

APDM, Inc. V1 Opal

FCC 15.247:2019 2400 – 2483.5 MHz Other Wideband (DTS) Transceiver

Report # APDM0015.1

NVLAP LAB CODE: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

More: https://www.bis.doc.gov/index.php/forms-documents/regulations-docs/14-commerce-country-chart/fileT

CERTIFICATE OF TEST

Last Date of Test: February 11, 2019
APDM, Inc.
Model: V1 Opal

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2019	ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6, 11.12.1, 11.13.2			Pass	
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

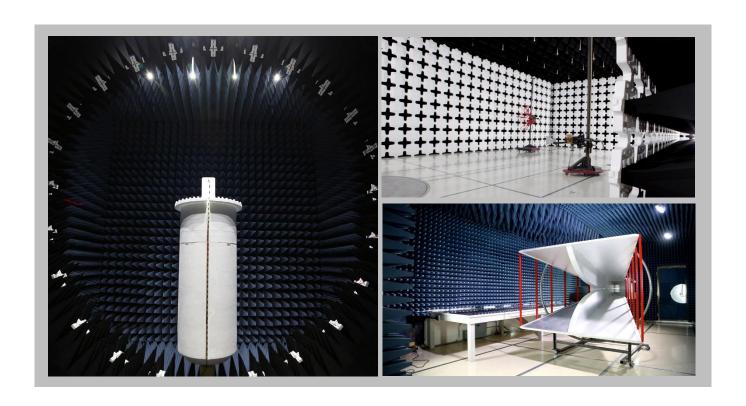
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

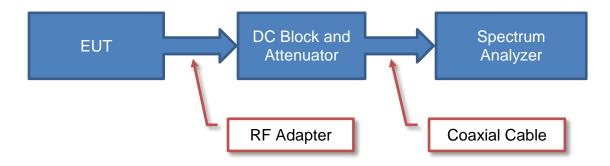
California Labs OC01-17 41 Tesla	Minnesota Labs MN01-10 9349 W Broadway Ave.	New York Labs NY01-04 4939 Jordan Rd.	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400	Texas Labs TX01-09 3801 E Plano Pkwy	Washington Labs NC01-05 19201 120 th Ave NE			
Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600			
		NV	LAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
Innovation, Science and Economic Development Canada								
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1	2834G-1	2834F-1			
		BS	MI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

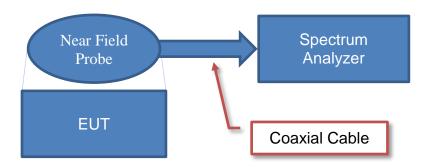
Measurement Uncertainty

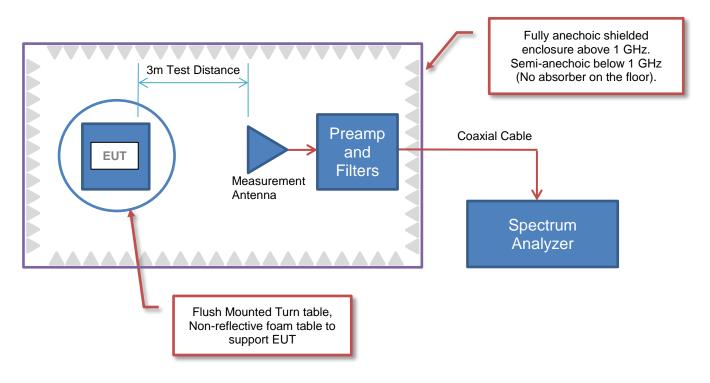
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	APDM, Inc.
Address:	2828 S Corbett Ave. Suite 135
City, State, Zip:	Portland, OR 97201
Test Requested By:	Andrew Greenberg
Model:	V1 Opal
First Date of Test:	February 11, 2019
Last Date of Test:	February 11, 2019
Receipt Date of Samples:	February 11, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional	Description	of the	EUT:
-------------------	-------------	--------	------

V1 Opal is a small body worn device which operates in the ISM band

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2019 for operation in the 2400 - 2483.5 MHz Band.

CONFIGURATIONS

Configuration APDM0015-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Wearable movement monitor	APDM, Inc.	V1 Opal	1380

Configuration APDM0015- 2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Wearable movement monitor	APDM, Inc.	V1 Opal	2775

MODIFICATIONS

Equipment Modifications

	1_				
Item	Date	Test	Modification	Note	Disposition of EUT
1	2019-02-11	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2019-02-11	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2019-02-11	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2019-02-11	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2019-02-11	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2019-02-11	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2019-02-11	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2019-02-11	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.07.27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously transmitting. GFSK.2 MBps. Low channel = 2410 MHz, Mid channel = 2445 MHz, High channel = 2480 MHz. Maximum power setting.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

APDM0015 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequ	ency	26500 MHz
-----------------	--------	------------	------	-----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

