

Choose Scandinavian trust

RADIO TEST REPORT – 397888-1TRFWL

Type of assessment:

Final product testing

Applicant:

Intracom S.A. Telecom Solutions

Model:

OSDR-28-H-1008-02

FCC ID:

2AHZC-OSDR28H100802

Specifications:

- ◆ **FCC 47 CFR Part 101, Subpart C**

Date of issue: **July 27, 2020**

Andrey Adelberg, Senior EMC/RF Specialist

Tested by

Signature

David Duchesne, EMC/RF Lab Manager

Reviewed by

Signature

Company name	Nemko Canada Inc.			
Facilities	<i>Ottawa site:</i> 303 River Road Ottawa, Ontario Canada K1V 1H2	<i>Montréal site:</i> 292 Labrosse Avenue Pointe-Claire, Québec Canada H9R 5L8	<i>Cambridge site:</i> 1-130 Saltsman Drive Cambridge, Ontario Canada N3E 0B2	<i>Almonte site:</i> 1500 Peter Robinson Road West Carleton, Ontario Canada K0A 1L0
	Tel: +1 613 737 9680 Fax: +1 613 737 9691	Tel: +1 514 694 2684 Fax: +1 514 694 3528	Tel: +1 519 650 4811	Tel: +1 613 256-9117 Fax: +1 613 256-8848
Test site identifier	Organization FCC: ISED:	Ottawa/Almonte CA2040 2040 ^a -4	Montreal CA2041 2040G-5	Cambridge CA0101 24676
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of contents	3
Section 1. Report summary	4
1.1 Test specifications	4
1.2 Test methods	4
1.3 Exclusions	4
1.4 Statement of compliance	4
1.5 Test report revision history	4
Section 2. Engineering considerations	5
2.1 Modifications incorporated in the EUT for compliance	5
2.2 Technical judgment	5
2.3 Deviations from laboratory tests procedures	5
Section 3. Test conditions	6
3.1 Atmospheric conditions	6
3.2 Power supply range	6
Section 4. Measurement uncertainty	7
4.1 Uncertainty of measurement	7
Section 5. Information provided by the applicant	8
5.1 Disclaimer	8
5.2 Applicant/Manufacture	8
5.3 EUT information	8
5.4 Radio technical information	8
5.5 EUT setup details	9
Section 6. Summary of test results	10
6.1 Testing location	10
6.2 Testing period	10
6.3 Sample information	10
6.4 FCC Part 101 requirements test results	10
Section 7. Test equipment	11
7.1 Test equipment list	11
Section 8. Testing data	12
8.1 Number of frequencies	12
8.2 Transmitter power limitations	13
8.3 Emission limitations	16
8.4 Occupied bandwidth	25
8.5 Frequency stability	28
8.6 Modulation characteristics	29
Section 9. Block diagrams of test set-ups	30
9.1 Radiated emissions set-up for frequencies below 1 GHz	30
9.2 Radiated emissions set-up for frequencies above 1 GHz	30
9.3 Antenna port set-up	31

Section 1. Report summary

1.1 Test specifications

FCC 47 CFR Part 101, Subpart C	Fixed Microwave Services
--------------------------------	--------------------------

1.2 Test methods

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
FCC 47 CFR Part 2, Subpart J	Equipment authorization procedures
KDB 971168 D01	Power Meas License Digital Systems v03r01

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	July 27, 2020	Original report issued

Section 2. Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

EUT can operate with modulations up to 1024-QAM. However everything was tested with 4-QAM operation, which was verified as a worst case in respect to the performance, power and emissions

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3. Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 4. Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of $K = 2$ with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

Test name	Measurement uncertainty, \pm dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 5. Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Intracom S.A. Telecom Solutions
Applicant address	19.7 km Markopoulou Ave., Peania, Athens GR-19002 Greece
Manufacture name and address	Same as applicant

5.3 EUT information

Product	Point-to-Multipoint Gigabit Radio 28 GHz (BS or HUB)
Model	OSDR-28-H-1008-02
Model variant	OSDR-28
Brand	WiBAS
Serial number	321907296635
Part number	KZ00-659/85.33
Power supply requirements	AC: 90–240 V _{AC} 50/60 Hz (via PoE) or DC: -48 V _{DC} (via PONE)
Product description and theory of operation	WiBAS™-OSDR is an all-outdoor hub radio operating at area-licensed band (28 GHz) offering the highest capacity and the most dense PtMP deployment available in the market. This radio delivers state-of-the-art IP connectivity for Fixed Wireless Access (FWA) networks and perfectly suits the operator needs for zero-footprint installations at homes and business subscriber locations. It is based on a software defined radio platform, which provides future-proof deployments and feature enhancements through software licensing. WiBAS™-OSDR combines sophisticated QoS features and robust performance with a highly-efficient operation. The electronics – baseband unit / modem / controller and radio circuitry – are all securely accommodated in a lightweight, environmentally hardened housing that is directly coupled to the antenna. Service area can extend more than 10 km from the hub location (clear sky conditions).

5.4 Radio technical information

Operating band	29.10–29.25 GHz
Frequency Min (MHz)	29,130.50
Frequency Max (MHz)	29,221.50
RF power Max (W), Conducted	0.148 (21.7 dBm)
Field strength, dB _μ V/m @ 3 m	N/A
Measured BW (kHz), 99% OBW	53526
Type of modulation	Up to 1024-QAM
Emission classification	W7D
Transmitter spurious, dB _μ V/m @ 3 m	70.23 at 98.8 GHz
Antenna information	Sectoral 90° MN: SEC90-28G-HG-VPOL by faini telecommunication systems with 19 dBi maximum gain Sectoral 90° MN: SEC90-28G-HG-HPOL by faini telecommunication systems with 19 dBi maximum gain Sectoral 90° MN: SEC90-28G-SG-VPOL by faini telecommunication systems with 15 dBi maximum gain Sectoral 90° MN: SEC90-28G-SG-HPOL by faini telecommunication systems with 15 dBi maximum gain

5.5 EUT setup details

5.5.1 Radio exercise details

Operating conditions	<p>EUT was controlled from external PC using WebGUI. Channel BW of 56 MHz, Power setting of 18 dBm</p> <p>System SW Release: 7.1.0_2302_B.3.2.0.build_07</p> <p>Use a PC to manage the equipment, for specific tests, the low-level telnet is required.</p> <p>The PC must have an IP (for example)</p> <p>10.10.10.200</p> <p>255.255.255.0</p> <p>Use of a telnet: PuTTY or other software for telnet using the equipment IP</p> <p>Username: admin</p> <p>Password: admin</p> <p>The units have the following IP addresses:</p> <p>High Unit: BS (Hub): 10.10.10.100</p> <p>Commands (tx freq value, tx power value, mute on/off):</p> <pre>modify wphy rfuconf rfluid 1 txfreq 29228000 txpower 18 mute off for freq_stability test: !!\$shell sudo mdmtest setup test cw</pre>
----------------------	---

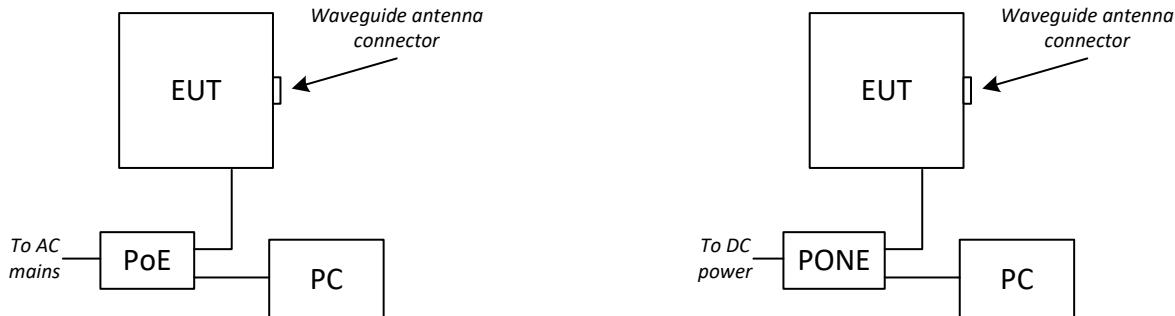

5.5.2 EUT setup configuration

Table 5.5-1: EUT interface ports

Description	Qty.
GbE (RJ-45) Traffic / inband NMS / PoE input	1
GbE (SFP) Traffic / inband NMS	1
GbE (RJ-45) OSDR protection	1
FE (RJ-45) Outband NMS / PoE input	1
GbE (RJ-45) Reserved	1

