

TEST REPORT

FCC ID: 2AHYMMTB73G

Product: MID

Model No.: MTB-73G

**Additional Model: GB-T3G, GB-TAB703G, GBL-73G, MU-T73G, MU-TAB703G,
OLP-73G**

Trade Mark: MULTITECH, GLOBE, OLIMPO

Report No.: TCT160405E008

Issued Date: Apr. 26, 2016

Issued for:

Global China Link SA

Century tower, oficina 1304, Via ricardo J. Alfaro ciudad de Panama, Panama

Issued By:

Shenzhen Tongce Testing Lab.

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. Test Certification.....	3
2. Test Result Summary.....	4
3. EUT Description	5
4. Genera Information	6
4.1. Test environment and mode.....	6
4.2. Description of Support Units	6
5. Facilities and Accreditations.....	7
5.1. Facilities	7
5.2. Location	7
5.3. Measurement Uncertainty.....	7
6. Test Results and Measurement Data	8
6.1. Antenna requirement	8
6.2. Conducted Emission.....	9
6.3. Conducted Output Power	13
6.4. 20dB Occupy Bandwidth	14
6.5. Carrier Frequencies Separation.....	15
6.6. Hopping Channel Number	16
6.7. Dwell Time.....	17
6.8. Pseudorandom Frequency Hopping Sequence	18
6.9. Conducted Band Edge Measurement.....	19
6.10. Conducted Spurious Emission Measurement	20
6.11. Radiated Spurious Emission Measurement.....	21

Appendix A: Test Result of Conducted Test**Appendix B: Photographs of Test Setup****Appendix C: Photographs of EUT**

1. Test Certification

Product:	MID
Model No.:	MTB-73G
Additional Model:	GB-T3G, GB-TAB703G, GBL-73G, MU-T73G, MU-TAB703G, OLP-73G
Applicant:	Global China Link SA
Address:	Century tower, oficina 1304, Via ricardo J. Alfaro ciudad de Panama, Panama
Manufacturer:	Shenzhen Samtech Co., Ltd.
Address:	FL 1-3, No.3 building, Dingfeng Fubilun Industrial Park, Shubiankeng Road, Songgang, Baoan, Shenzhen, China
Date of Test:	Apr. 05 – Apr. 21, 2016
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Neil Wong

Date:

Apr. 21, 2016

Reviewed By:

Zhou

Date:

Apr. 26, 2016

Approved By:

Joe Zhou

Date:

Apr. 26, 2016

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
Band Edge	§15.247(d) §2.1051, §2.1057	PASS

Note:

1. PASS: Test item meets the requirement.
2. Fail: Test item does not meet the requirement.
3. N/A: Test case does not apply to the test object.
4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product Name:	MID
Model :	MTB-73G
Additional Model:	GB-T3G, GB-TAB703G, GBL-73G, MU-T73G, MU-TAB703G, OLP-73G
Trade Mark:	MULTITECH, GLOBE, OLIMPO
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, $\pi/4$ -DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	1dBi
Power Supply:	DC 3.7V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK, 8DPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
...
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
...
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	-	-

Remark: Channel 0, 39 & 78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

4. General Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations
<p>The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.</p>	

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	/	/	/	/

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

- CNAS - Registration No.: CNAS L6165

Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	$\pm 2.56\text{dB}$
2	RF power, conducted	$\pm 0.12\text{dB}$
3	Spurious emissions, conducted	$\pm 0.11\text{dB}$
4	All emissions, radiated(<1G)	$\pm 3.92\text{dB}$
5	All emissions, radiated(>1G)	$\pm 4.28\text{dB}$
6	Temperature	$\pm 0.1^\circ\text{C}$
7	Humidity	$\pm 1.0\%$

6. Test Results and Measurement Data

6.1. Antenna requirement

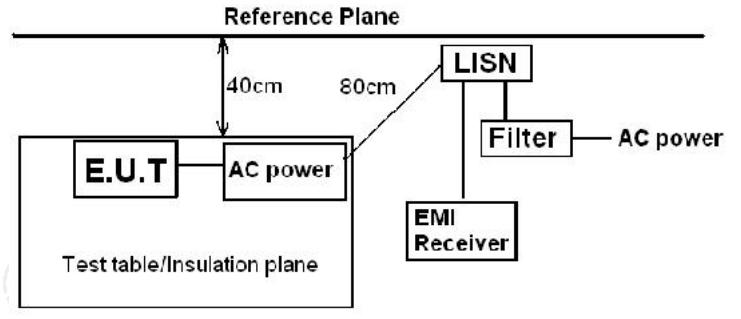
Standard requirement:	FCC Part15 C Section 15.203 /247(c)
------------------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


E.U.T Antenna:

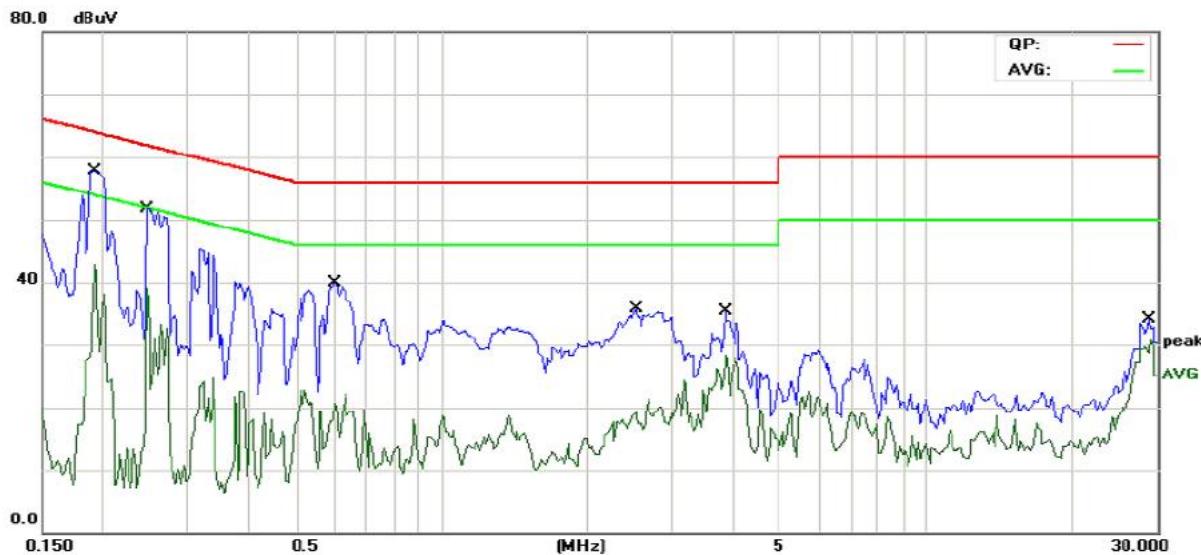
The Bluetooth antenna is an internal antenna which permanently attached, and the best case gain of the antenna is 1dBi.

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207															
Test Method:	ANSI C63.4:2014															
Frequency Range:	150 kHz to 30 MHz															
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto															
Limits:	<table border="1"> <thead> <tr> <th>Frequency range (MHz)</th> <th colspan="2">Limit (dBuV)</th> </tr> <tr> <th></th> <th>Quasi-peak</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15-0.5</td> <td>66 to 56*</td> <td>56 to 46*</td> </tr> <tr> <td>0.5-5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5-30</td> <td>60</td> <td>50</td> </tr> </tbody> </table>	Frequency range (MHz)	Limit (dBuV)			Quasi-peak	Average	0.15-0.5	66 to 56*	56 to 46*	0.5-5	56	46	5-30	60	50
Frequency range (MHz)	Limit (dBuV)															
	Quasi-peak	Average														
0.15-0.5	66 to 56*	56 to 46*														
0.5-5	56	46														
5-30	60	50														
Test Setup:	<p><i>Remark</i> <i>E.U.T: Equipment Under Test</i> <i>LISN: Line Impedance Stabilization Network</i> <i>Test table height=0.8m</i></p>															
Test Mode:	Refer to item 4.1															
Test Procedure:	<ol style="list-style-type: none"> 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 															
Test Result:	PASS															

6.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCS30	100139	Sep. 11, 2016
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 16, 2016
Coax cable	TCT	CE-05	N/A	Sep. 11, 2016
EMI Test Software	Shurples Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site Chamber #2
Limit: FCC Part 15B Class B Conduction(QP) Phase: **L1** Temperature: 23 (C)
Power: AC 120V/60Hz Humidity: 54 %

No.	Mk.	Freq. MHz	Reading Level	Correct Factor	Measure- ment	Limit	Over	Comment
			dB μ V	dB	dB μ V	dB	Detector	
1	*	0.1930	43.09	11.48	54.57	63.90	-9.33	QP
2		0.1930	26.66	11.48	38.14	53.90	-15.76	AVG
3		0.2477	34.28	11.46	45.74	61.83	-16.09	QP
4		0.2477	12.61	11.46	24.07	51.83	-27.76	AVG
5		0.6031	24.77	11.26	36.03	56.00	-19.97	QP
6		0.6031	9.48	11.26	20.74	46.00	-25.26	AVG
7		2.5133	16.54	11.50	28.04	56.00	-27.96	QP
8		2.5133	5.42	11.50	16.92	46.00	-29.08	AVG
9		3.8477	19.39	11.03	30.42	56.00	-25.58	QP
10		3.8477	9.01	11.03	20.04	46.00	-25.96	AVG
11		28.7891	17.78	10.67	28.45	60.00	-31.55	QP
12		28.7891	11.68	10.67	22.35	50.00	-27.65	AVG

Note:

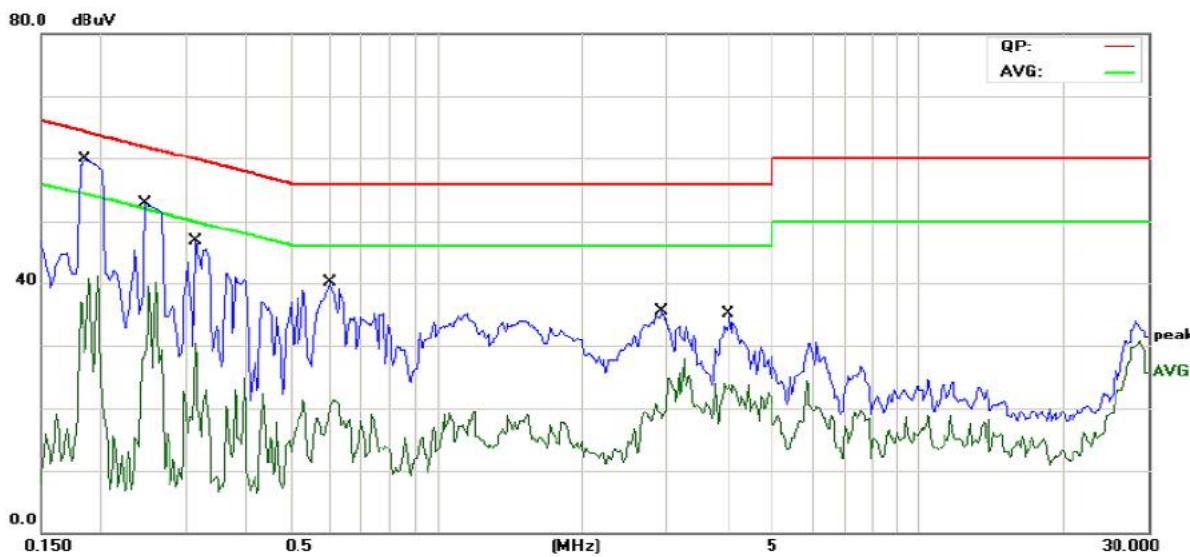
Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. = Quasi-Peak