	1201 Equi MEITI					
Ī	Description	Manufacturer	Model	ID	Last Cal.	Interval
	Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	18-Mar-2018	12 mo
	Cable	ESM Cable Corp.	KMKM-72	EVY	24-Aug-2018	12 mo
	Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	24-Aug-2018	12 mo
	Antenna - Standard Gain	ETS Lindgren	3160-09	AIV	NCR	0 mo
	Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	24-Nov-2018	12 mo
	Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	0 mo
	Cable	None	Standard Gain Horns Cable	EVF	24-Nov-2018	12 mo
	Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	24-Nov-2018	12 mo
	Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	0 mo
	Filter - High Pass	Micro-Tronics	HPM50111	HFO	11-Dec-2018	12 mo
	Attenuator	Coaxicom	3910-20	AXZ	28-Feb-2018	12 mo
	Cable	N/A	Double Ridge Horn Cables	EVB	24-Nov-2018	12 mo
	Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	24-Nov-2018	12 mo
	Antenna - Double Ridge	ETS Lindgren	3115	AIZ	7-Feb-2018	24 mo
	Filter - Low Pass	Micro-Tronics	LPM50004	LFD	28-Feb-2018	12 mo
	Cable	N/A	Bilog Cables	EVA	24-Nov-2018	12 mo
	Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	24-Nov-2018	12 mo
	Antenna - Biconilog	Teseq	CBL 6141B	AXR	2-Oct-2018	24 mo

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Duty cycle during testing was DC = 13.7%. The RMS average measurements were upwardly correct by $10*\log(1/DC)$ (per ANSI C63.10 Section 11.13.3.4). Additionally, the EUT has a protocol limited duty cycle of DC = 13.7%. The RMS average measurements were further corrected downward by $20*\log(1/DC)$ (per ANSI C63.10 Section 7.5). The total correction was thus: $-10*\log(1/0.137) + 20*\log(1/0.137) = 8.6$ dB.

SPURIOUS RADIATED EMISSIONS

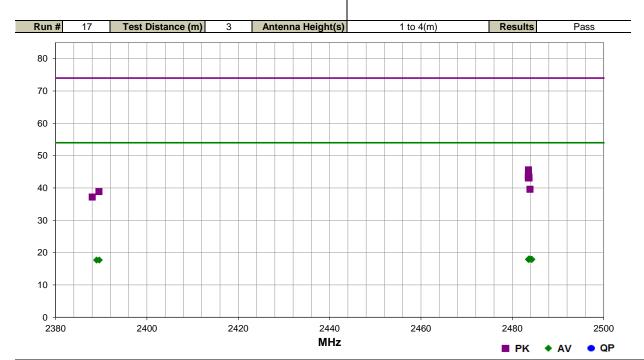
QP

	k Order:	APDN			Date:	11-Feb-2019	790	- //	1/2
	Project:		ne		erature:	18.3 °C		d/ 11	
	Job Site:	E۷			ımidity:	35.2% RH	00	7/1//	3-2
Serial I	Number:	13	80	Barometrio	c Pres.:	1010 mbar	Teste	d by: Jody House &	& Jeff Alcoke
	EUT:	V1 Opal							
Confic	uration:								
		APDM, Inc							
				avid Camarillo	Gavin G	allino Timothy F	Brandon, Christopher	Andrews	
	T Power:		g,		.,				
Operatin		Continuou	sly transmitti mum power		MBps. Low	channel = 2410	0 MHz, Mid channel =	= 2445 MHz , High c	hannel = 2480
De	viations:	None	mam power	ooug.					
Coi	mments:	EUT canno	ot transmit if	port is popula	ated. See o	comments for E	UT serial number, ori	entation, and chann	el.
st Specifi C 15.247							Method C63.10:2013		
Dun#	15	Toet Die	etanco (m)	2	Antonna H	loight(s)	1 to 4(m)	Posults	Page
Run #	15	Test Dis	stance (m)	3 /	Antenna H	leight(s)	1 to 4(m)	Results	Pass
Run #	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
	15	Test Dis	stance (m)	3 /	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 -	15	Test Dis	stance (m)	3 /	Antenna H	leight(s)	1 to 4(m)	Results	Pass
	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 -	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 -	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 - 70 - 60 -	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 — 70 — 60 —	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 — 70 — 60 —	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 — 70 — 60 —	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 — 70 — 60 —	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 — 70 — 60 —	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 70 60 50 50 40 40	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 — 70 — 60 —	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 70 60 50 50 40 40	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass
80 70 60 50 30 30 30	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
80 70 60 50 50 40 40	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass
80 70 60 50 30 30 30	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass
80 70 60 50 30 30 30	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass
80	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass
80	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass
80	15	Test Dis	stance (m)	3	Antenna H	leight(s)	1 to 4(m)		Pass

MHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7439.175	34.5	14.2	1.0	92.0	-8.6	0.0	Vert	AV	0.0	40.1	54.0	-13.9	466, EUT Horz, High Ch
7439.092	45.8	14.2	1.0	92.0	0.0	0.0	Vert	PK	0.0	60.0	74.0	-14.0	466, EUT Horz, High Ch
7438.983	45.3	14.2	1.0	92.0	0.0	0.0	Horz	PK	0.0	59.5	74.0	-14.5	1380, EUT Vert, High Ch
7439.233	32.9	14.2	3.0	11.0	-8.6	0.0	Vert	AV	0.0	38.5	54.0	-15.5	1380, EUT On Side, High Ch
7439.242	44.2	14.2	3.0	360.0	0.0	0.0	Horz	PK	0.0	58.4	74.0	-15.6	1380, EUT Horz, High Ch
7439.850	44.2	14.2	1.0	309.0	0.0	0.0	Vert	PK	0.0	58.4	74.0	-15.6	1380, EUT Horz, High Ch
7440.275	44.2	14.2	3.0	11.0	0.0	0.0	Vert	PK	0.0	58.4	74.0	-15.6	1380, EUT On Side, High Ch
7439.500	32.7	14.2	1.0	309.0	-8.6	0.0	Vert	AV	0.0	38.3	54.0	-15.7	1380, EUT Horz, High Ch
7439.242	32.7	14.2	1.0	92.0	-8.6	0.0	Horz	AV	0.0	38.3	54.0	-15.7	1380, EUT Horz, High Ch
7439.233	32.5	14.2	3.0	360.0	-8.6	0.0	Horz	AV	0.0	38.1	54.0	-15.9	1380, EUT Vert, High Ch
4959.850	40.3	5.6	1.0	146.0	-8.6	0.0	Vert	AV	0.0	37.3	54.0	-16.7	1380, EUT Horz, High Ch
4959.500	50.1	5.6	1.0	146.0	0.0	0.0	Vert	PK	0.0	55.7	74.0	-18.3	1380, EUT Horz, High Ch
4819.817	38.9	4.8	1.0	149.0	-8.6	0.0	Vert	AV	0.0	35.1	54.0	-18.9	EUT Horz, Low Ch
7439.208	29.5	14.2	3.8	295.0	-8.6	0.0	Horz	AV	0.0	35.1	54.0	-18.9	1380, EUT On Side, High Ch
7440.075	40.8	14.2	3.8	295.0	0.0	0.0	Horz	PK	0.0	55.0	74.0	-19.0	1380, EUT On Side, High Ch
7334.367	30.1	13.1	1.6	359.0	-8.6	0.0	Horz	AV	0.0	34.6	54.0	-19.4	EUT Horz, Mid Ch
7334.158	41.3	13.1	1.6	359.0	0.0	0.0	Horz	PK	0.0	54.4	74.0	-19.6	EUT Horz, Mid Ch
7439.158	28.8	14.2	1.0	337.0	-8.6	0.0	Vert	AV	0.0	34.4	54.0	-19.6	1380, EUT Vert, High Ch
4889.808	37.6	5.4	1.0	337.0	-8.6	0.0	Vert	AV	0.0	34.4	54.0	-19.6	EUT Horz, Mid Ch
4819.408	49.0	4.8	1.0	149.0	0.0	0.0	Vert	PK	0.0	53.8	74.0	-20.2	EUT Horz, Low Ch

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7334.200	29.2	13.1	1.0	255.0	-8.6	0.0	Vert	AV	0.0	33.7	54.0	-20.3	EUT Horz, Mid Ch
7439.192	39.1	14.2	1.0	337.0	0.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	1380, EUT Vert, High Ch
7335.567	40.1	13.2	1.0	255.0	0.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	EUT Horz, Mid Ch
4889.575	47.8	5.4	1.0	337.0	0.0	0.0	Vert	PK	0.0	53.2	74.0	-20.8	EUT Horz, Mid Ch
4819.742	36.8	4.8	1.7	202.0	-8.6	0.0	Horz	AV	0.0	33.0	54.0	-21.0	EUT Horz, Low Ch
4959.808	35.4	5.6	1.0	78.0	-8.6	0.0	Horz	AV	0.0	32.4	54.0	-21.6	1380, EUT Horz, High Ch
4819.458	47.3	4.8	1.7	202.0	0.0	0.0	Horz	PK	0.0	52.1	74.0	-21.9	EUT Horz, Low Ch
4960.150	45.9	5.6	1.0	78.0	0.0	0.0	Horz	PK	0.0	51.5	74.0	-22.5	1380, EUT Horz, High Ch
4889.733	34.5	5.4	1.0	20.0	-8.6	0.0	Horz	AV	0.0	31.3	54.0	-22.7	EUT Horz, Mid Ch
4889.308	45.3	5.4	1.0	20.0	0.0	0.0	Horz	PK	0.0	50.7	74.0	-23.3	EUT Horz, Mid Ch
12399.980	43.6	2.0	1.0	144.0	0.0	0.0	Vert	PK	0.0	45.6	74.0	-28.4	EUT Horz, High Ch
12398.370	43.3	2.0	1.0	238.0	0.0	0.0	Horz	PK	0.0	45.3	74.0	-28.7	EUT Horz, High Ch
12398.580	31.6	2.0	1.0	144.0	-8.6	0.0	Vert	AV	0.0	25.0	54.0	-29.0	EUT Horz, High Ch
12398.650	31.2	2.0	1.0	238.0	-8.6	0.0	Horz	AV	0.0	24.6	54.0	-29.4	EUT Horz, High Ch
12223.430	30.3	1.8	1.0	225.0	-8.6	0.0	Horz	AV	0.0	23.5	54.0	-30.5	EUT Horz, Mid Ch
12223.630	30.3	1.8	1.0	182.0	-8.6	0.0	Vert	AV	0.0	23.5	54.0	-30.5	EUT Horz, Mid Ch
12223.680	41.3	1.8	1.0	182.0	0.0	0.0	Vert	PK	0.0	43.1	74.0	-30.9	EUT Horz, Mid Ch
12224.110	41.2	1.8	1.0	225.0	0.0	0.0	Horz	PK	0.0	43.0	74.0	-31.0	EUT Horz, Mid Ch
12051.360	29.6	1.0	1.0	245.0	-8.6	0.0	Horz	AV	0.0	22.0	54.0	-32.0	EUT Horz, Low Ch
12052.480	29.6	1.0	1.0	278.0	-8.6	0.0	Vert	AV	0.0	22.0	54.0	-32.0	EUT Horz, Low Ch
12048.790	39.9	1.0	1.0	245.0	0.0	0.0	Horz	PK	0.0	40.9	74.0	-33.1	EUT Horz, Low Ch
12050.330	39.7	1.0	1.0	278.0	0.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	EUT Horz, Low Ch