Table 5.5-2: Support equipment

Description	Brand name	Model, Part number, Serial number, Revision level
POE	Intracom	SN: PT1936210309, MN: PT-PSE106GWN-AR, Ver. 5.0, OC: POE-ID-AC72
PONE injector, outdoor	Intracom	SN: 321904188530; MN: PONE-OD-DC; PN: KZ00-65A/60.39
Laptop	Dell	Nemko Asset: FA002852

Figure 5.5-1: Setup block diagram

Section 6. Summary of test results

6.1 Testing location

Test location (s)	Ottawa
-------------------	--------

6.2 Testing period

Test start date	May 25, 2020	Test end date	May 29, 2020
-----------------	--------------	---------------	--------------

6.3 Sample information

Receipt date	May 21, 2020	Nemko sample ID number(s)	1
--------------	--------------	---------------------------	---

6.4 FCC Part 101 requirements test results

Table 6.4-1: FCC requirements results

FCC P1001 Paragraph	FCC P2 Paragraph	Test description	Verdict
§101.107(a)	§2.1055	Frequency stability	Pass
§101.109(c)	§2.1049	Occupied Bandwidth	Pass
§101.111(a)(2)	§2.1053	Band edge / spectrum mask additional emissions limitations	Pass
§101.111(a)(2)	§2.1053	Spurious Emissions	Pass
§101.113(a)	§2.1051	RF Power Output	Pass
§101.113(a)	§2.1051	Spectral Density	Pass

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 24, 2021
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR
Controller	Sunol	SC104V	FA002060	—	NCR
Antenna mast	Sunol	TLT2	FA002061	—	NCR
61505 AC source	Chroma	61509	FA003036	—	VOU
DC Power source	Ametek	SGA80X125C-0AAA	FA002737	—	VOU
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	November 8, 2020
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	October 31, 2020
Horn (1–18 GHz)	ETS Lindgren	3117	FA002840	1 year	January 25, 2021
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002873	1 year	November 4, 2020
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	January 14, 2021
Horn antenna (18–40 GHz)	EMCO	3116	FA001847	1 year	November 7, 2020
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	—	VOU
Pre-amplifier (26–40 GHz)	Narda	DBL-2640N610	FA001556	—	VOU
40–60 GHz Harmonic mixer	OML	WR19 M19HWD	FA002322	3 year	July 29, 2022
40–60 GHz Standard gain horn	Millitech	U SGH-19	FA002322a	—	VOU
60–90 GHz Harmonic mixer	OML	WR12 M12HWD	FA001524	3 year	July 29, 2022
60–90 GHz Standard gain horn	Millitech	U SGH-12	FA001524a	—	VOU
90–140 GHz Harmonic mixer	OML	WR08 M08HWD	FA001525	3 year	July 29, 2022
90–140 GHz Standard gain horn	Millitech	U SGH-08	FA001525a	—	VOU
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	January 7, 2021

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 Number of frequencies

8.1.1 References, definitions and limits

ANSI C63.26, Clause 5.1.2:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in table below.

Table 8.1-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.1.2 Test summary

Verdict	Pass		
Tested by	Andrey Adelberg	Test date	May 29, 2020

8.1.3 Observations, settings and special notes

None

8.1.4 Test data

Table 8.1-2: Test channels selection

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
29100	29250	150	29130.50	29179.50	29221.50

8.2 Transmitter power limitations

8.2.1 References, definitions and limits

FCC §101.113:

- (a) On any authorized frequency, the average power delivered to an antenna in this service must be the minimum amount of power necessary to carry out the communications desired. Application of this principle includes, but is not to be limited to, requiring a licensee who replaces one or more of its antennas with larger antennas to reduce its antenna input power by an amount appropriate to compensate for the increased primary lobe gain of the replacement antenna(s). In no event shall the average equivalent isotropically radiated power (EIRP), as referenced to an isotropic radiator, exceed the values specified below. In cases of harmful interference, the Commission may, after notice and opportunity for hearing, order a change in the effective radiated power of this station. Further, the output power of a transmitter on any authorized frequency in this service may not exceed the following.
- (c)(1) Transmitter power limitations. Point-to-point stations in the 29.1–29.25 GHz band for the LMDS backbone between LMDS hubs shall be limited to a maximum allowable e.i.r.p. density per carrier of 23 dBW/MHz (53 dBm/MHz) in any one megahertz in clear air, and may exceed this limit by employment of adaptive power control in cases where link propagation attenuation exceeds the clear air value due to precipitation and only to the extent that the link is impaired.
- (2) Hub transmitter EIRP spectral area, density limit. LMDS applicants shall demonstrate that, under clear air operating conditions, the maximum aggregate of LMDS transmitting hub stations in a Basic Trading Area in the 29.1–29.25 GHz band will not transmit a co-frequency hub-to-subscriber e.i.r.p. spectral area density in any azimuthal direction in excess of X dBW/(MHz·km²) when averaged over any 4.375 MHz band, where X is defined in Table 1. Individual hub stations may exceed their clear air e.i.r.p.s by employment of adaptive power control in cases where link propagation attenuation exceeds the clear air value and only to the extent that the link is impaired.

Table 1

Climate zone	e.i.r.p. Spectral Density (Clear Air) (dBW/MHz·km ²)
1	-23
2	-25
3,4,5	-26

LMDS system licensees in two or more BTAs may individually or collectively deviate from the spectral area density computed above by averaging the power over any 200 km by 400 km area, provided that the aggregate interference to the satellite receiver is no greater than if the spectral area density were as specified in Table 1. A showing to the Commission comparing both methods of computation is required and copies shall be served on any affected non-GSO 20/30 GHz MSS providers.

- (3) Hub transmitter e.i.r.p. spectral area density limit at elevation angles above the horizon. LMDS applicants shall demonstrate that, under clear air operating conditions, the maximum aggregate of LMDS transmitting hub stations in a Basic Trading Area in the 29.1–29.25 GHz band will not transmit a co-frequency hub-to-subscriber e.i.r.p. spectral area density in any azimuthal direction in excess of X dBW/(MHz·km²) when averaged over any 4.375 MHz band where X is defined in Table 2. Individual hub stations may exceed their clear air e.i.r.p.s by employment of adaptive power control in cases where link propagation attenuation exceeds the clear air value and only to the extent that the link is impaired.

Table 2

Elevation angle (a)	Relative e.i.r.p. density (dBW/MHz·km ²)
$0^\circ \leq a \leq 4.0^\circ$	$e.i.r.p.(a) = e.i.r.p.(0^\circ) + 20 \log(\sin \pi a)(1/\pi a)$ where $a = (a + 1)/7.5^\circ$.
$4.0^\circ < a \leq 7.7^\circ$	$e.i.r.p.(a) = e.i.r.p.(0^\circ) - 3.85a + 7.7$.
$a > 7.7^\circ$	$e.i.r.p.(a) = e.i.r.p.(0^\circ) - 22$.

- (ii) LMDS system licensees in two or more BTAs may individually or collectively deviate from the spectral area density computed above by averaging the power over any 200 km by 400 km area, provided that the aggregate interference to the satellite receiver is no greater than if the spectral area density were as specified in Table 1. A showing to the Commission comparing both methods of computation is required and copies shall be served on any affected non-GSO 20/30 GHz MSS providers.

8.2.2 Test summary

Verdict	Pass	Test date	May 26, 2020
Tested by	Andrey Adelberg		

8.2.3 Observations, settings and special notes

EUT is a Point-to-multipoint radio (HUB/Base station).