AVG = average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site Chamber #2				Phase:	<i>N</i>	Temperature: 23 (C)	
Limit: FCC Part 15B Class B Conduction(QP)				Power:	AC 120V/60Hz	Humidity: 54 %	
No.	Mk.	Reading Level	Correct Factor	Measurement	Limit	Over	
		MHz	dBuV	dB	dBuV	dB	Detector
1	*	0.1852	44.48	11.50	55.98	64.24	-8.26
2		0.1852	23.84	11.50	35.34	54.24	-18.90
3		0.2477	37.42	11.46	48.88	61.83	-12.95
4		0.2477	17.59	11.46	29.05	51.83	-22.78
5		0.3141	31.37	11.42	42.79	59.86	-17.07
6		0.3141	13.05	11.42	24.47	49.86	-25.39
7		0.5953	23.30	11.26	34.56	56.00	-21.44
8		0.5953	8.63	11.26	19.89	46.00	-26.11
9		2.9391	17.60	11.36	28.96	56.00	-27.04
10		2.9391	6.49	11.36	17.85	46.00	-28.15
11		4.0352	17.89	10.96	28.85	56.00	-27.15
12		4.0352	8.74	10.96	19.70	46.00	-26.30

Note1:

Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. = Quasi-Peak AVG = average

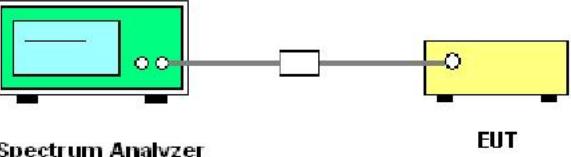
* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

6.3. Conducted Output Power

6.3.1. Test Specification


6.3.2. Test Instruments

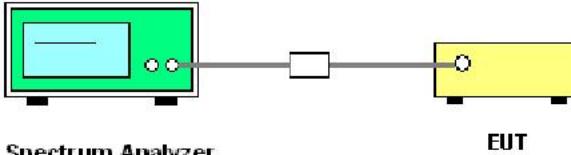
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF Cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1), CFR part 2.1049
Test Method:	DA00-705
Limit:	N/A
Test Setup:	<p>The diagram illustrates the test setup. A green 'Spectrum Analyzer' is connected to a yellow 'EUT' (Equipment Under Test) via a grey RF cable. A small white rectangular component, representing an attenuator, is placed between the analyzer and the EUT. The labels 'Spectrum Analyzer' and 'EUT' are centered below their respective components.</p>
Test Mode:	Transmitting mode with modulation
Test Procedure:	<ol style="list-style-type: none"> 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; $RBW \geq 1\%$ of the 20 dB bandwidth; $VBW \geq RBW$; Sweep = auto; Detector function = peak; Trace = max hold. 5. Measure and record the results in the test report.
Test Result:	PASS


6.4.2. Test Instruments

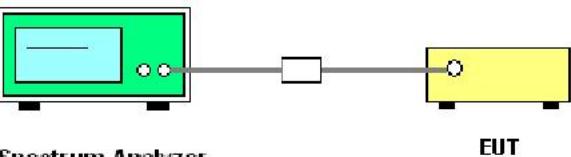
RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	DA00-705
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	<p>The diagram illustrates the test setup. On the left, a green rectangular box represents the 'Spectrum Analyzer'. A grey line with a small circle at the connection point represents the 'RF cable'. To the right of the analyzer is a small grey rectangle representing the 'Attenuator'. A second grey line with a small circle at the connection point extends from the attenuator to a larger yellow rectangular box on the right, which represents the 'EUT'.</p>
Test Mode:	Hopping mode
Test Procedure:	<ol style="list-style-type: none"> 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW\geq1% of the span; VBW\geqRBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. Measure and record the results in the test report.
Test Result:	PASS


6.5.2. Test Instruments

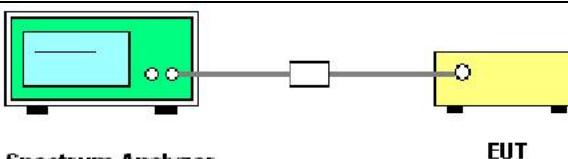
RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	DA00-705
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	<p style="text-align: center;">Spectrum Analyzer EUT</p>
Test Mode:	Hopping mode
Test Procedure:	<ol style="list-style-type: none"> 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW \geq 1% of the span; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. The number of hopping frequency used is defined as the number of total channel. 7. Record the measurement data derived from spectrum analyzer.
Test Result:	PASS


6.6.2. Test Instruments

RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7. Dwell Time

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	DA00-705
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	<p>The diagram illustrates the test setup. A green 'Spectrum Analyzer' is connected to a yellow 'EUT' (Equipment Under Test) through a grey 'RF cable' and a small white 'attenuator' box. The labels 'Spectrum Analyzer' and 'EUT' are positioned below their respective components.</p>
Test Mode:	Hopping mode
Test Procedure:	<ol style="list-style-type: none"> 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW\geqRBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. 6. Measure and record the results in the test report.
Test Result:	PASS