14/46

SPURIOUS RADIATED EMISSIONS

				EmiR5 2018.09.26 PSA-ESCI 2018.07.27									
Work Order:	APDM0015	Date:	11-Feb-2019	- // //									
Project:	None	Temperature:	19.5 °C	111/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/									
Job Site:	EV01	Humidity:	35.6% RH	CAT Alle									
Serial Number:	1380	Barometric Pres.:	1010 mbar	Tested by: Jody House & Jeff Alcoke									
EUT:	V1 Opal												
Configuration:	1												
Customer:	APDM, Inc.												
Attendees:	Andrew Greenberg,	ndrew Greenberg,											
EUT Power:	Battery	Battery											
Operating Mode:	Continuously transmitting. GFSK.2 MBps. Low channel = 2410 MHz, Mid channel = 2445 MHz, High channel = 2480												
Operating wode.	MHz. Maximum power	r setting.											
Deviations:	None												
Deviations.													
	See comments for EU	T orientation and chann	nel.										
Comments:													
Test Specifications			Test Meth	ood									

1 CSt Opcomoditions	1 CSt Mictiloa
FCC 15.247:2019	ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.543	50.5	-4.9	2.7	57.0	0.0	20.0	Vert	PK	0.0	45.6	74.0	-28.4	EUT On Side, High Ch
2483.523	48.6	-4.9	1.0	67.0	0.0	20.0	Horz	PK	0.0	43.7	74.0	-30.3	EUT Vert, High Ch
2483.593	48.5	-4.9	1.0	302.0	0.0	20.0	Vert	PK	0.0	43.6	74.0	-30.4	EUT Horz, High Ch
2483.660	48.0	-4.9	2.7	163.0	0.0	20.0	Horz	PK	0.0	43.1	74.0	-30.9	EUT Horz, High Ch
2483.523	48.0	-4.9	1.0	4.0	0.0	20.0	Horz	PK	0.0	43.1	74.0	-30.9	EUT On Side, High Ch
2483.877	44.5	-4.9	1.0	201.0	0.0	20.0	Vert	PK	0.0	39.6	74.0	-34.4	EUT Vert, High Ch
2389.497	44.0	-5.1	1.0	337.0	0.0	20.0	Vert	PK	0.0	38.9	74.0	-35.1	EUT Horz, Low Ch
2483.807	31.5	-4.9	2.7	163.0	-8.6	20.0	Horz	AV	0.0	18.0	54.0	-36.0	EUT Horz, High Ch
2483.660	31.5	-4.9	1.0	67.0	-8.6	20.0	Horz	AV	0.0	18.0	54.0	-36.0	EUT Vert, High Ch
2484.320	31.3	-4.8	1.0	201.0	-8.6	20.0	Vert	AV	0.0	17.9	54.0	-36.1	EUT Vert, High Ch
2484.150	31.3	-4.8	1.0	4.0	-8.6	20.0	Horz	AV	0.0	17.9	54.0	-36.1	EUT On Side, High Ch
2483.587	31.4	-4.9	1.0	302.0	-8.6	20.0	Vert	AV	0.0	17.9	54.0	-36.1	EUT Horz, High Ch
2483.530	31.4	-4.9	2.7	57.0	-8.6	20.0	Vert	AV	0.0	17.9	54.0	-36.1	EUT On Side, High Ch
2389.567	31.4	-5.1	1.0	337.0	-8.6	20.0	Horz	AV	0.0	17.7	54.0	-36.3	EUT Horz, Low Ch
2388.990	31.4	-5.1	1.0	337.0	-8.6	20.0	Vert	AV	0.0	17.7	54.0	-36.3	EUT Horz, Low Ch
2388.010	42.3	-5.1	1.0	337.0	0.0	20.0	Horz	PK	0.0	37.2	74.0	-36.8	EUT Horz, Low Ch

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

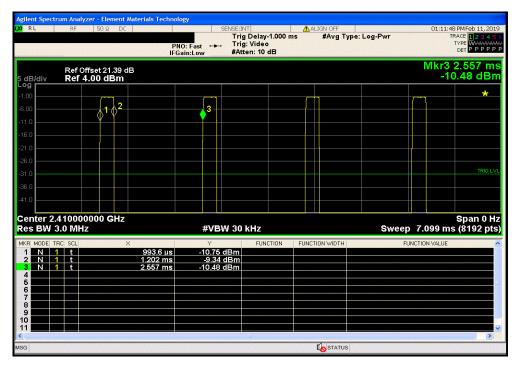
EUT: V1 Opal
Serial Number: 2775
Customer: APDM, Inc.
Attendees: Andrew Greenberg, David Camarillo, Gavin Gallino, Timothy Brandon, Christopher Andrews.
Project: None
Tested by: Jody House & Jeff Alcoke
Power: Battery
TEST SPECIFICATIONS
Test Metho Work Order: APDM0015

