

Test Report

Applicant : PEAG, LLC dba JLab Audio
Address : 5927 LANDAU CT, Carlsbad, CA 92008, United States
Product Name : Wireless Speaker
Brand Mark : JLab®
Model : JLab GO Party
Series model : N/A
FCC ID : 2AHYV-GOSP
Report Number : BLA-EMC-202506-A5102
Date of Receipt : Jun. 11, 2025
Date of Test : Jun. 11, 2025 to Jul. 02, 2025
Test Standard : 47 CFR Part 15, Subpart C 15.247
Test Result : Pass

Compiled by: *Mark Chen* Review by: *Xavier* Approved by: *Blue Zheng*

BlueAsia of Technical Services (Shenzhen) Co., Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

The test report is effective only with both signature and specialized stamp and The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full. The results described in this report do not represent the quality or characteristics of the sampled batch, nor do they represent any similar or identical products that are not explicitly stated.

Table of Contents

1 General information	4
1.1 General information	4
1.2 General description of EUT	4
2 Test summary	5
3 Test Configuration	6
3.1 Test mode	6
3.2 Operation Frequency each of channel	6
3.3 Test channel	7
3.4 Auxiliary equipment	8
3.5 Test environment	8
4 Laboratory information	9
4.1 Laboratory and accreditations	9
4.2 Measurement uncertainty	9
5 Test equipment	10
6 Test result	12
6.1 Antenna requirement	12
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	13
6.3 Radiated spurious emissions	17
Appendix B: photographs of test setup	22
Appendix C: photographs of EUT	23

Revise Record

Version No.	Date	Description
01	Jul. 03, 2025	Original

Remark:

1. This report CLASS II Permissive Change based on the original report.
2. This original report BLA-EMC-202501-A4102, (Product Name: Wireless Speaker, Model No.:JLab GO Party, Issued Date: Feb. 10, 2025 by BlueAsia of Technical Services (Shenzhen)Co.,Ltd.).
3. The product change the PCB traces and electronic components, but RF chips and PCB antennas consistent with the original ones. Add below 1GHz Spurious emissions and AC Power Line Conducted Emission test. All test data come from the report of No. BLA-EMC-202501-A4102.

1 General information

1.1 General information

Applicant	PEAG, LLC dba JLab Audio
Address	5927 LANDAU CT, Carlsbad, CA 92008, United States
Manufacturer	GuangDong Simpreal Intelligent Technology Co., Ltd
Address	Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13, DongCheng District, DongGuan City, GuangDong Province, P.R. China
Factory	GuangDong Simpreal Intelligent Technology Co., Ltd
Address	Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13, DongCheng District, DongGuan City, GuangDong Province, P.R. China

1.2 General description of EUT

Product Name	Wireless Speaker
Model No.	JLab GO Party
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK, $\pi/4$ DQPSK, 8DPSK
Channel Spacing:	1MHz
Number of Channels:	79
Antenna Type:	PCB antenna
Antenna Gain:	-0.58dBi (Provided by customer)
Power supply:	Battery DC 3.7V
Test Voltage:	DC 3.7V
Hardware Version	N/A
Software Version	N/A

Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2 Test summary

No.	Test item	FCC standard	Test Method(Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Conducted Peak Output Power	§ 15.247 (b)(1)	ANSI C63.10-2013 Clause 7.8.5	N/A
4	20dB Bandwidth	§ 15.247 (a)(1)	ANSI C63.10-2013 Clause 6.9.2	N/A
5	Conducted Band Edges Measurement	§ 15.247 (d)	ANSI C63.10-2013 Clause 7.8.6	N/A
6	Conducted Spurious Emissions	§ 15.247 (d)	ANSI C63.10-2013 Clause 7.8.8	N/A
7	Carrier Frequencies Separation	§ 15.247 (a)(1)	ANSI C63.10-2013 Clause 7.8.2	N/A
8	Hopping Channel Number	§ 15.247 (a)(1) (iii)	ANSI C63.10-2013 Clause 7.8.3	N/A
9	Dwell Time	§ 15.247 (a)(1) (iii)	ANSI C63.10-2013 Clause 7.8.4	N/A
10	Radiated Spurious Emissions	§ 15.247 (d) § 15209	ANSI C63.10-2013 Clause 6.4,6.5,6.6	Pass
11	Radiated Emissions which fall in the restricted bands	§ 15.247 (d) § 15.205	ANSI C63.10-2013 Clause 6.10.5	N/A