Power spectral density was done using the following settings:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 MHz
Frequency span:	200 MHz
Detector mode:	RMS
Trace mode:	Power average

8.2.4 Test data

Table 8.2-1: EIRP measurements results for EC90-28G-HG antenna

Frequency, GHz	Conducted power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP, dBW/MHz	EIRP limit, dBW/MHz	EIRP margin, dB
29.1305	6.03	19.00	25.03	-4.97	23.00	27.97
29.1795	4.86	19.00	23.86	-6.14	23.00	29.14
29.2215	5.47	19.00	24.47	-5.53	23.00	28.53

Table 8.2-2: EIRP measurements results for EC90-28G-SG antenna

Frequency, GHz	Conducted power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP, dBW/MHz	EIRP limit, dBW/MHz	EIRP margin, dB
29.1305	6.03	15.00	21.03	-8.97	23.00	31.97
29.1795	4.86	15.00	19.86	-10.14	23.00	33.14
29.2215	5.47	15.00	20.47	-9.53	23.00	32.53

Table 8.2-3: EIRP measurements results at elevation angles for EC90-28G-HG antenna

Frequency, GHz	Conducted Power density, dBm/MHz	Max antenna gain at >7.7° elevation*, dBi	EIRP, dBm/MHz	EIRP, dBW/MHz	EIRP limit**, dBW/MHz	EIRP margin, dB
29.1305	6.03	10.50	16.53	-13.47	1.00	14.47
29.1795	4.86	10.50	15.36	-14.64	1.00	15.64
29.2215	5.47	10.50	15.97	-14.03	1.00	15.03

Note: * antenna elevation gain was taken from antenna documentation

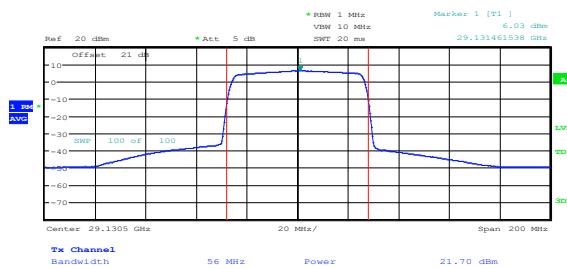
** The EIRP limit at elevation angle above 7.7 degrees is: e.i.r.p.(0°) – 22 dB.

The limit at climate zone 1 (based on table 1) is –23 dBW/MHz, therefore the elevation limit was calculated as follows: 23 – 22 = 1 dBW/MHz

Table 8.2-4: EIRP measurements results at elevation angles for EC90-28G-SG antenna

Frequency, GHz	Conducted Power density, dBm/MHz	Max antenna gain at >7.7° elevation*, dBi	EIRP, dBm/MHz	EIRP, dBW/MHz	EIRP limit**, dBW/MHz	EIRP margin, dB
29.1305	6.03	4.00	10.03	-19.97	1.00	20.97
29.1795	4.86	4.00	8.86	-21.14	1.00	22.14
29.2215	5.47	4.00	9.47	-20.53	1.00	21.53

Note: * antenna elevation gain was taken from antenna documentation


** The EIRP limit at elevation angle above 7.7 degrees is: e.i.r.p.(0°) – 22 dB.

The limit at climate zone 1 (based on table 1) is –23 dBW/MHz, therefore the elevation limit was calculated as follows: 23 – 22 = 1 dBW/MHz

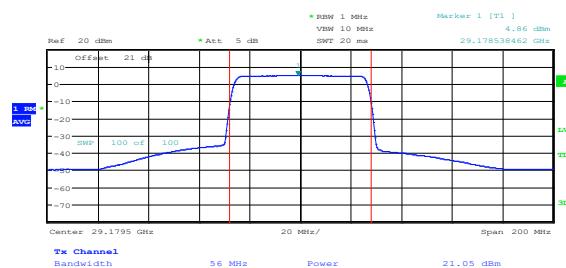

Test data, continued

Table 8.2-5: Total channel power

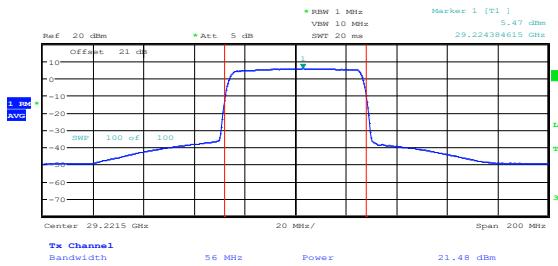

Frequency, GHz	Conducted channel power, dBm	Conducted channel power, W
29.1305	21.70	0.148
29.1795	21.05	0.127
29.2215	21.48	0.141

Figure 8.2-1: Power and PSD on low channel

Figure 8.2-2: Power and PSD on mid channel

Figure 8.2-3: Power and PSD on high channel

8.3 Emission limitations

8.3.1 References, definitions and limits

FCC §101.111:

- (a) The mean power of emissions must be attenuated below the mean output power of the transmitter in accordance with the following schedule:
- (2) When using transmissions employing digital modulation techniques (see §101.141(b)) in situations not covered in this section:
- (ii) For operating frequencies above 15 GHz, in any 1 MHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 250 percent of the authorized bandwidth: As specified by the following equation but in no event less than 11 decibels:
$$A = 11 + 0.4(P-50) + 10 \times \log_{10} B. \text{ (Attenuation greater than 56 decibels or to an absolute power of less than } -13 \text{ dBm/1MHz is not required.)}$$
- (iii) In any 1 MHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log_{10}$ (the mean output power in watts) decibels, or 80 decibels, whichever is the lesser attenuation. The authorized bandwidth includes the nominal radio frequency bandwidth of an individual transmitter/modulator in block-assigned bands.
- (iv) The emission mask for LMDS shall use the equation in paragraph (a)(2)(ii) of this section and apply it only to the band edge of each block of spectrum, but not to subchannels established by licensees. The value of P in the equation is the percentage removed from the carrier frequency and assumes that the carrier frequency is the center of the actual bandwidth used. The emission mask can be satisfied by locating a carrier of the subchannel sufficiently far from the channel edges so that the emission levels of the mask are satisfied. The LMDS emission mask shall use a value B (bandwidth) of 40 MHz, for all cases even in the case where a narrower subchannel is used (for instance the actual bandwidth is 10 MHz) and the mean output power used in the calculation is the sum of the output power of a fully populated channel. For block assigned channels, the out-of-band emission limits apply only outside the assigned band of operation and not within the band.

8.3.2 Test summary

Verdict	Pass	
Tested by	Andrey Adelberg	Test date

8.3.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to 100 GHz. No unintentional emissions were detected.

Measurement distances used were: 1–18 GHz at 3 m, 18–40 GHz at 1 m, 40–100 GHz at 0.03 m.

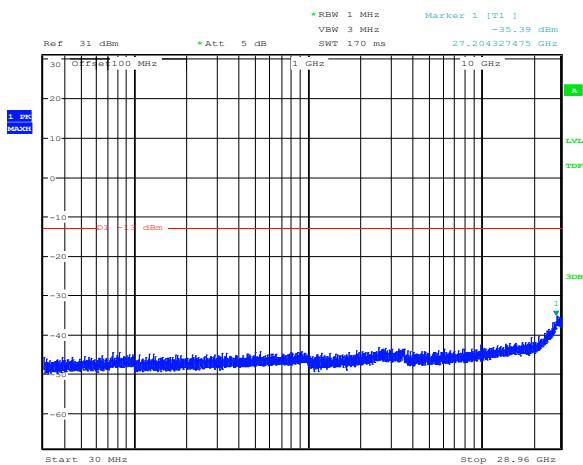
A 50-ohm matching impedance network and attenuation was used during testing. Cabinet radiation was done with antenna port terminated with 50-ohm load.

Authorized channel bandwidth is 56 MHz. 250% of the authorized bandwidth is $56 \times 2.5 = 140$ MHz.

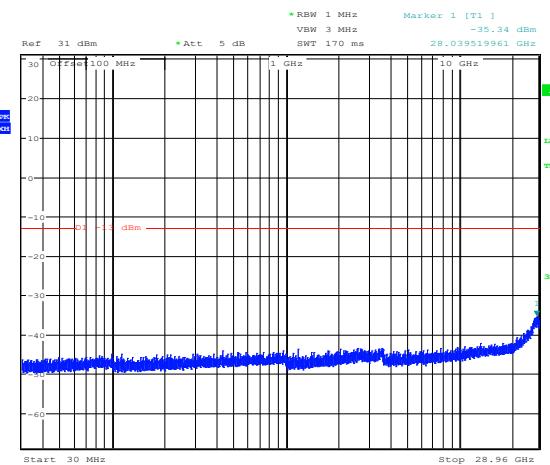
OOB frequencies calculation:

$29.100 \text{ GHz} - 140 \text{ MHz} = 28.960 \text{ GHz}$.