Date: 11-Feb-19

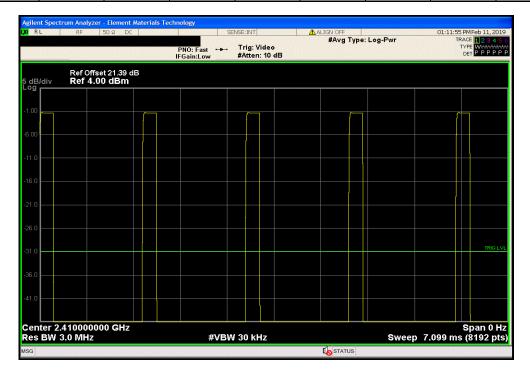
Temperature: 19.4 °C

Humidity: 37.7% RH

Barometric Pres.: 1010 mbar Power: Battery
Test Method Job Site: EV06 FCC 15.247:2019 COMMENTS Continously transmitting. GFSK. 2 MBps. Maximum power setting. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Value (%) 13.3 Limi (%) N/A Number of Pulses Period 1.563 ms Pulse Width Results GFSK Low Channel, 2410 MHz N/A 1.564 ms N/A 1.561 ms GFSK Low Channel, 2410 MHz GFSK Mid Channel, 2445 MHz GFSK Mid Channel, 2445 MHz GFSK High Channel, 2480 MHz N/A N/A N/A N/A N/A N/A N/A N/A N/A 13.2 N/A 13.3 206.9 us N/A 5 207.3 us N/A GFSK High Channel, 2480 MHz N/A N/A N/A N/A

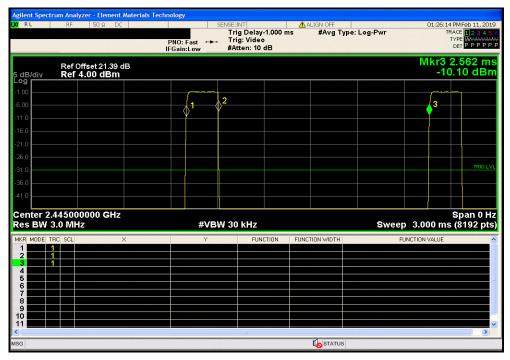


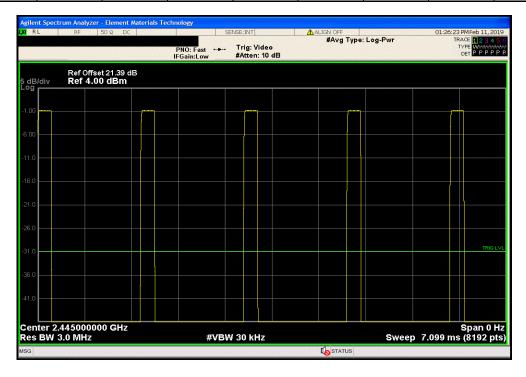
GFSK Low Channel, 2410 MHz


Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

208 us 1.563 ms 1 13.3 N/A N/A

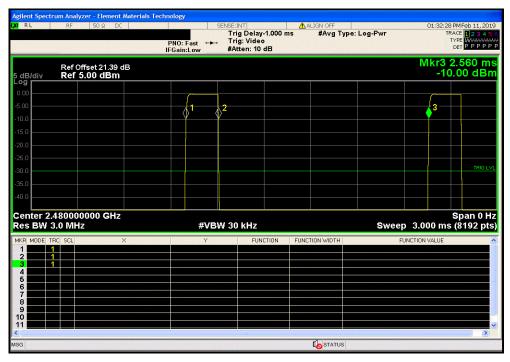

GFSK Low Channel, 2410 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	N/A	N/A	5	N/A	N/A	N/A		



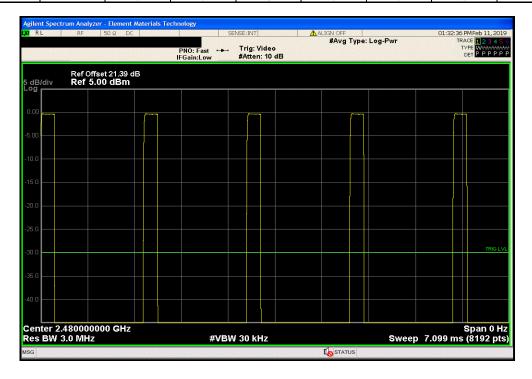
GESK Mid Channel 2445 MHz

GFSK Mid Channel, 2445 MHz									
Number of Value Limit									
	Pulse Width Period Pulses (%) (%) Results								
		206.9 us	1.564 ms	1	13.2	N/A	N/A		

GFSK Mid Channel, 2445 MHz								
Number of Value Limit								
Pulse Width Period Pulses (%) (%) Results								
N/A N/A 5 N/A N/A							N/A	



GFSK High Channel, 2480 MHz


Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

207.3 us 1.561 ms 1 13.3 N/A N/A

		GFSK	High Channel, 24	80 MHz		
			Number of	Value	Limit	
	 Pulse Width	Period	Pulses	(%)	(%)	Results
l	N/A	N/A	5	N/A	N/A	N/A

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

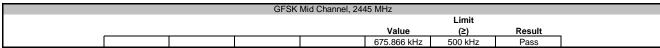
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

				TbtTx 2018.09.13	XMit 2017.12.13
EUT:	V1 Opal		Work Order:	APDM0015	
Serial Number:	2775		Date:	11-Feb-19	
Customer:	APDM, Inc.		Temperature:	19.4 °C	
Attendees:	Andrew Greenberg, David Camarillo, Gavin Gallino, Timothy B	Brandon, Christopher Andrews.	Humidity:	37.7% RH	
Project:	None		Barometric Pres.:	1010 mbar	
Tested by:	Jody House & Jeff Alcoke	Power: Battery	Job Site:	EV06	
TEST SPECIFICATI	ONS	Test Method			
FCC 15.247:2019		ANSI C63.10:2013			
COMMENTS					
Continously transm	nitting. GFSK. 2 MBps. Maximum power setting.				
DEVIATIONS FROM	I TEST STANDARD				
None					
Configuration #	2 Signature	Test //			
				Limit	
			Value	(≥)	Result
GFSK Low Channel,	2410 MHz		563.693 kHz	500 kHz	Pass
GFSK Mid Channel,	2445 MHz		675.866 kHz	500 kHz	Pass
GFSK High Channel	, 2480 MHz		690.128 kHz	500 kHz	Pass