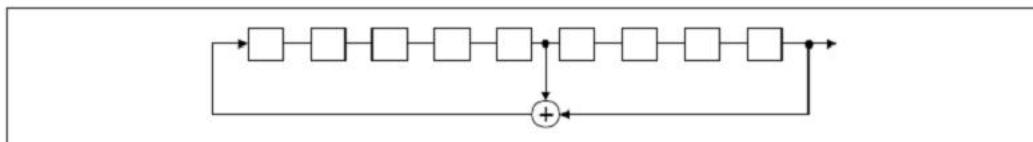
6.7.2. Test Instruments

RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

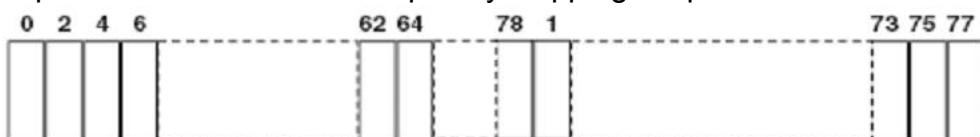
6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) requirement:
--------------------------	--


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

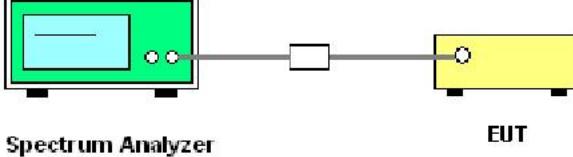
EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 - 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



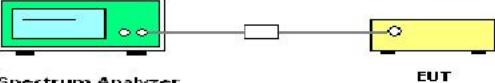
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d), CFR part 2.1051
Test Method:	DA00-705
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	
Test Mode:	Transmitting mode with modulation
Test Procedure:	<ol style="list-style-type: none">1. The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.2. Set to the maximum power setting and enable the EUT transmit continuously.3. Set RBW = 100 kHz ($\geq 1\%$ span=10MHz), VBW = 300 kHz (\geqRBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.4. Enable hopping function of the EUT and then repeat step 2 and 3.5. Measure and record the results in the test report.
Test Result:	PASS


6.9.2. Test Instruments

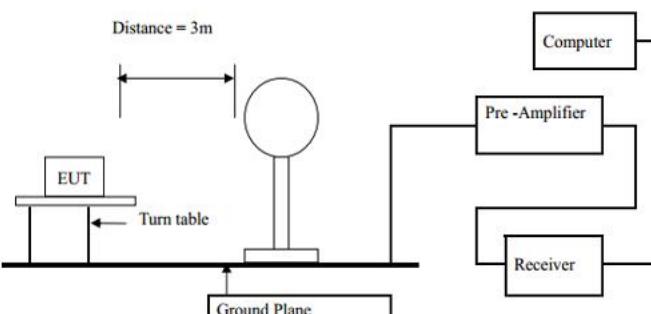
RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

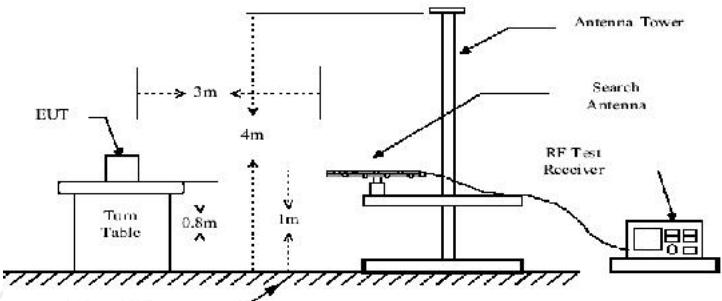
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.10. Conducted Spurious Emission Measurement

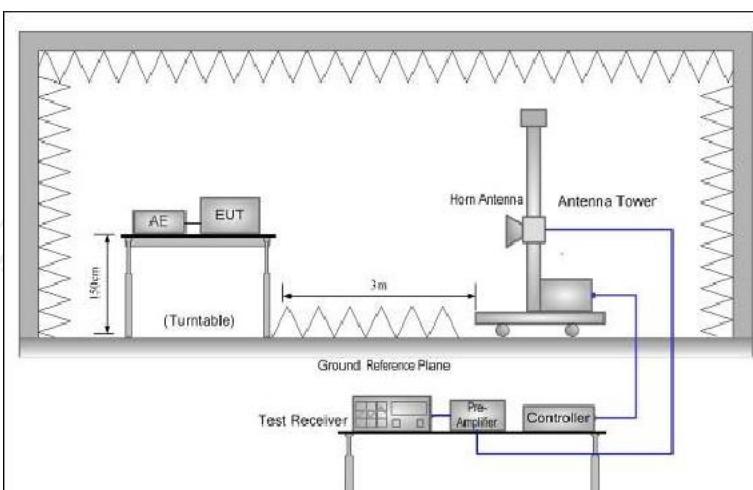
6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d), CFR part 2.1051,part 2.1057
Test Method:	DA00-705
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	
Test Mode:	Transmitting mode with modulation
Test Procedure:	<ol style="list-style-type: none"> 1. The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS


6.10.2. Test Instruments


RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.209, CFR part 2.1053, §2.1057																																							
Test Method:	ANSI C63.10: 2013																																							
Frequency Range:	9 kHz to 25 GHz																																							
Measurement Distance:	3 m																																							
Antenna Polarization:	Horizontal & Vertical																																							
Receiver Setup:	<table border="1"> <thead> <tr> <th>Frequency</th> <th>Detector</th> <th>RBW</th> <th>VBW</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>9kHz- 150kHz</td> <td>Quasi-peak</td> <td>200Hz</td> <td>1kHz</td> <td>Quasi-peak Value</td> </tr> <tr> <td>150kHz- 30MHz</td> <td>Quasi-peak</td> <td>9kHz</td> <td>30kHz</td> <td>Quasi-peak Value</td> </tr> <tr> <td>30MHz-1GHz</td> <td>Quasi-peak</td> <td>100KHz</td> <td>300KHz</td> <td>Quasi-peak Value</td> </tr> <tr> <td rowspan="2">Above 1GHz</td><td>Peak</td> <td>1MHz</td> <td>3MHz</td> <td>Peak Value</td> </tr> <tr> <td>Peak</td> <td>1MHz</td> <td>10Hz</td> <td>Average Value</td> </tr> </tbody> </table>					Frequency	Detector	RBW	VBW	Remark	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value	Above 1GHz	Peak	1MHz	3MHz	Peak Value	Peak	1MHz	10Hz	Average Value						
Frequency	Detector	RBW	VBW	Remark																																				
9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value																																				
150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value																																				
30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value																																				
Above 1GHz	Peak	1MHz	3MHz	Peak Value																																				
	Peak	1MHz	10Hz	Average Value																																				
Limit:	<table border="1"> <thead> <tr> <th>Frequency</th> <th>Field Strength (microvolts/meter)</th> <th>Measurement Distance (meters)</th> </tr> </thead> <tbody> <tr> <td>0.009-0.490</td> <td>2400/F(KHz)</td> <td>300</td> </tr> <tr> <td>0.490-1.705</td> <td>24000/F(KHz)</td> <td>30</td> </tr> <tr> <td>1.705-30</td> <td>30</td> <td>30</td> </tr> <tr> <td>30-88</td> <td>100</td> <td>3</td> </tr> <tr> <td>88-216</td> <td>150</td> <td>3</td> </tr> <tr> <td>216-960</td> <td>200</td> <td>3</td> </tr> <tr> <td>Above 960</td> <td>500</td> <td>3</td> </tr> </tbody> </table> <table border="1"> <thead> <tr> <th>Frequency</th> <th>Field Strength (microvolts/meter)</th> <th>Measurement Distance (meters)</th> <th>Detector</th> </tr> </thead> <tbody> <tr> <td rowspan="2">Above 1GHz</td><td>500</td> <td>3</td> <td>Average</td> </tr> <tr> <td>5000</td> <td>3</td> <td>Peak</td> </tr> </tbody> </table>					Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)	0.009-0.490	2400/F(KHz)	300	0.490-1.705	24000/F(KHz)	30	1.705-30	30	30	30-88	100	3	88-216	150	3	216-960	200	3	Above 960	500	3	Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)	Detector	Above 1GHz	500	3	Average	5000	3	Peak
Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)																																						
0.009-0.490	2400/F(KHz)	300																																						
0.490-1.705	24000/F(KHz)	30																																						
1.705-30	30	30																																						
30-88	100	3																																						
88-216	150	3																																						
216-960	200	3																																						
Above 960	500	3																																						
Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)	Detector																																					
Above 1GHz	500	3	Average																																					
	5000	3	Peak																																					
Test setup:	<p>For radiated emissions below 30MHz</p> <p>Distance = 3m</p> <p>Turn table</p> <p>Ground Plane</p> <p>30MHz to 1GHz</p>																																							

Above 1GHz

Test Mode:

Transmitting mode with modulation

1. The testing follows the guidelines in Spurious Radiated Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.

2. For the radiated emission test below 1GHz:
The EUT was placed on a turntable with 1.5 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level.

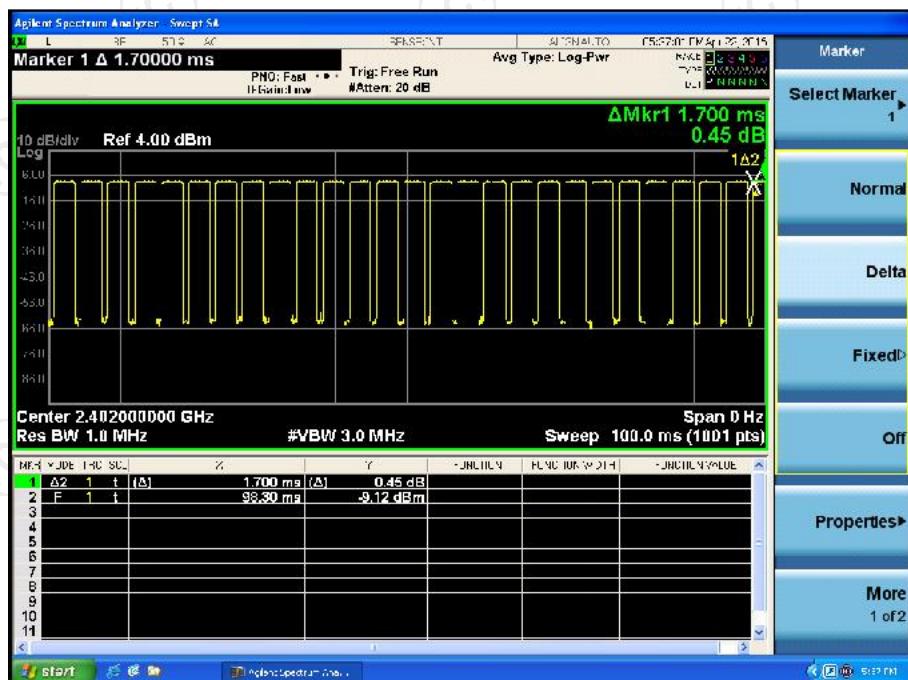
For the radiated emission test above 1GHz:

Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT,

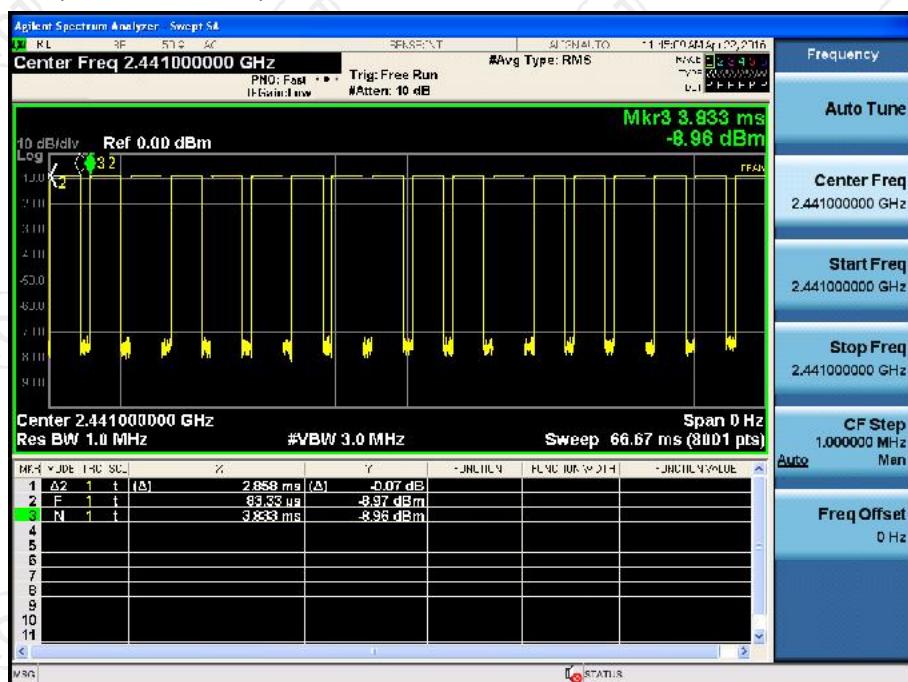
Test Procedure:

	<p>depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</p> <p>3. Set to the maximum power setting and enable the EUT transmit continuously.</p> <p>4. Use the following spectrum analyzer settings:</p> <ol style="list-style-type: none"> (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for $f < 1$ GHz, RBW=1MHz for $f > 1$ GHz ; $VBW \geq RBW$; Sweep = auto; Detector function = peak; Trace = max hold for peak (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = $N1 \cdot L1 + N2 \cdot L2 + \dots + Nn-1 \cdot LNn-1 + Nn \cdot Ln$ Where $N1$ is number of type 1 pulses, $L1$ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + $20 \cdot \log(\text{Duty cycle})$ Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
Test results:	PASS

6.11.2. Test Instruments


Radiated Emission Test Site (966)				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016
Antenna Mast	CCS	CC-A-4M	N/A	N/A
Coax cable	TCT	RE-low-01	N/A	Sep. 11, 2016
Coax cable	TCT	RE-high-02	N/A	Sep. 11, 2016
Coax cable	TCT	RE-low-03	N/A	Sep. 11, 2016
Coax cable	TCT	RE-high-04	N/A	Sep. 11, 2016
EMI Test Software	Shurples Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.11.3. Test Data

Duty cycle correction factor for average measurement

2DH5 on time (One Pulse) Plot on Channel 00

2DH5 on time (Count Pulses) Plot on Channel 00

Note:

1. Worst case Duty cycle = on time/100 milliseconds = $(2.858*26+1.700)/100 = 0.7601$
2. Worst case Duty cycle correction factor = $20*\log(\text{Duty cycle}) = -2.38\text{dB}$
3. 3DH5 has the highest duty cycle worst case and is reported.
4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-2.38dB) derived from $20\log(\text{dwell time}/100\text{ms})$. This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Please refer to following diagram for individual
Bluetooth transmitting only:

Below 1GHz

Horizontal:

Site

Polarization: **Horizontal**

Temperature: 25

Limit: FCC Part 15B Class B RE_3 m

Power:

Humidity: 54 %

No. Mk.	Freq. MHz	Reading Level	Correct Factor	Measure- ment	Limit	Over	Antenna Height cm	Table Degree	Comment
		dBuV	dB	dBuV/m	dBuV/m	dB			
1	37.7731	33.39	-12.76	20.63	40.00	-19.37	peak	0	
2	54.8718	33.76	-12.42	21.34	40.00	-18.66	peak	0	
3	103.0610	35.77	-11.60	24.17	43.50	-19.33	peak	0	
4	398.4135	33.65	-6.22	27.43	46.00	-18.57	peak	0	
5	483.9103	31.77	-3.49	28.28	46.00	-17.72	peak	0	
6 *	839.8878	32.19	1.94	34.13	46.00	-11.87	peak	0	

Vertical:

Site				Polarization: Vertical				Temperature: 25	
Limit: FCC Part 15B Class B RE_3 m				Power:				Humidity: 54 %	
No.	Mk.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	
		Level	Factor	ment	dBuV/m	dBuV/m	dB	Detector	cm
		MHz	dBuV	dB					degree
1	36.2180	37.95	-12.94	25.01	40.00	-14.99	peak		0
2	48.6538	36.94	-12.09	24.85	40.00	-15.15	peak		0
3	73.5256	37.08	-16.45	20.63	40.00	-19.37	peak		0
4	99.9520	31.28	-11.44	19.84	43.50	-23.66	peak		0
5	312.9166	30.89	-7.99	22.90	46.00	-23.10	peak		0
6 *	693.7660	31.48	0.01	31.49	46.00	-14.51	peak		0