Remark:

N/A: The product change the PCB traces and electronic components, but RF chips and PCB antennas consistent with the original ones. Add below 1GHz Spurious emissions and AC Power Line Conducted Emission test. All test data come from the report of No. BLA-EMC-202501-A4102.

3 Test Configuration

3.1 Test mode

Test Mode ^{Note 1}	Description
TX	Keep the EUT in continuously transmitting mode with modulation. (hopping and non-hopping mode all have been tested)
RX	Keep the EUT in receiving mode
TX Low channel	Keep the EUT in continuously transmitting mode in low channel
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel
TX high channel	Keep the EUT in continuously transmitting mode in high channel

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use; the EUT was operated in the engineering mode ^{Note 2} to fix the TX or Rx frequency that was for the purpose of the measurements.

Note 2: Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

Power level setup in software			
Test Software Name		FCC Assist	
Mode	Channel	Frequency (MHz)	Soft Set
TX	CH00	2402	TX level : Default
	CH39	2441	
	CH78	2480	

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz

5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	--	

3.3 Test channel

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

3.4 Auxiliary equipment

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	Lenovo	E460C	N/A	From lab (No.BLA-ZC-BS-2022005)
AC adapter	PISEN	ZY2207-A521H	/	/

Note:
"--" mean no any auxiliary device during testing.

3.5 Test environment

Environment	Temperature	Voltage
Normal	25°C	DC 3.7V

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China
CNAS accredited No.:	L9788
A2LA Cert. No.:	5071.01
FCC Designation No.:	CN1252
ISED CAB identifier No.:	CN0028
Telephone:	+86-755-28682673
FAX:	+86-755-28682673

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-002-01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2024/3/27	2027/3/26
BLA-EMC-002-02	Control room	966 control room	SKET	N/A	2024/3/27	2027/3/26
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28
BLA-EMC-065	Broadband antenna	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-001-01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15
BLA-EMC-001-02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07
BLA-EMC-012	Broadband antenna	VULB9168	Schwarzbeck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28
BLA-EMC-014	Amplifier	PA_000318G-45	SKET	PA201804300 3	2024/08/08	2025/08/07
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-EMC-066	Amplifier	LNPA_30M01 G-30	SKET	SK202106080 1	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-EMC-086	Amplifier	LNPA_18G40 G-50dB	SKET	SK202207130 1	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28

BLA-XC-03	Coaxial Cable	N/A	BlueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	N/A	BlueAsia	V04	N/A	N/A