GFSK Low Channel, 2410 MHz

Limit

Value (≥) Result

563.693 kHz 500 kHz Pass

GFSK High Channel, 2480 MHz

Limit

Value (2) Result

690.128 kHz 500 kHz Pass

XMit 2017.12.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

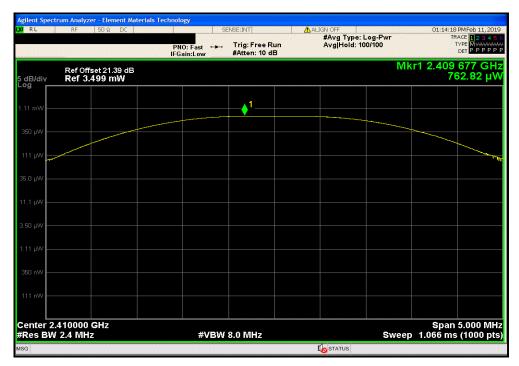
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19

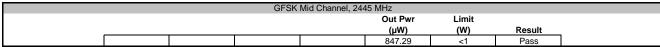
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

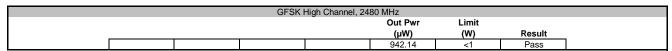

EUT: V1 Opal
Serial Number: 2775
Customer: APDM, Inc.
Attendees: Andrew Greenberg, David Camarillo, Gavin Gallino, Timothy Brandon, Christopher Andrews.
Project: None
Tested by: Jody House & Jeff Alcoke
Power: Battery
TEST SPECIFICATIONS
Test Metho Work Order: APDM0015
Date: 11-Feb-19
Temperature: 19.4 °C Humidity: 37.6% RH Barometric Pres.: 1010 mbar Power: Battery
Test Method Job Site: EV06 FCC 15.247:2019 COMMENTS Continously transmitting. GFSK. 2 MBps. Maximum power setting. DEVIATIONS FROM TEST STANDARD JAH M Configuration # 2 Signature Limit (W) Result **(μW)** 762.82 GFSK Low Channel, 2410 MHz <1 <1 <1 Pass GFSK Mid Channel, 2445 MHz GFSK High Channel, 2480 MHz 847.29 Pass Pass 942.14



GFSK Low Channel, 2410 MHz

Out Pwr Limit
(µW) (W) Result

762.82 <1 Pass



TbtTx 2018.09.13 XMit 2017.12.13

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

The actual antenna gain of hte EUT was added to the conducted output power to derive the EIRP values.

							TbtTx 2018.09.13	XMit 2017.12.13
	V1 Opal					Work Order:	APDM0015	
Serial Number:	2775					Date:	11-Feb-19	
Customer:	APDM, Inc.					Temperature:	19.5 °C	
Attendees:	Andrew Greenberg, David (Camarillo, Gavin Gallino, Timothy B	randon, Christopher Andı	ews.			37.5% RH	
Project:			,			Barometric Pres.:		
	Jody House & Jeff Alcoke		Power: Batter	<i>y</i>		Job Site:		
TEST SPECIFICATION			Test M					
FCC 15.247:2019			ANSI C	63.10:2013				
COMMENTS								
	itting. GFSK. 2 MBps. Maxi	mum nower cotting						
Continuously transm	itting. GF3K. 2 MBps. Maxi	mum power setting.						
DEVIATIONS FROM	TEST STANDARD							
	TEST STANDARD							
None								
	_	-	, //	1/2				
Configuration #	2	()	1-1-					
		Signature	(1) 19/10					
			Avg Cond Pwr	Out Pwr	Antenna	EIRP	EIRP Limit	
			(uW)	(dBm)	Gain (dBi)	(dBi)	(dBi)	Result
GFSK Low Channel,	2410 MHz		762.82	-1	3	2	<36	Pass
GFSK Mid Channel, 2	2445 MHz		847.29	-1	3	2	<36	Pass
GFSK High Channel,			942.14	Û	3	3	<36	Pass
o. o			o	· ·	3	3	-50	. 433

GFSK Mid Channel, 2445 MHz						
Avg Cond Pwr Out Pwr Antenna EIRP EIRP Limit						
(uW)		(dBm)	Gain (dBi)	(dBi)	(dBi)	Result
847.29		-0.72	3	2.28	<36	Pass

TbtTx 2018.09.13 XMit 2017.12.13

	GFSK	High Channel, 24	80 MHz		
Avg Cond Pwr	Out Pwr	Antenna	EIRP	EIRP Limit	
(uW)	(dBm)	Gain (dBi)	(dBi)	(dBi)	Result
942.14	-0.26	3	2.74	<36	Pass

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19

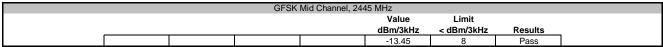
TEST DESCRIPTION

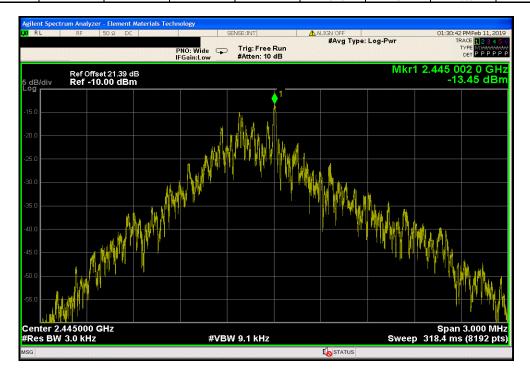
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