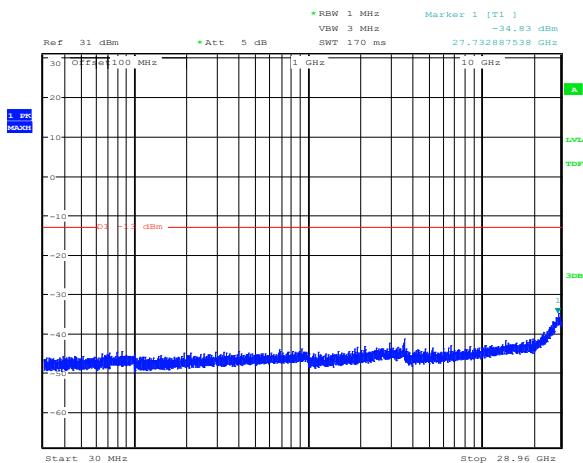
$29.250 \text{ GHz} + 140 \text{ MHz} = 29.390 \text{ GHz}$

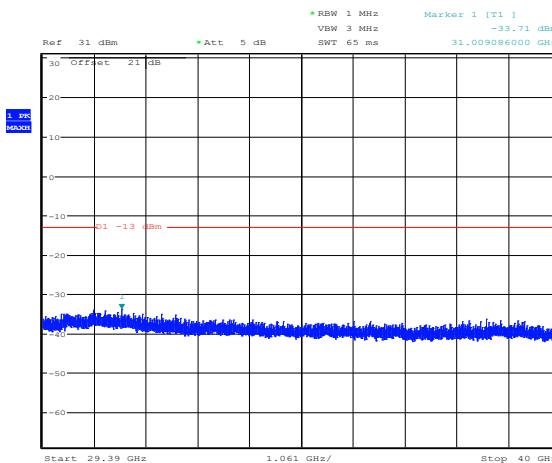

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

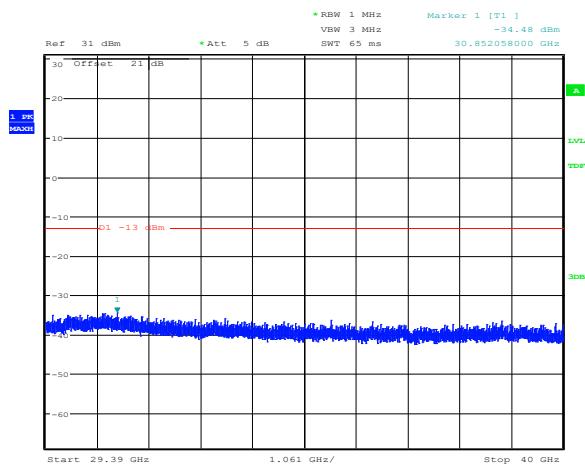
Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

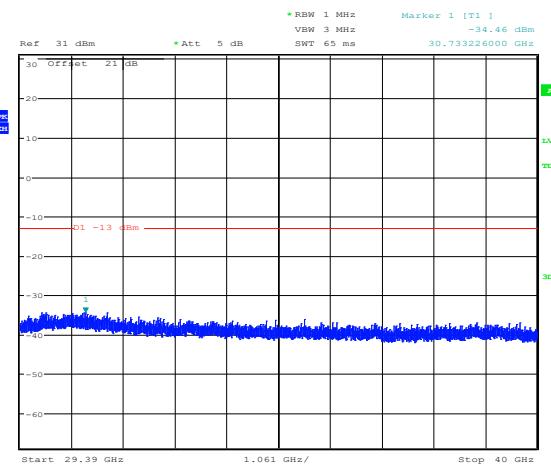

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

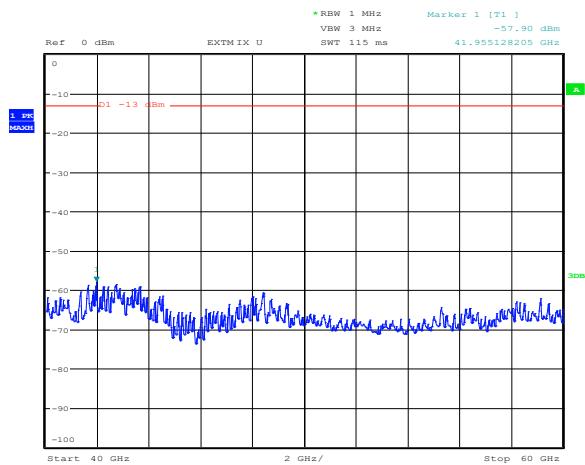
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold


8.3.4 Test data


Figure 8.3-1: Conducted spurious emissions 30 MHz to 28.96 GHz at low channel


Figure 8.3-2: Conducted spurious emissions 30 MHz to 28.96 GHz at mid channel


Figure 8.3-3: Conducted spurious emissions 30 MHz to 28.96 GHz at high channel


Figure 8.3-4: Conducted spurious emissions 29.39–40 GHz at low channel

Test data, continued

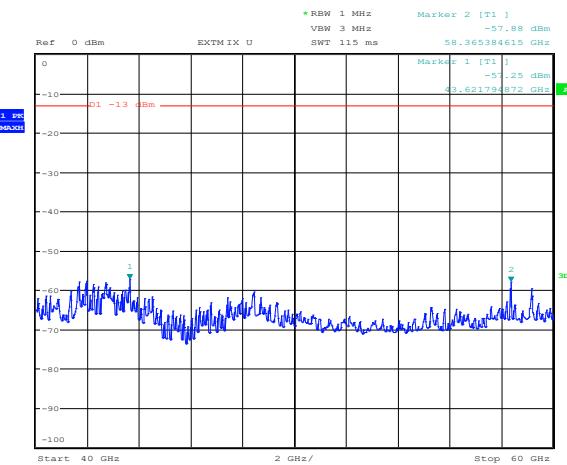

Figure 8.3-5: Conducted spurious emissions 29.39–40 GHz at mid channel

Figure 8.3-6: Conducted spurious emissions 29.39–40 GHz at high channel

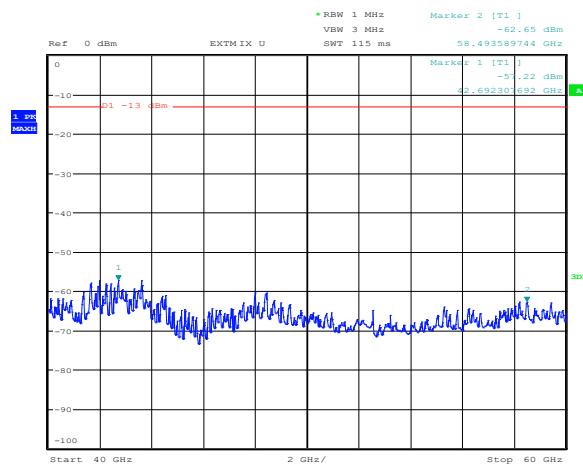


Figure 8.3-7: Conducted spurious emissions 40–60 GHz at low channel

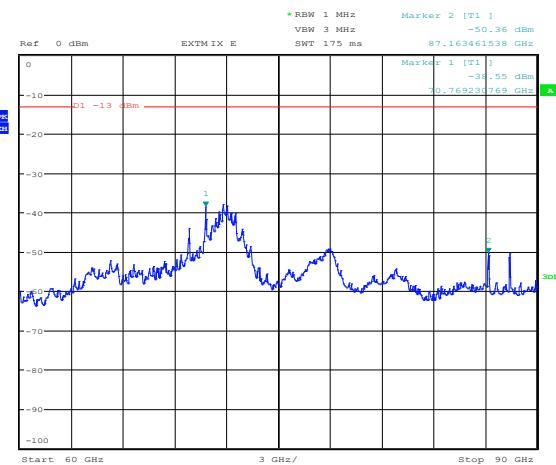
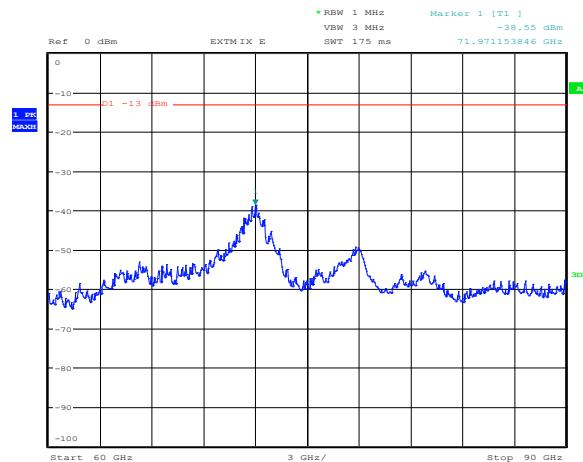