Conducted Emissions

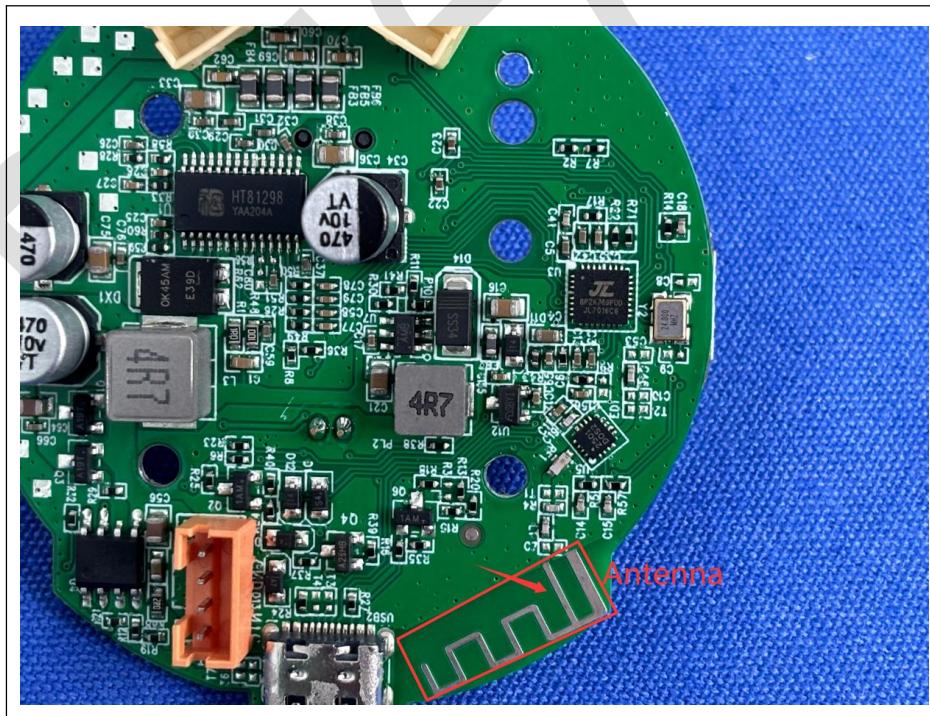
Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat 6	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbeck	01045	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-EMC-096	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbeck	01075	2024/06/28 2025/06/09	2025/06/27 2026/06/08
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A

Test Software Record:

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

6 Test result

6.1 Antenna requirement


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

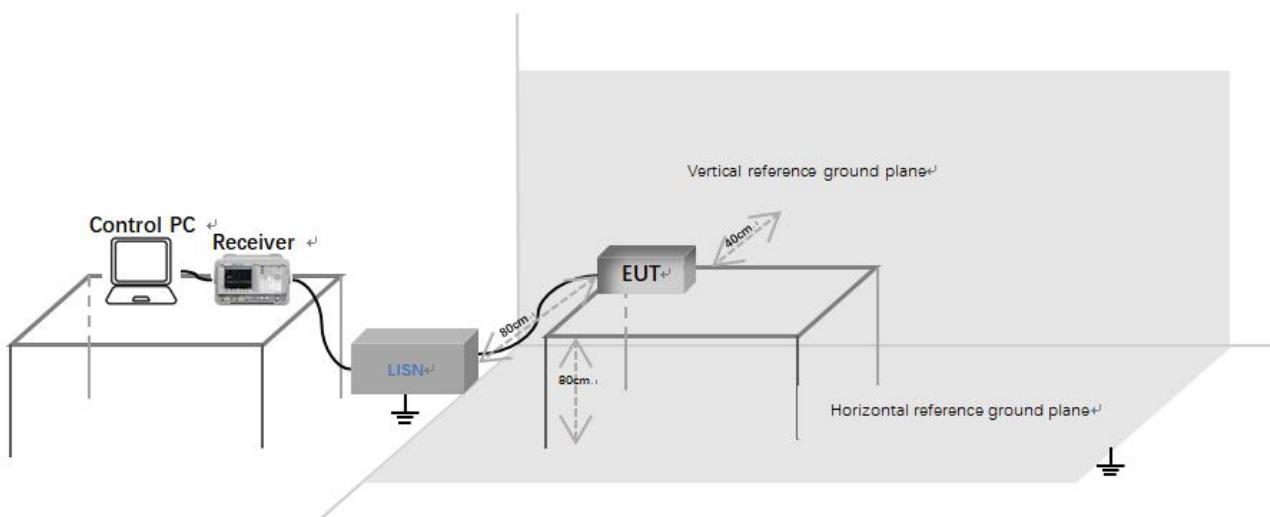
6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is PCB antenna. The best case gain of the antenna is -0.58dBi.