EUT: V1 Opal
Serial Number: 2775
Customer: APDM, Inc.
Attendees: Andrew Greenberg, David Camarillo, Gavin Gallino, Timothy Brandon, Christopher Andrews.
Project: None
Tested by: Jody House & Jeff Alcoke
Power: Battery
TEST SPECIFICATIONS
Test Metho Work Order: APDM0015
Date: 11-Feb-19
Temperature: 19.4 °C Humidity: 37.8% RH
Barometric Pres.: 1010 mbar Power: Battery
Test Method Job Site: EV06 FCC 15.247:2019 COMMENTS Continously transmitting. GFSK. 2 MBps. Maximum power setting. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Value dBm/3kHz -13.739 Limit < dBm/3kHz Results GFSK Low Channel, 2410 MHz Pass GFSK Mid Channel, 2445 MHz GFSK High Channel, 2480 MHz Pass Pass -13.45 8 -12.794

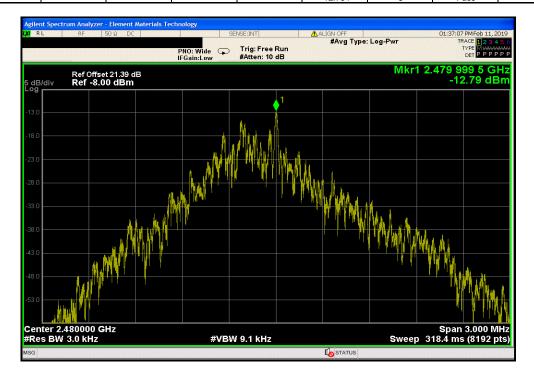



GFSK Low Channel, 2410 MHz


Value Limit

dBm/3kHz < dBm/3kHz Results

-13.739 8 Pass



GFSK High Channel, 2480 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

-12.794 8 Pass

BAND EDGE COMPLIANCE

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21

TEST DESCRIPTION

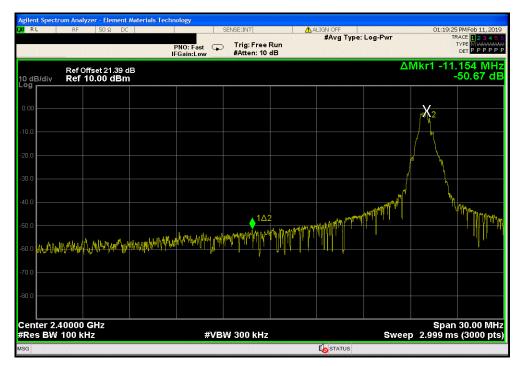
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

EUT: V1 Opal
Serial Number: 2775
Customer: APDM, Inc.
Attendees: Andrew Greenberg, David Camarillo, Gavin Gallino, Timothy Brandon, Christopher Andrews.
Project: None
Tested by: Jody House & Jeff Alcoke
Power: Battery
TEST SPECIFICATIONS
Test Metho Work Order: APDM0015
Date: 11-Feb-19
Temperature: 19.4 Humidity: 38% Barometric Pres.: 29.74 Power: Battery
Test Method Job Site: EV06 FCC 15.247:2019 COMMENTS GFSK. 2 MBps. Maximum power setting. DEVIATIONS FROM TEST STANDARD JAH Configuration # 2 Signature Value (dBc) Limit ≤ (dBc) Result GFSK Low Channel, 2410 MHz Pass Pass GFSK High Channel, 2480 MHz -43.17 -20

BAND EDGE COMPLIANCE




GFSK Low Channel, 2410 MHz

Value Limit

(dBc) ≤ (dBc) Result

-50.67 -20 Pass

XMit 2017.12.13

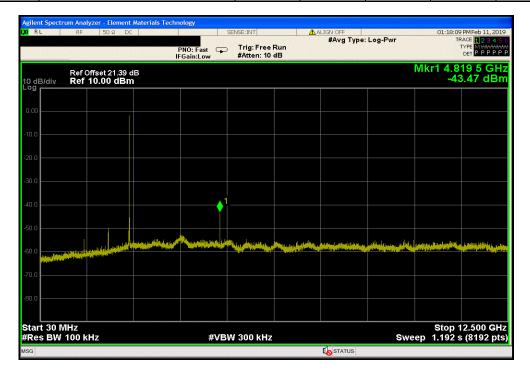
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Cable, 40GHz	Micro-Coax	UFD150A-1-0720-200200	EVH	23-Apr-18	23-Apr-19
Block - DC	Fairview Microwave	SD3379	AMW	23-Apr-18	23-Apr-19
Attenuator	S.M. Electronics	SA26B-20	AUY	16-Apr-18	16-Apr-19
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1-Feb-19	1-Feb-20

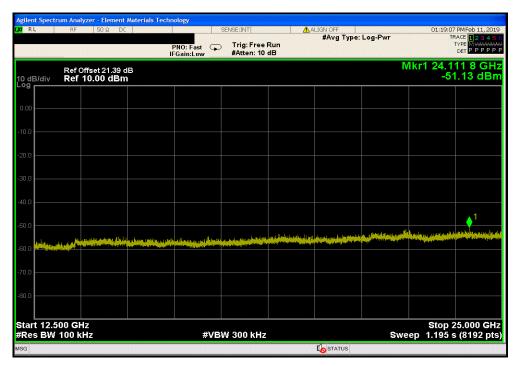
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