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

Above 1GHz

Modulation Type: GFSK									
Low channel: 2402 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
2390	H	45.43	---	-8.23	37.20	---	74	54	-16.80
4804	H	38.82	---	6.59	45.41	---	74	54	-8.59
7206	H	36.16	---	12.87	49.03	---	74	54	-4.97
---	H	---	---	---	---	---	---	---	---
2390	V	45.81	---	-7.83	37.98	---	74	54	-16.02
4804	V	47.51	---	1.33	48.84	---	74	54	-5.16
7206	V	39.82	---	10.22	50.04	---	74	54	-3.96
---	V	---	---	---	---	---	---	---	---

Middle channel: 2441 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
4882	H	38.12	---	7.01	45.13	---	74	54	-8.87
7323	H	37.55	---	13.21	50.76	---	74	54	-3.24
---	H	---	---	---	---	---	---	---	---
4882	V	39.00	---	7.01	46.01	---	74	54	-7.99
7323	V	38.57	---	13.21	51.78	---	74	54	-2.22
---	V	---	---	---	---	---	---	---	---

High channel: 2480 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
2483.5	H	45.65	---	-7.83	37.82	---	74	54	-16.18
4960	H	47.71	---	1.33	49.04	---	74	54	-4.96
7440	H	39.71	---	10.22	49.93	---	74	54	-4.07
---	H	---	---	---	---	---	---	---	---
2483.5	V	48.14	---	-7.83	40.31	---	74	54	-13.69
4960	V	46.94	---	1.33	48.27	---	74	54	-5.73
7440	V	39.12	---	10.22	49.34	---	74	54	-4.66
---	V	---	---	---	---	---	---	---	---

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
3. The emission levels of other frequencies are very lower than the limit and not show in test report.
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
5. Data of measurement shown “---” in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

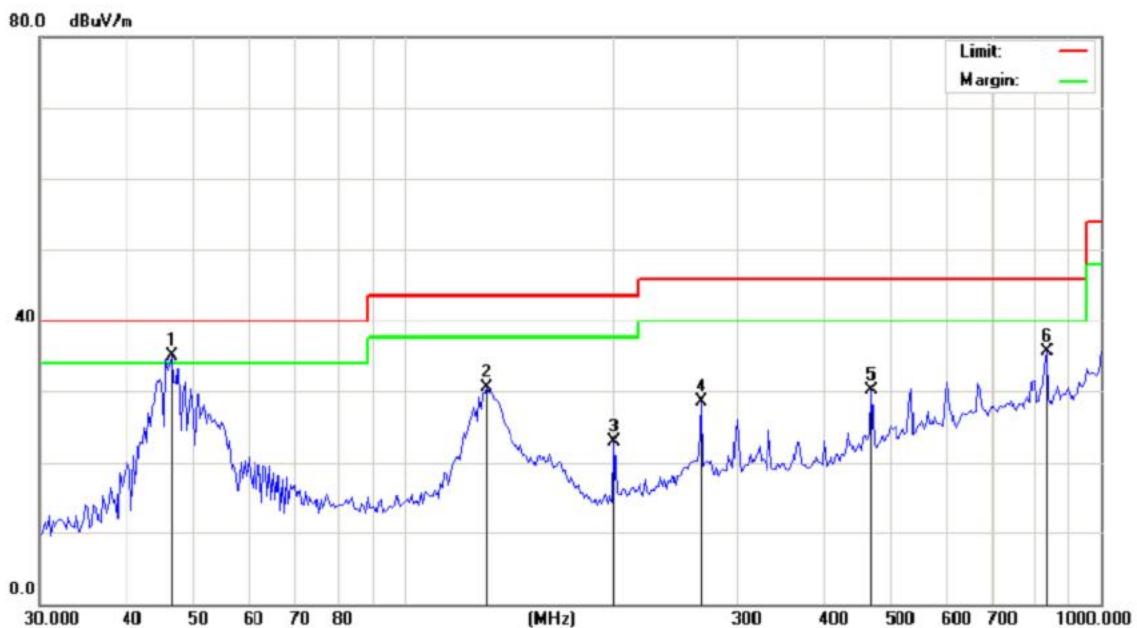
Below 1GHz

Horizontal:

Site

 Polarization: **Horizontal**

Temperature: 25


Limit: FCC Part 15B Class B RE_3 m

Power: AC 120V/60Hz

Humidity: 56 %

No.	Mk.	Freq. MHz	Reading	Correct	Measure-	Limit	Over	Antenna Height cm	Table Degree	Comment
			Level dBuV	Factor dB	ment dBuV/m					
1		44.1544	38.77	-12.29	26.48	40.00	-13.52	QP	0	
2		266.8394	42.72	-9.38	33.34	46.00	-12.66	QP	0	
3		300.6988	39.36	-8.25	31.11	46.00	-14.89	QP	0	
4		334.1254	39.00	-7.54	31.46	46.00	-14.54	QP	0	
5	*	669.9523	34.55	-0.49	34.06	46.00	-11.94	QP	0	
6		804.2522	32.49	1.51	34.00	46.00	-12.00	QP	0	

Vertical:

Site				Polarization: Vertical				Temperature: 25			
Limit: FCC Part 15B Class B RE_3 m				Power: AC 120V/60Hz				Humidity: 56 %			
No.	Mk.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Antenna Height	Table Degree	cm	degree	Comment
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	46.3806	47.05	-12.19	34.86	40.00	-5.14	QP	0	0	
2		131.2235	45.53	-15.06	30.47	43.50	-13.03	QP	0	0	
3		200.0432	34.54	-11.67	22.87	43.50	-20.63	QP	0	0	
4		266.8394	37.96	-9.38	28.58	46.00	-17.42	QP	0	0	
5		468.1650	34.09	-3.99	30.10	46.00	-15.90	QP	0	0	
6		838.8870	33.61	1.93	35.54	46.00	-10.46	QP	0	0	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) of three modulation (GFSK, Pi/4 DQPSK, 8DPSK) with communication to CMU200, and the worst case Mode (Highest channel and GFSK) with GSM850 high channel was submitted only.