6.2 Conducted emissions at AC power line (150 kHz-30 MHz)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.2.1 Limit

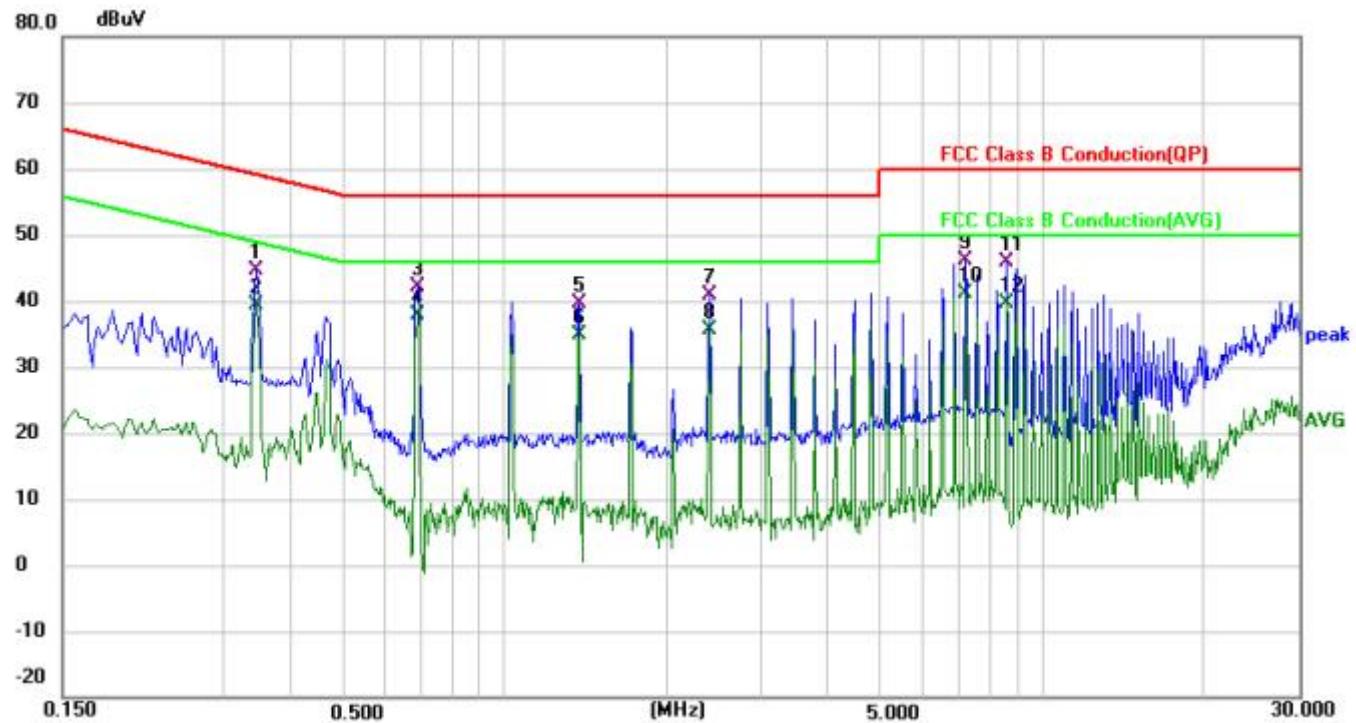
Frequency of emission(MHz)	Conducted limit(dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

6.2.2 Test setup

Description of test setup connection:

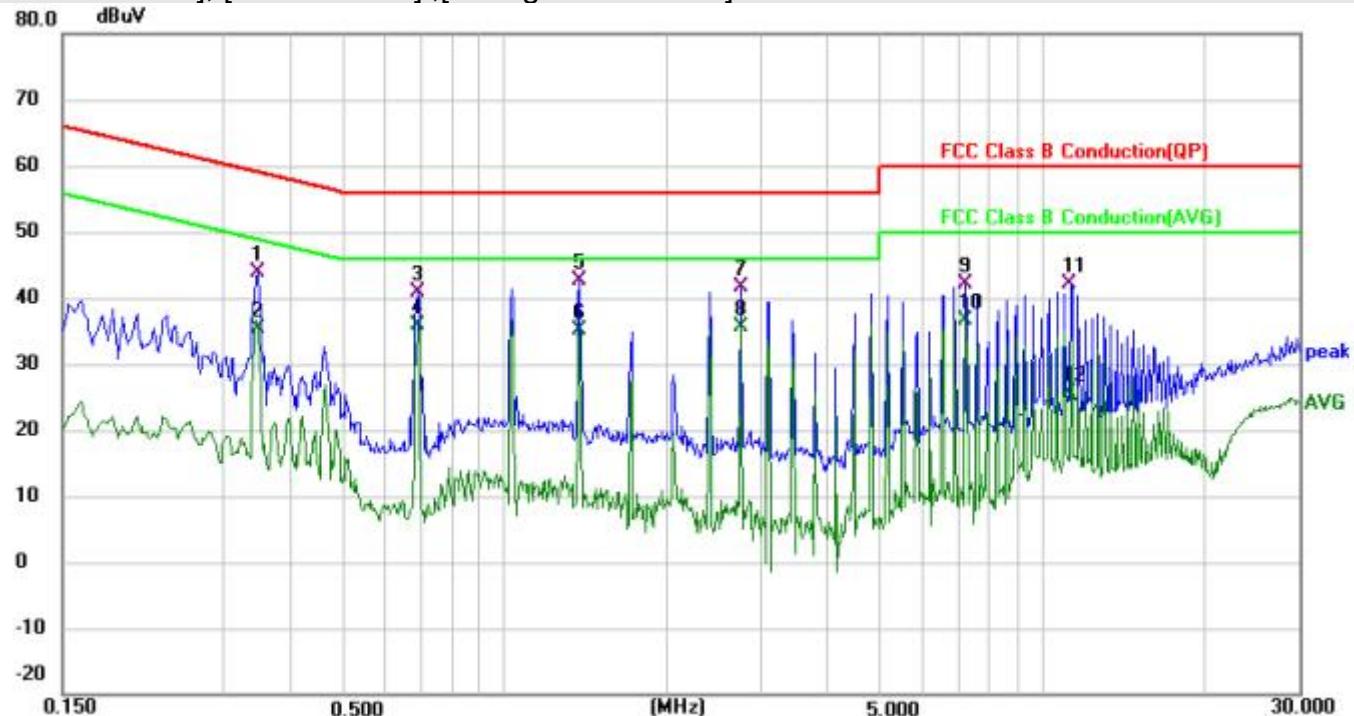
- Connect the control PC to the receiver through a USB to GPIB cable;
- The receiver is connected to the LISN through a coaxial line;
- Connect the power port of LISN to the EUT.


6.2.3 Procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

LISN=Read Level+ Cable Loss+ LISN Factor

6.2.4 Test data


[Test Mode: TX]; [Line: Line];[Voltage:120V/60Hz]

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector
			Level	Factor	ment			
1		0.3420	34.75	9.82	44.57	59.15	-14.58	QP
2		0.3420	29.62	9.82	39.44	49.15	-9.71	AVG
3		0.6860	32.25	9.81	42.06	56.00	-13.94	QP
4	*	0.6860	28.03	9.81	37.84	46.00	-8.16	AVG
5		1.3740	29.91	9.84	39.75	56.00	-16.25	QP
6		1.3740	25.04	9.84	34.88	46.00	-11.12	AVG
7		2.4020	30.84	9.97	40.81	56.00	-15.19	QP
8		2.4020	25.66	9.97	35.63	46.00	-10.37	AVG
9		7.2060	35.91	10.28	46.19	60.00	-13.81	QP
10		7.2060	30.82	10.28	41.10	50.00	-8.90	AVG
11		8.5740	35.42	10.46	45.88	60.00	-14.12	QP
12		8.5740	29.17	10.46	39.63	50.00	-10.37	AVG

Test Result: Pass

[Test Mode: TX]; [Line: Neutral] ;[Voltage:120V/60Hz]