Figure 8.3-8: Conducted spurious emissions 40–60 GHz at mid channel


Test data, continued

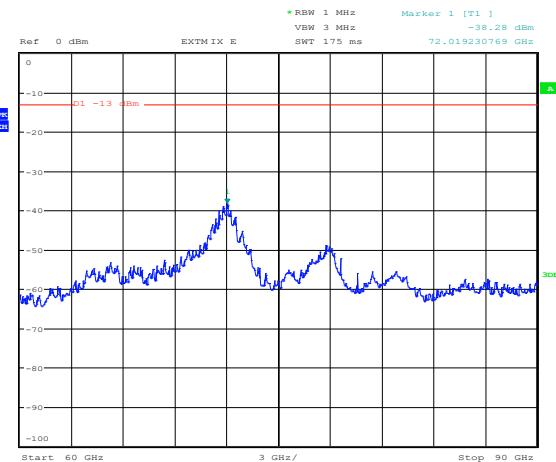

Figure 8.3-9: Conducted spurious emissions 40–60 GHz at high channel

Figure 8.3-10: Conducted spurious emissions 60–90 GHz at low channel

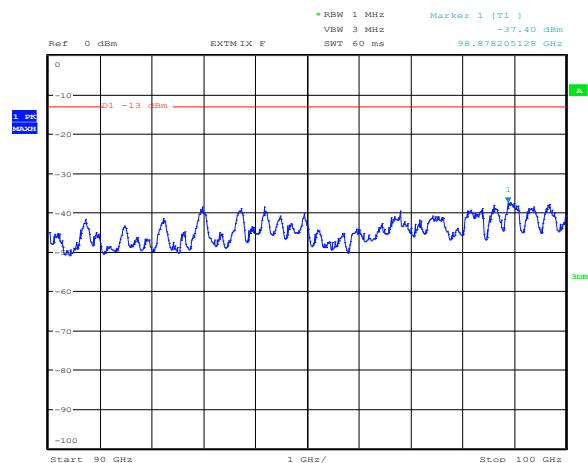


Figure 8.3-11: Conducted spurious emissions 60–90 GHz at mid channel

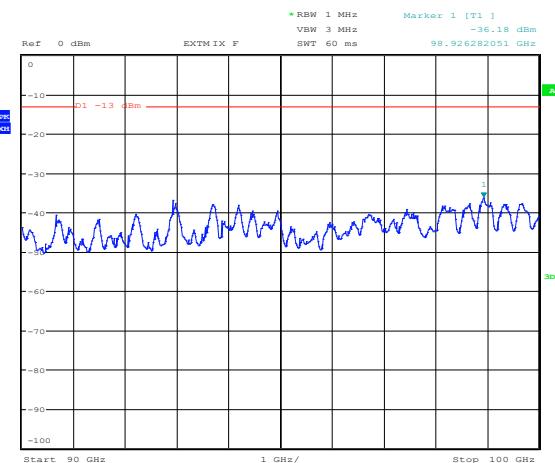


Figure 8.3-12: Conducted spurious emissions 60–90 GHz at high channel

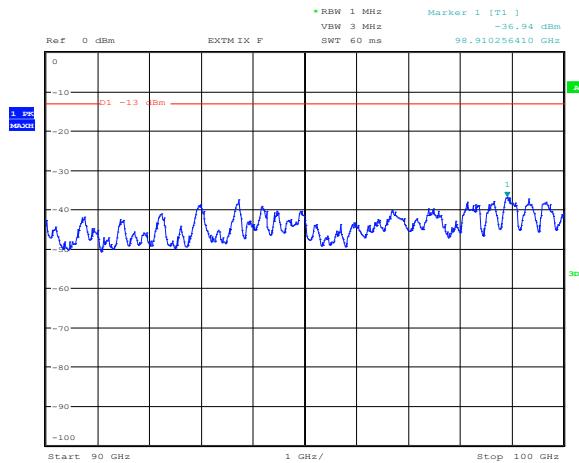

Test data, continued

Figure 8.3-13: Conducted spurious emissions 90–100 GHz at low channel

Figure 8.3-14: Conducted spurious emissions 90–100 GHz at mid channel

Figure 8.3-15: Conducted spurious emissions 90–100 GHz at high channel

Test data, continued

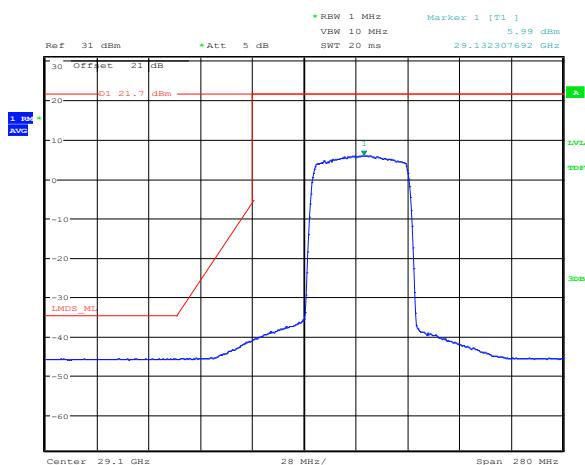


Figure 8.3-16: Emission mask at low channel

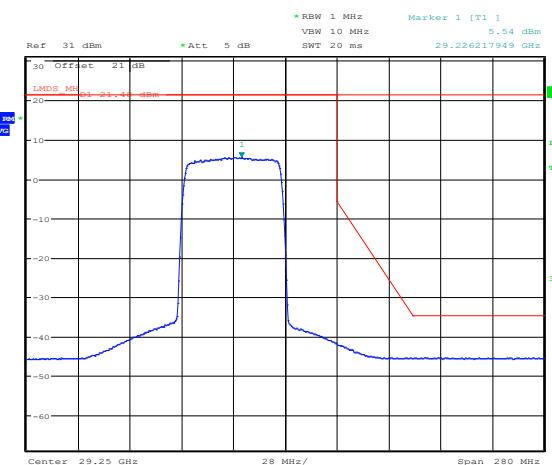


Figure 8.3-17: Emission mask at high channel

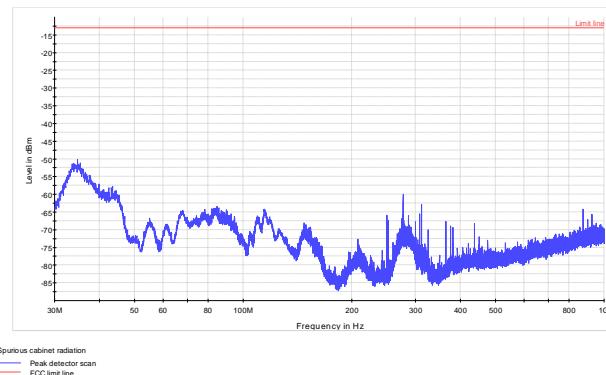


Figure 8.3-18: Radiated spurious emissions 30–1000 MHz, low channel

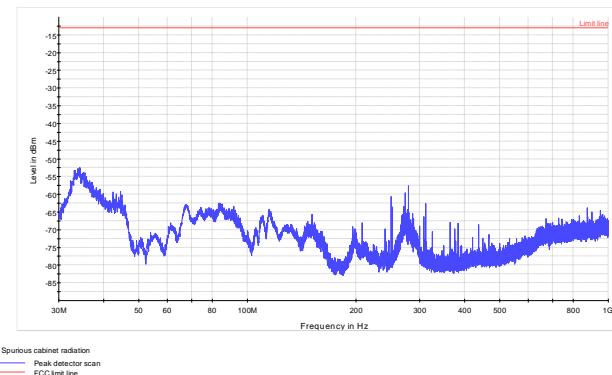
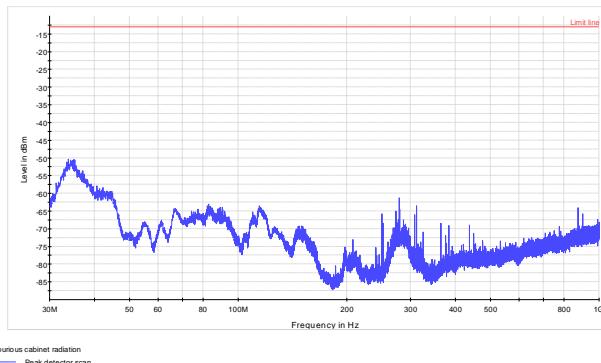
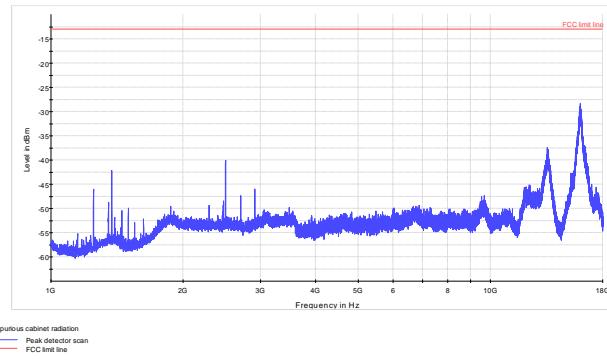
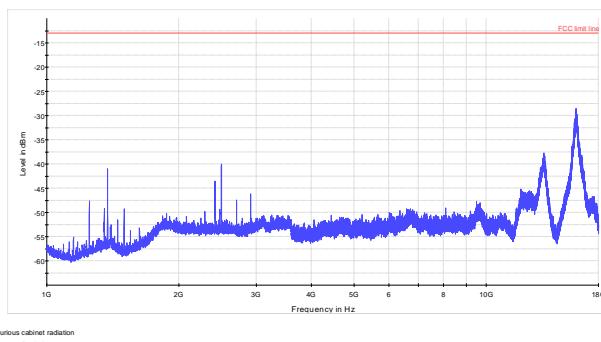
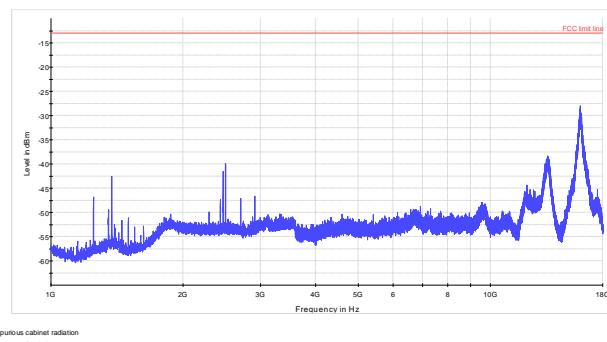
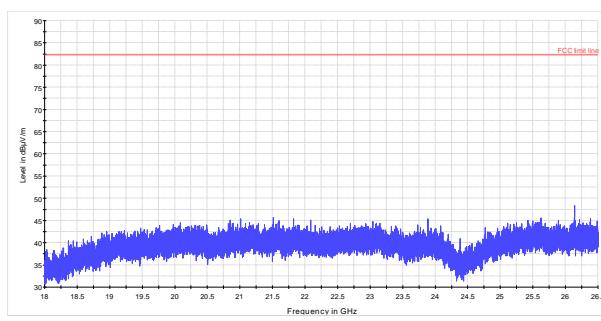




Figure 8.3-19: Radiated spurious emissions 30–1000 MHz, mid channel