EUT: V1 Opal
Serial Number: 2775
Customer: APDM, Inc.
Attendees: Andrew Greenberg, David Camarillo, Gavin Gallino, Timothy Brandon, Christopher Andrews. Work Order: APDM0015
Date: 11-Feb-19
Temperature: 19.4 °C Humidity: 37.8% RH
Barometric Pres.: 1010 mbar Project: None
Tested by: Jody House & Jeff Alcoke
TEST SPECIFICATIONS Power: Battery
Test Method Job Site: EV06 FCC 15.247:2019 COMMENTS Continously transmitting. GFSK. 2 MBps. Maximum power setting. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Measured Freq (MHz) (dBc) Result Range ≤ (dBc) GFSK Low Channel, 2410 MHz Fundamental GFSK Low Channel, 2410 MHz GFSK Low Channel, 2410 MHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 4819.48 24111.83 -20 -20 Pass Pass N/A -42.25 -49.91 N/A -20 Fundamental 30 MHz - 12.5 GHz GFSK Mid Channel, 2445 MHz 2445 N/A GFSK Mid Channel, 2445 MHz 4889.51 -42.17 Pass 12.5 GHz - 25 GHz Fundamental -50.57 -20 N/A GFSK Mid Channel, 2445 MHz 24938.96 Pass GFSK High Channel, 2480 MHz 2480 N/A N/A GFSK High Channel, 2480 MHz GFSK High Channel, 2480 MHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz -20 -20 Pass Pass 4959.54 -42.35

GFSI	CLow Channel, 24	10 MHz			
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
30 MHz - 12.5 GHz	4819.48	-42.25	-20	Pass	



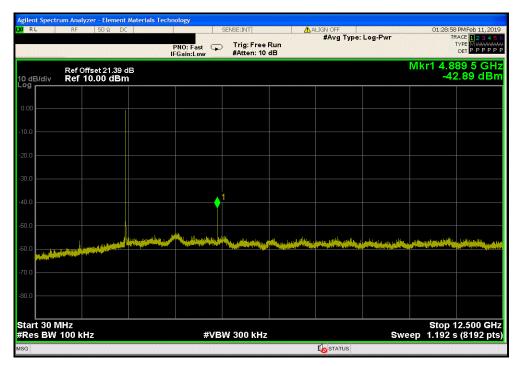
GFSK Low Channel, 2410 MHz

Frequency Measured Max Value Limit

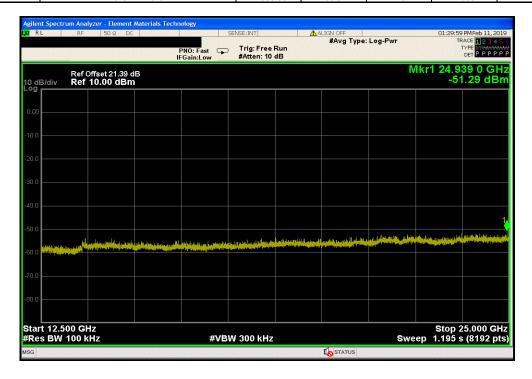
Range Freq (MHz) (dBc) ≤ (dBc) Result

12.5 GHz - 25 GHz 24111.83 -49.91 -20 Pass

	G	FSK Mid Channel, 244	15 MHz		
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
1	Fundamental	2445	N/A	N/A	N/A

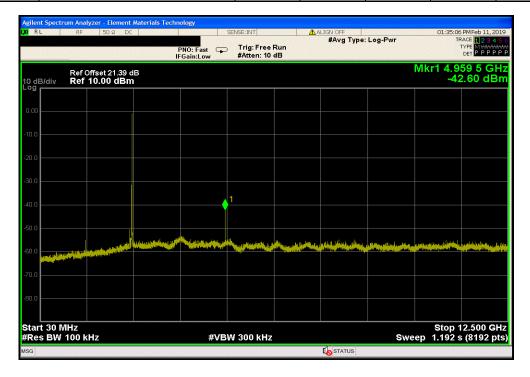


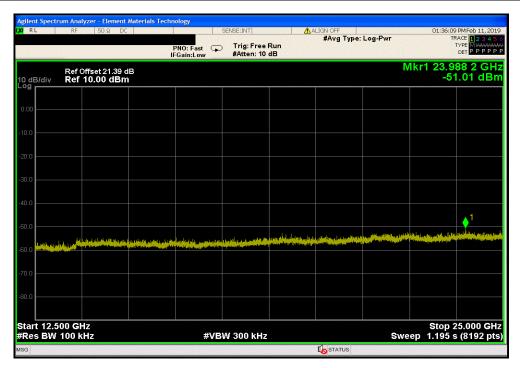
GFSK Mid Channel, 2445 MHz


Frequency Measured Max Value Limit

Range Freq (MHz) (dBc) ≤ (dBc) Result

30 MHz - 12.5 GHz 4889.51 -42.17 -20 Pass


	GFSK Mid Channel, 24	45 MHz		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
12.5 GHz - 25 (GHz 24938.96	-50.57	-20	Pass


GFSK High Channel, 2480 MHz							
	Frequency	Measured	Max Value	Limit			
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result		
	30 MHz - 12.5 GHz	4959.54	-42.35	-20	Pass		

TbtTx 2018.09.13 XMit 2017.12.13

GFSK High Channel, 2480 MHz								
Frequency	Measured	Max Value	Limit					
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result				
12.5 GHz - 25 GHz	23988.22	-50.76	-20	Pass				