No.	Mk.	Freq. MHz	Reading	Correct	Measure-	Limit dBuV	Over dB	Over Detector
			Level dBuV	Factor dB	ment dBuV			
1		0.3460	34.22	9.77	43.99	59.06	-15.07	QP
2		0.3460	25.49	9.77	35.26	49.06	-13.80	AVG
3		0.6860	31.09	9.75	40.84	56.00	-15.16	QP
4	*	0.6860	26.05	9.75	35.80	46.00	-10.20	AVG
5		1.3740	32.95	9.76	42.71	56.00	-13.29	QP
6		1.3740	25.26	9.76	35.02	46.00	-10.98	AVG
7		2.7460	31.77	9.90	41.67	56.00	-14.33	QP
8		2.7460	25.71	9.90	35.61	46.00	-10.39	AVG
9		7.2060	31.78	10.31	42.09	60.00	-17.91	QP
10		7.2060	26.43	10.31	36.74	50.00	-13.26	AVG
11		11.3139	42.42	-0.33	42.09	60.00	-17.91	QP
12		11.3139	25.96	-0.33	25.63	50.00	-24.37	AVG

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co.,Ltd.

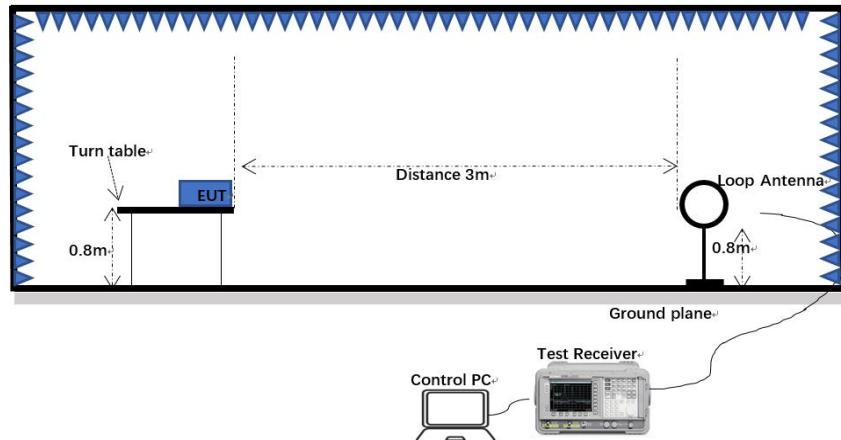
Tel: +86-755-23059481

 Email: marketing@cblueasia.com www.cblueasia.com

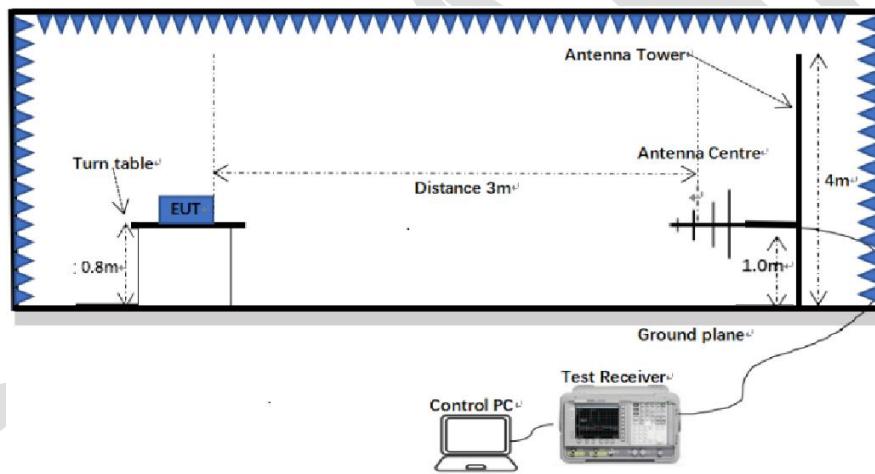
Version:v1.2

6.3 Radiated spurious emissions

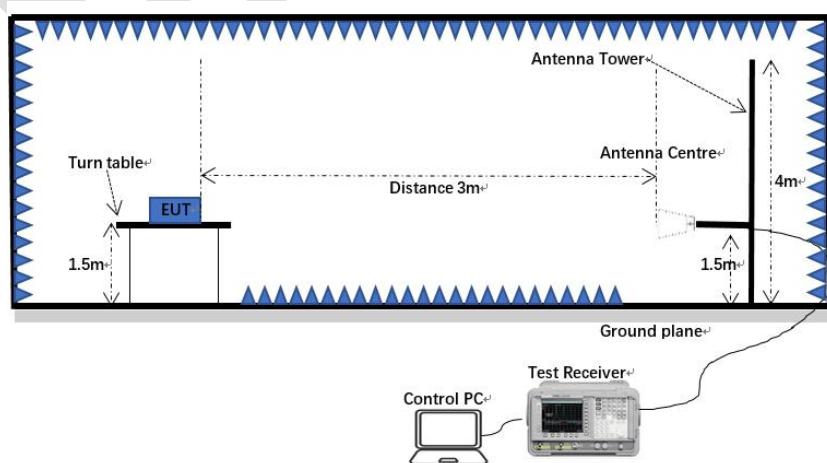
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX


6.3.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

6.3.2 Test setup


Below 1GHz:

30MHz-1GHz:

Above 1GHz:

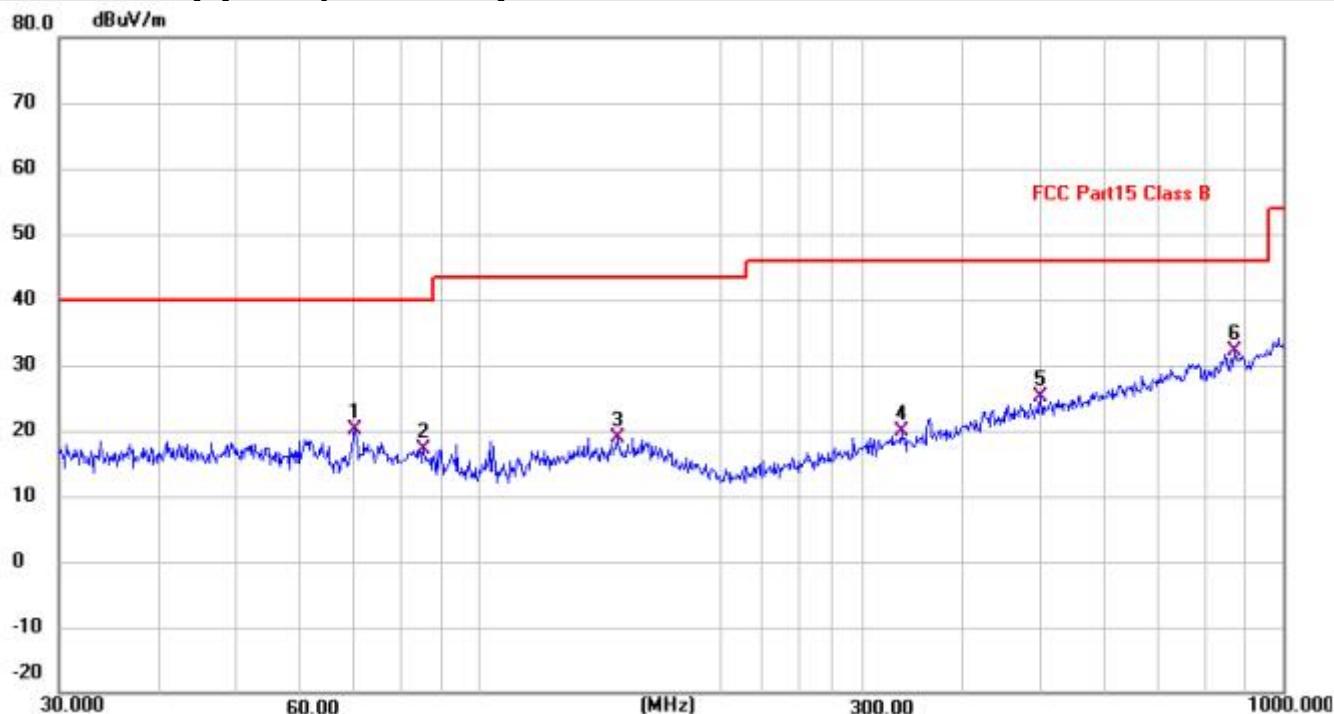
6.3.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