Test data, continued


Figure 8.3-20: Radiated spurious emissions 30–1000 MHz, high channel


Figure 8.3-21: Radiated spurious emissions 1–18 GHz, low channel

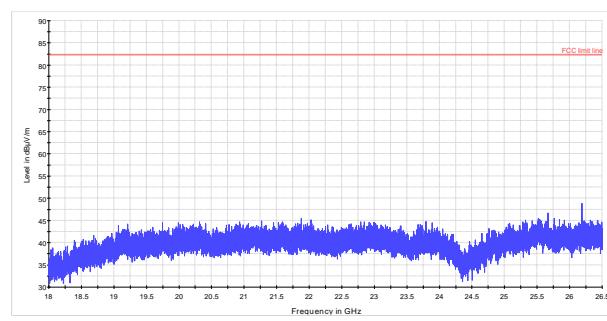

Figure 8.3-22: Radiated spurious emissions 1–18 GHz, mid channel

Figure 8.3-23: Radiated spurious emissions 1–18 GHz, high channel

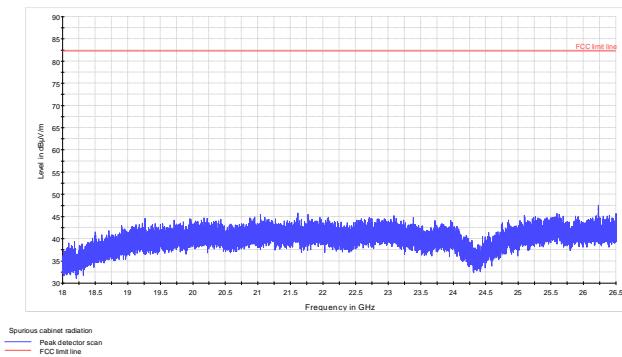


Figure 8.3-24: Radiated spurious emissions 18–26.5 GHz, low channel

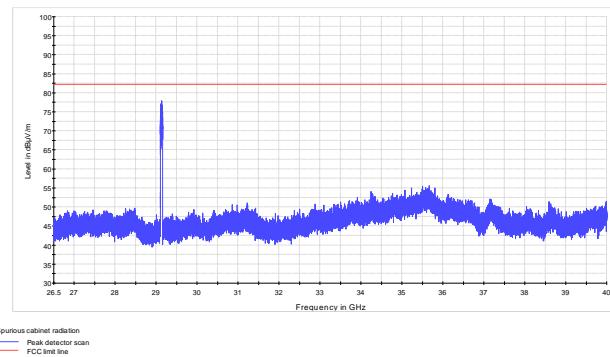
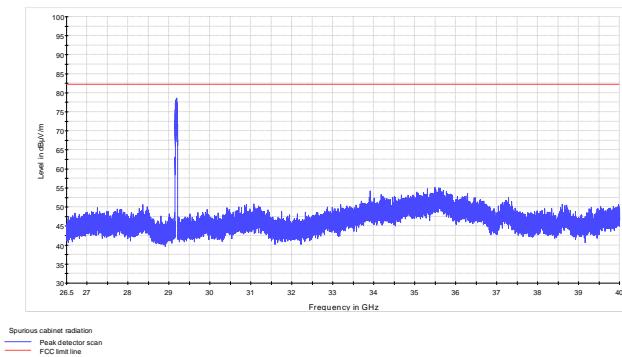
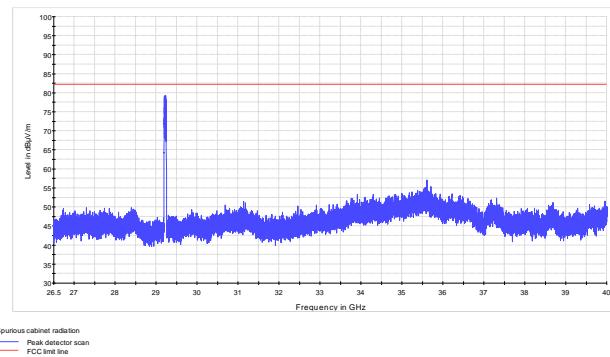
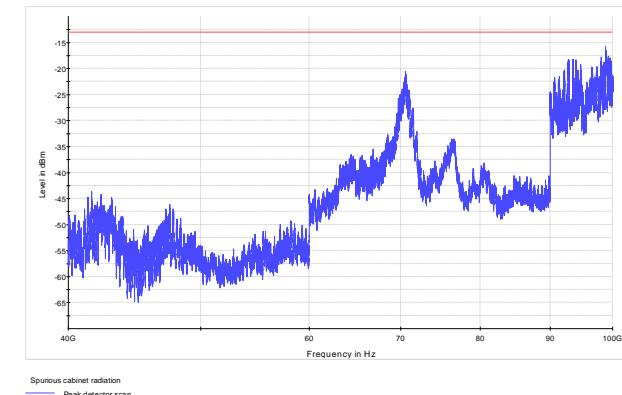


Figure 8.3-25: Radiated spurious emissions 18–26.5 GHz, mid channel


Test data, continued


Figure 8.3-26: Radiated spurious emissions 18–26.5 GHz, high channel


Figure 8.3-27: Radiated spurious emissions 26.5–40 GHz, low channel

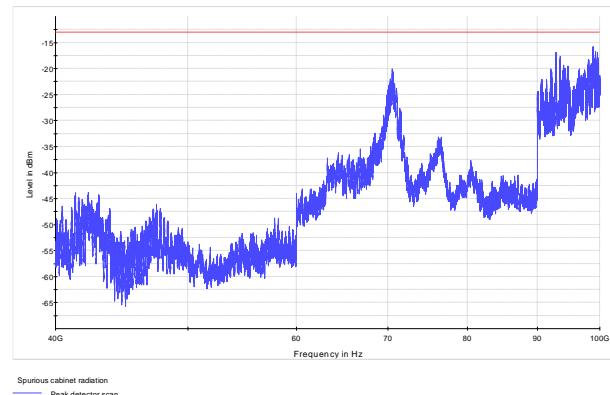

Figure 8.3-28: Radiated spurious emissions 26.5–40 GHz, mid channel

Figure 8.3-29: Radiated spurious emissions 26.5–40 GHz, high channel

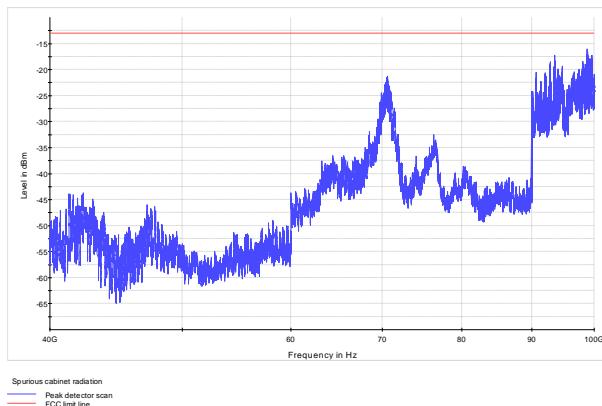

Figure 8.3-30: Radiated spurious emissions 40–100 GHz, low channel

Figure 8.3-31: Radiated spurious emissions 40–100 GHz, mid channel

Test data, continued

Figure 8.3-32: Radiated spurious emissions 40–100 GHz, high channel

8.4 Occupied bandwidth

8.4.1 References, definitions and limits

FCC §2.1049:

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC §101.109:

- (a) Each authorization issued pursuant to these rules will show, as the emission designator, a symbol representing the class of emission which must be prefixed by a number specifying the necessary bandwidth. This figure does not necessarily indicate the bandwidth actually occupied by the emission at any instant. In those cases where part 2 of this chapter does not provide a formula for the computation of the necessary bandwidth, the occupied bandwidth may be used in the emission designator.
- (b) Stations in this service will be authorized any type of emission, method of modulation, and transmission characteristic, consistent with efficient use of the spectrum and good engineering practice, except that Type B, damped-wave emission will not be authorized.
- (c) The maximum bandwidth which will be authorized per 29.100 to 29.250 GHz frequency band is 150 MHz. Regardless of the maximum authorized bandwidth specified for each frequency band, the Commission reserves the right to issue a license for less than the maximum bandwidth if it appears that a lesser bandwidth would be sufficient to support an applicant's intended communications.

8.4.2 Test summary

Verdict	Pass
Tested by	Andrey Adelberg

Test date

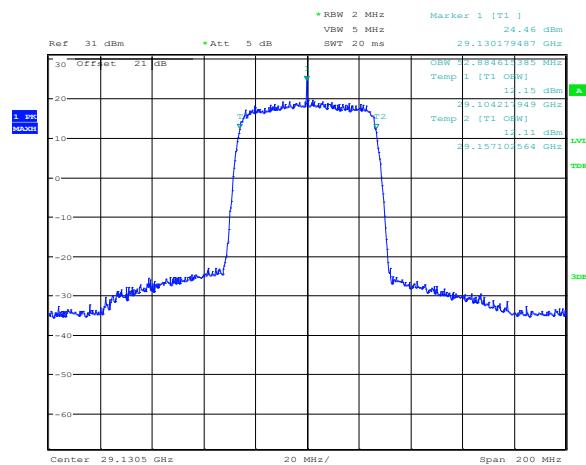
May 26, 2020

8.4.3 Observations, settings and special notes

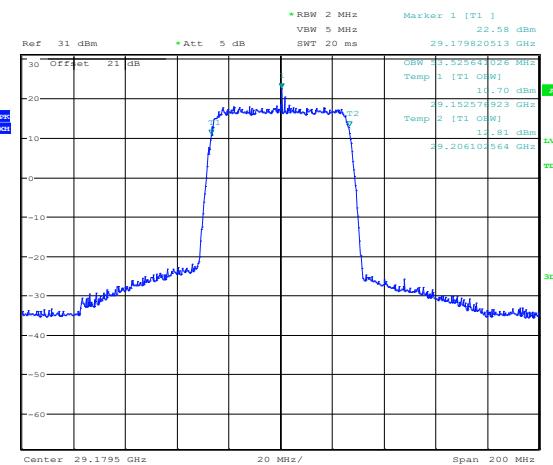
Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of span
Video bandwidth	RBW × 3
Trace mode	Max Hold

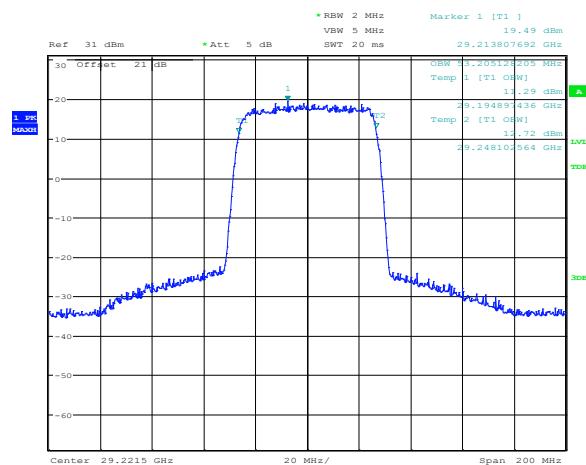
8.4.4 Test data


Table 8.4-1: Occupied Bandwidth results

Frequency, MHz	99% OBW, MHz	Limit, MHz	Margin, MHz
29130.500	52.885	150.000	97.115
29179.500	53.526	150.000	96.474
29221.500	53.205	150.000	96.795


Table 8.4-2: Emission Bandwidth results

Frequency, MHz	26 dB BW, MHz
29130.500	59.615
29179.500	59.936
29221.500	59.615


Test data, continued

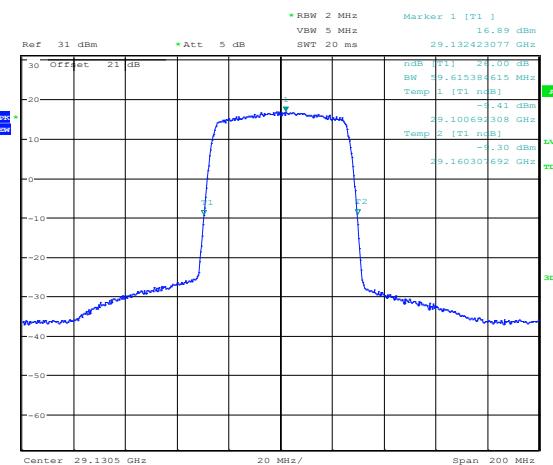

Figure 8.4-1: 99% OBW on low channel

Figure 8.4-2: 99% OBW on mid channel

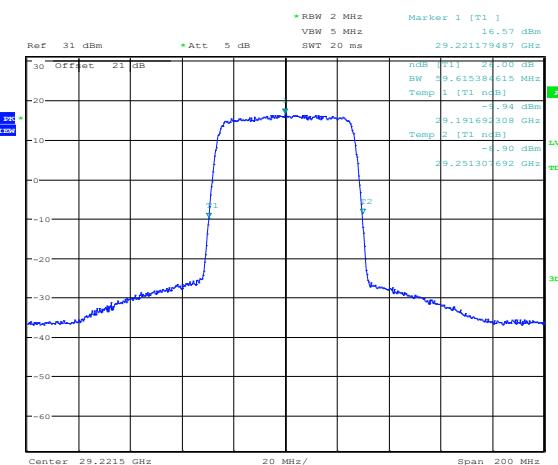
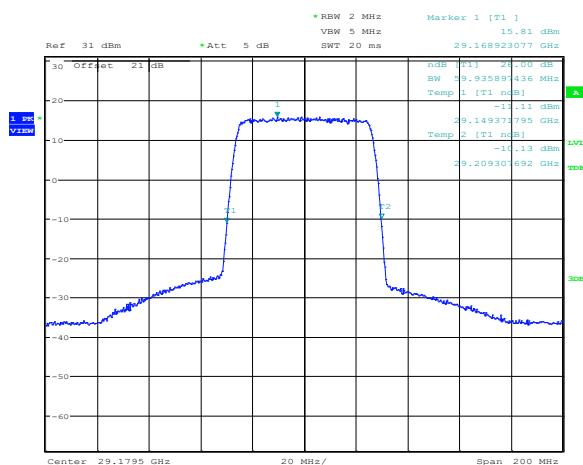



Figure 8.4-3: 99% OBW on high channel

Figure 8.4-4: 26 dB BW on low channel

Test data, continued

8.5 Frequency stability

8.5.1 References, definitions and limits

FCC §101.107:

(a) The carrier frequency of each transmitter authorized in these services must be maintained within the following percentage of the reference frequency except as otherwise provided in paragraph (b) of this section or in the applicable subpart of this part (unless otherwise specified in the instrument of station authorization the reference frequency will be deemed to be the assigned frequency): 29.1–29.25 GHz is 0.001%

