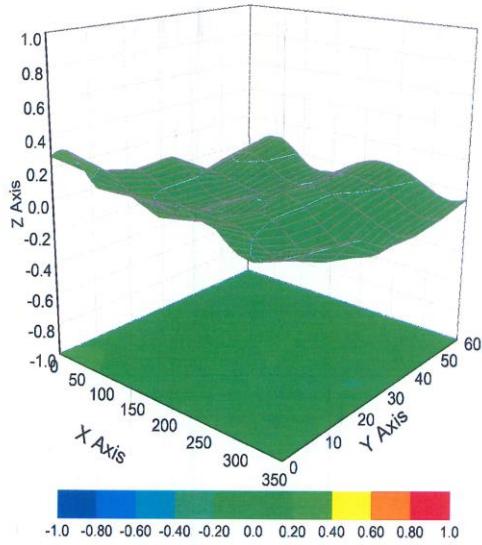
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.9\% (k=2)$

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)


Conversion Factor Assessment

$f=750 \text{ MHz}, \text{WGLS R9(H_convF)}$

$f=1750 \text{ MHz}, \text{WGLS R22(H_convF)}$

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: $\pm 3.2\% (k=2)$

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

6

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7322

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	40.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

中国认可
 国际互认
 校准
CNAS
 CALIBRATION
 CNAS L0570

Client :

Intertek

Certificate No: Z21-60555

CALIBRATION CERTIFICATE

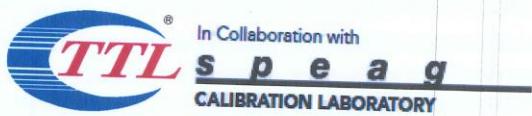
Object DAE4 - SN: 1473

Calibration Procedure(s) FF-Z11-002-01
 Calibration Procedure for the Data Acquisition Electronics
 (DAEx)

Calibration date: December 30, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.


Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	15-Jun-21 (CTTL, No.J21X04465)	Jun-22

Calibrated by:	Name	Function	Signature
	Yu Zongying	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: January 01, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = $-100...+300 mV$

Low Range: 1LSB = $61nV$, full range = $-1.....+3mV$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.002 \pm 0.15\% (k=2)$	$404.598 \pm 0.15\% (k=2)$	$404.453 \pm 0.15\% (k=2)$
Low Range	$3.96548 \pm 0.7\% (k=2)$	$3.99652 \pm 0.7\% (k=2)$	$3.99017 \pm 0.7\% (k=2)$

Connector Angle

Connector Angle to be used in DASY system	$346.5^\circ \pm 1^\circ$
---	---------------------------

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com http://www.chinattl.cn

中国认可
国际互认
校准
CNAS
CALIBRATION
CNAS L0570

Client

Intertek

Certificate No: Z21-60413

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 966

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: October 21, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7517	03-Feb-21(CTTL-SPEAG, No.Z21-60001)	Feb-22
DAE4	SN 1556	15-Jan-21(SPEAG, No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: October 27, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctll@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 18.7 % (k=2)

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079
E-mail: ctl@chinattl.com

Fax: +86-10-62304633-2504
<http://www.chinattl.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2Ω+ 3.04jΩ
Return Loss	- 26.0dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.064 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079
E-mail: ctl@chinattl.com

Fax: +86-10-62304633-2504
<http://www.chinattl.cn>

DASY5 Validation Report for Head TSL

Date: 10.21.2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 966

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 39.51$; $\rho = 1000$ kg/m³

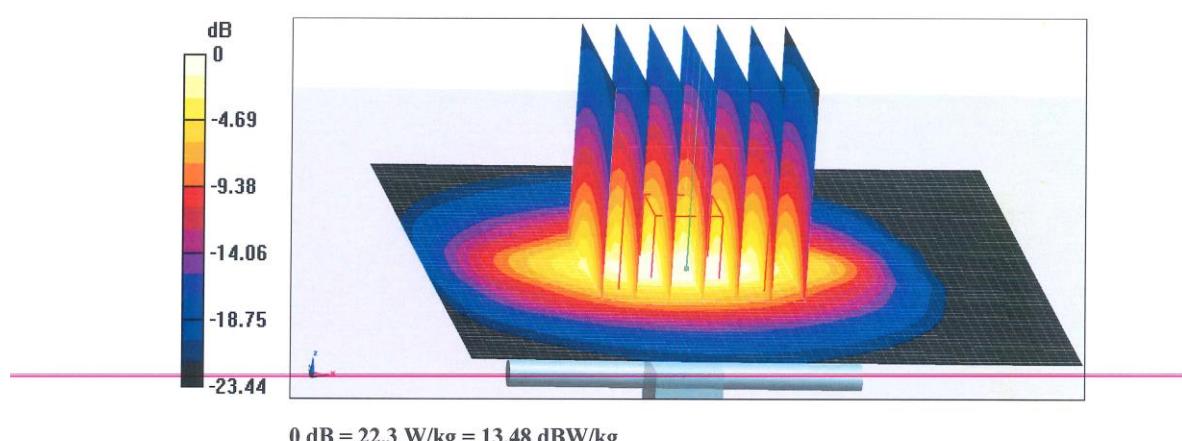
Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.2 V/m; Power Drift = 0.00 dB

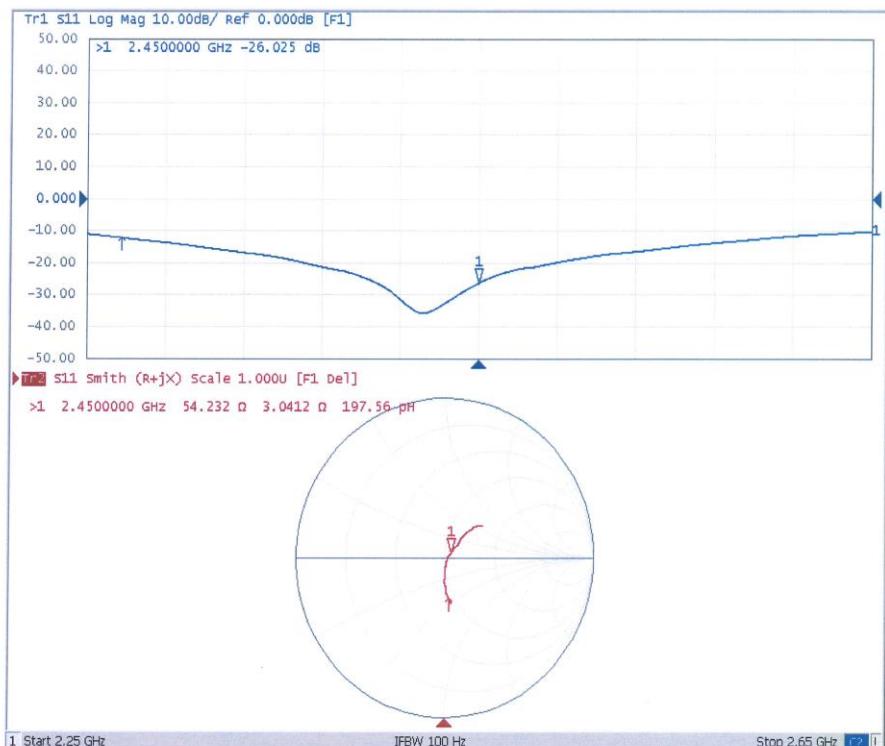

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.98 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 46.9%

Maximum value of SAR (measured) = 22.3 W/kg



In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