$$\text{Level (dBuV)} = \text{Reading (dBuV)} + \text{Factor (dB/m)}$$

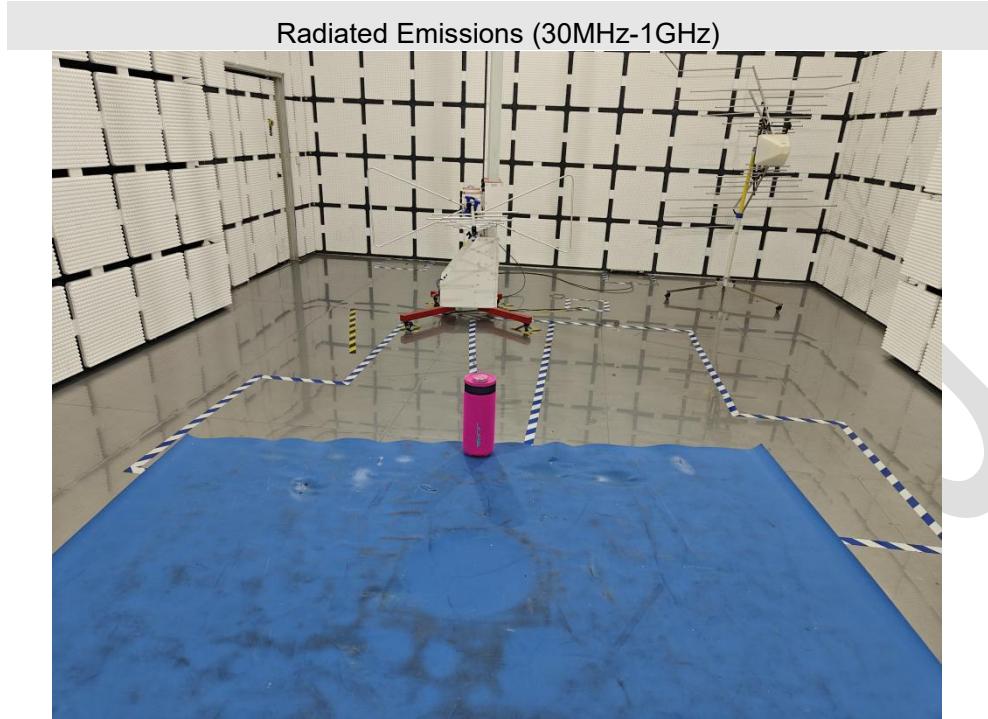
6.3.4 Test data

Below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for DH5 was recorded in the report.

[Test mode: TX]; [Polarity: Horizontal]

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	70.0903	3.45	16.66	20.11	40.00	-19.89	QP
2	85.2980	1.77	15.46	17.23	40.00	-22.77	QP
3	148.4410	-1.74	20.69	18.95	43.50	-24.55	QP
4	334.8589	-1.81	21.57	19.76	46.00	-26.24	QP
5	499.4247	-0.06	25.28	25.22	46.00	-20.78	QP
6 *	869.1302	1.38	30.68	32.06	46.00	-13.94	QP



Test Result: Pass

[**Test mode: TX**]; [**Polarity: Vertical**]

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	43.8119	0.73	19.77	20.50	40.00	-19.50	QP
2	64.6594	-0.68	17.90	17.22	40.00	-22.78	QP
3	158.6677	-0.48	20.51	20.03	43.50	-23.47	QP
4	322.1886	-1.38	20.93	19.55	46.00	-26.45	QP
5	449.5558	-1.03	24.28	23.25	46.00	-22.75	QP
6 *	787.8513	0.95	29.46	30.41	46.00	-15.59	QP

Test Result: Pass

Appendix B: photographs of test setup

Appendix C: photographs of EUT

Reference to the test report no. BLA-EMC-202506-A5101

BlueAsia

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, the result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Version:v1.2