8.5.2 Test summary

Verdict	Pass		
Tested by	Andrey Adelberg	Test date	May 28, 2020

8.5.3 Observations, settings and special notes

None

8.5.4 Test data

Table 8.5-1: Frequency drift

Test conditions	Frequency, Hz	Drift, %	Limit, ±%	Margin, %
+50 °C, Nominal voltage	29.220936218	0.000007515	0.001000000	-99.248
+40 °C, Nominal voltage	29.220934319	0.000001016	0.001000000	-99.898
+30 °C, Nominal voltage	29.220934054	0.000000110	0.001000000	-99.989
+20 °C, Nominal voltage +15 %	29.220934025	0.000000010	0.001000000	-99.999
+20 °C, Nominal voltage	29.220934022		Reference	
+20 °C, Nominal voltage -15 %	29.220934039	0.000000058	0.001000000	-99.994
+10 °C, Nominal voltage	29.220934872	0.000002909	0.001000000	-99.709
0 °C, Nominal voltage	29.220953357	0.000066168	0.001000000	-93.383
-10 °C, Nominal voltage	29.220885378	-0.000166470	0.001000000	-83.353
-20 °C, Nominal voltage	29.220860553	-0.000251426	0.001000000	-74.857

Notes: Drift percentage calculation:

$(F_M - F_R) / F_R \times 100\%$ where F_M is measured frequency, F_R is a reference frequency at 20 °C and nominal voltage.

Margin calculation:

$(\%_D - \%_L) / \%_L \times 100\%$ where $\%_D$ is a frequency drift percentage, $\%_L$ is a limit.

8.6 Modulation characteristics

8.6.1 References, definitions and limits

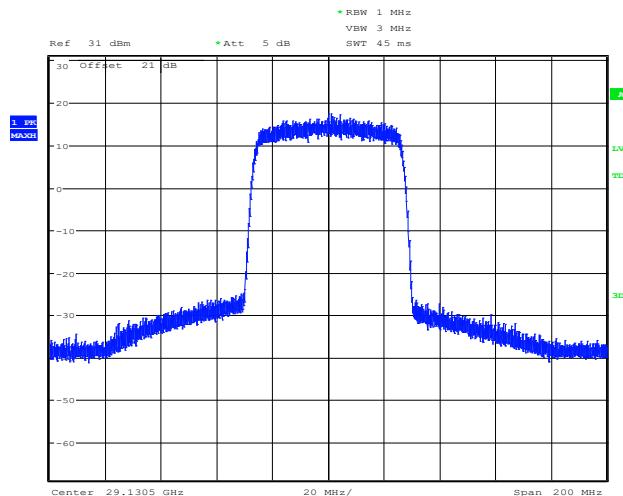
FCC §2.1047:

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

8.6.2 Test summary

Verdict	Pass		
Tested by	Andrey Adelberg	Test date	May 26, 2020

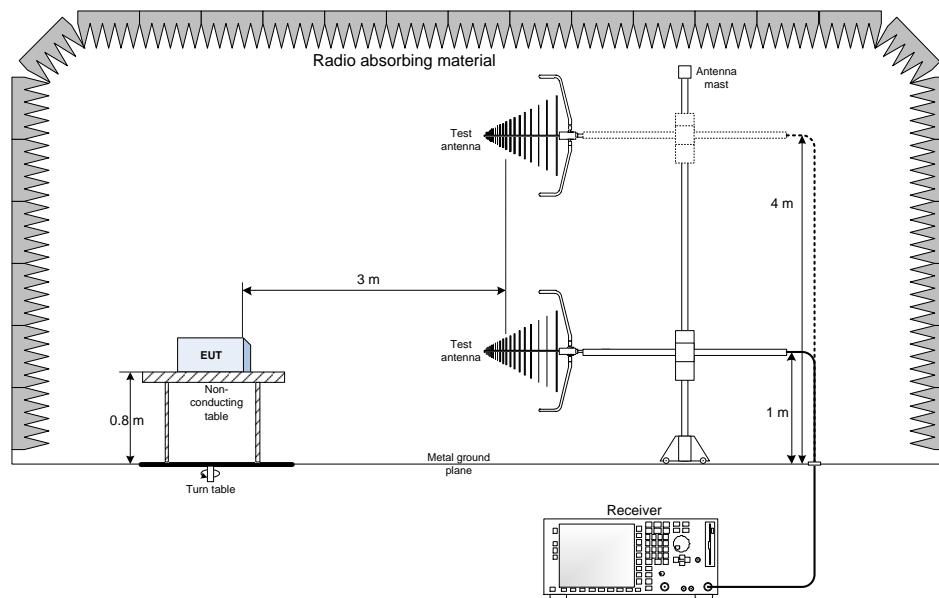
8.6.3 Observations, settings and special notes

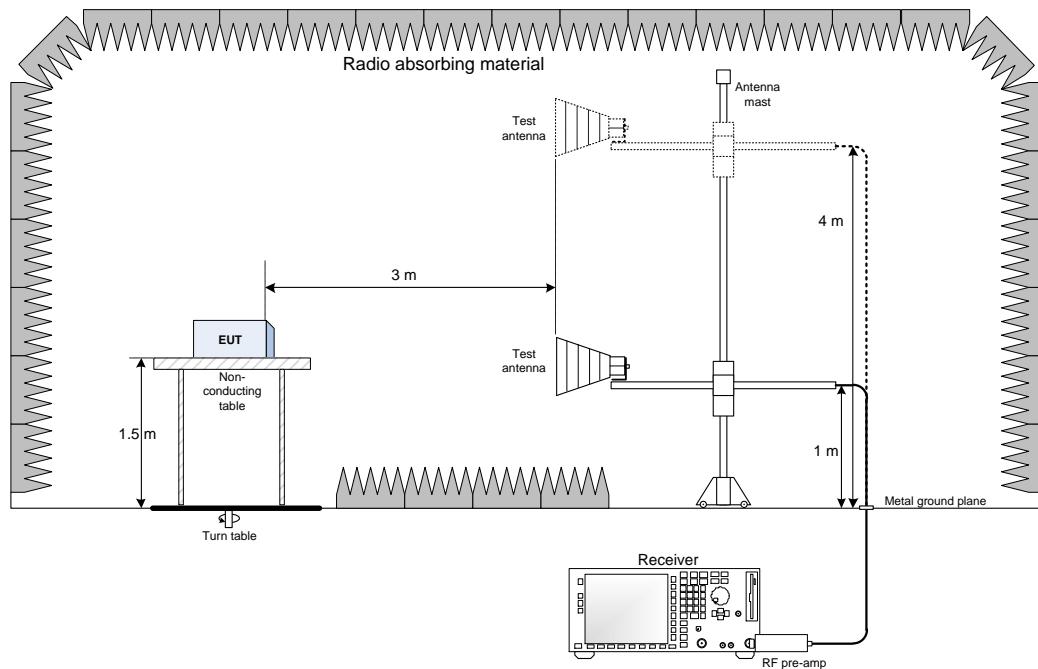


Spectrum analyser settings:

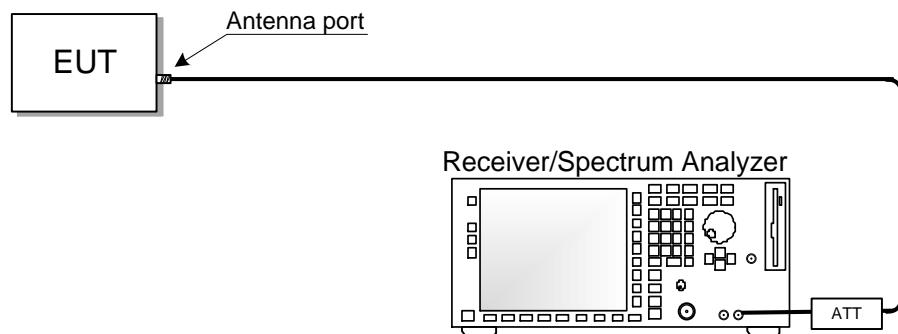
Resolution bandwidth	1 MHz
Video bandwidth	> RBW
Detector	Peak, max-hold

8.6.4 Test data




Figure 8.6-1: Plot showing envelope of a digital modulation

Section 9. Block diagrams of test set-ups


9.1 Radiated emissions set-up for frequencies below 1 GHz

9.2 Radiated emissions set-up for frequencies above 1 GHz

9.3 Antenna port set-up