Above 1GHz

Modulation Type: GFSK									
Low channel: 2402 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
2390	H	47.06	---	-8.23	38.83	---	74	54	-15.17
4804	H	40.43	---	6.59	47.02	---	74	54	-6.98
7206	H	36.73	---	12.87	49.60	---	74	54	-4.40
---	H	---	---	---	---	---	---	---	---
2390	V	40.07	---	-8.23	31.84	---	74	54	-22.16
4804	V	39.62	---	6.59	46.21	---	74	54	-7.79
7206	V	37.47	---	12.87	50.34	---	74	54	-3.66
---	V	---	---	---	---	---	---	---	---

Middle channel: 2441 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
4882	H	38.37	---	7.01	45.38	---	74	54	-8.62
7323	H	36.39	---	13.21	49.60	---	74	54	-4.40
---	H	---	---	---	---	---	---	---	---
4882	V	37.23	---	7.01	44.24	---	74	54	-9.76
7323	V	36.87	---	13.21	50.08	---	74	54	-3.92
---	V	---	---	---	---	---	---	---	---

High channel: 2480 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
2483.5	H	40.87	---	-7.52	33.35	---	74	54	-20.65
4960	H	40.90	---	7.44	48.34	---	74	54	-5.66
7440	H	36.72	---	13.54	50.26	---	74	54	-3.74
---	H	---	---	---	---	---	---	---	---
2483.5	V	40.19	---	-7.52	32.67	---	74	54	-21.33
4960	V	41.38	---	7.44	48.82	---	74	54	-5.18
7440	V	36.66	---	13.54	50.20	---	74	54	-3.80
---	V	---	---	---	---	---	---	---	---

Note:

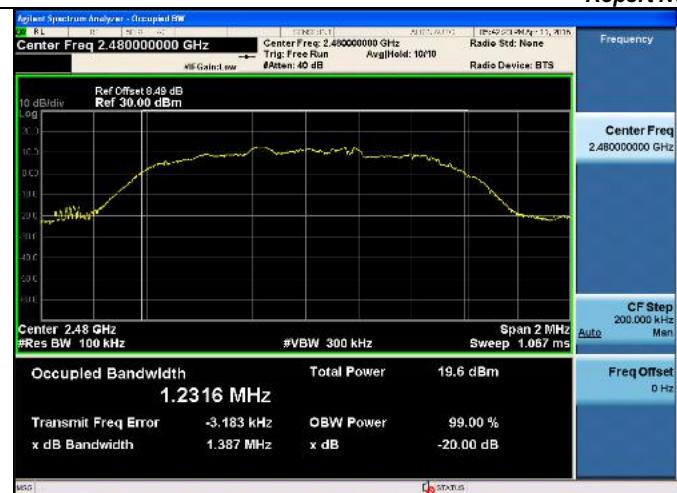
7. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
8. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
9. The emission levels of other frequencies are very lower than the limit and not show in test report.
10. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
11. Data of measurement shown “---” in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
12. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK) with GSM850 and PCS1900, and the worst case Mode (GFSK) with GSM850 Link was submitted only.

Appendix A: Test Result of Conducted Test


20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.161	0.95834	PASS
GFSK	MCH	1.112	0.95410	PASS
GFSK	HCH	1.178	0.96335	PASS
$\pi/4$ DQPSK	LCH	1.392	1.2206	PASS
$\pi/4$ DQPSK	MCH	1.387	1.2189	PASS
$\pi/4$ DQPSK	HCH	1.387	1.2223	PASS
8DPSK	LCH	1.396	1.2268	PASS
8DPSK	MCH	1.380	1.2305	PASS
8DPSK	HCH	1.387	1.2316	PASS


Test Graph

GFSK/HCH	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq: 2.480000000 GHz</p> <p>Ref Offset: 0.49 dB</p> <p>Ref: 30.00 dBm</p> <p>CF Step: 200.000 kHz</p> <p>Frequency: 2.480000000 GHz</p> <p>Occupied Bandwidth: 963.35 kHz</p> <p>Total Power: 18.8 dBm</p> <p>Transmit Freq Error: -5.018 kHz</p> <p>OBW Power: 99.00 %</p> <p>x dB Bandwidth: 1.178 MHz</p> <p>x dB: -20.00 dB</p>	
π/4DQPSK/LCH	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq: 2.402000000 GHz</p> <p>Ref Offset: 0.59 dB</p> <p>Ref: 30.00 dBm</p> <p>CF Step: 200.000 kHz</p> <p>Frequency: 2.402000000 GHz</p> <p>Occupied Bandwidth: 1.2206 MHz</p> <p>Total Power: 19.7 dBm</p> <p>Transmit Freq Error: -6.151 kHz</p> <p>OBW Power: 99.00 %</p> <p>x dB Bandwidth: 1.392 MHz</p> <p>x dB: -20.00 dB</p>	
π/4DQPSK/MCH	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq: 2.441000000 GHz</p> <p>Ref Offset: 0.49 dB</p> <p>Ref: 30.00 dBm</p> <p>CF Step: 200.000 kHz</p> <p>Frequency: 2.441000000 GHz</p> <p>Occupied Bandwidth: 1.2189 MHz</p> <p>Total Power: 18.1 dBm</p> <p>Transmit Freq Error: -6.541 kHz</p> <p>OBW Power: 99.00 %</p> <p>x dB Bandwidth: 1.387 MHz</p> <p>x dB: -20.00 dB</p>	

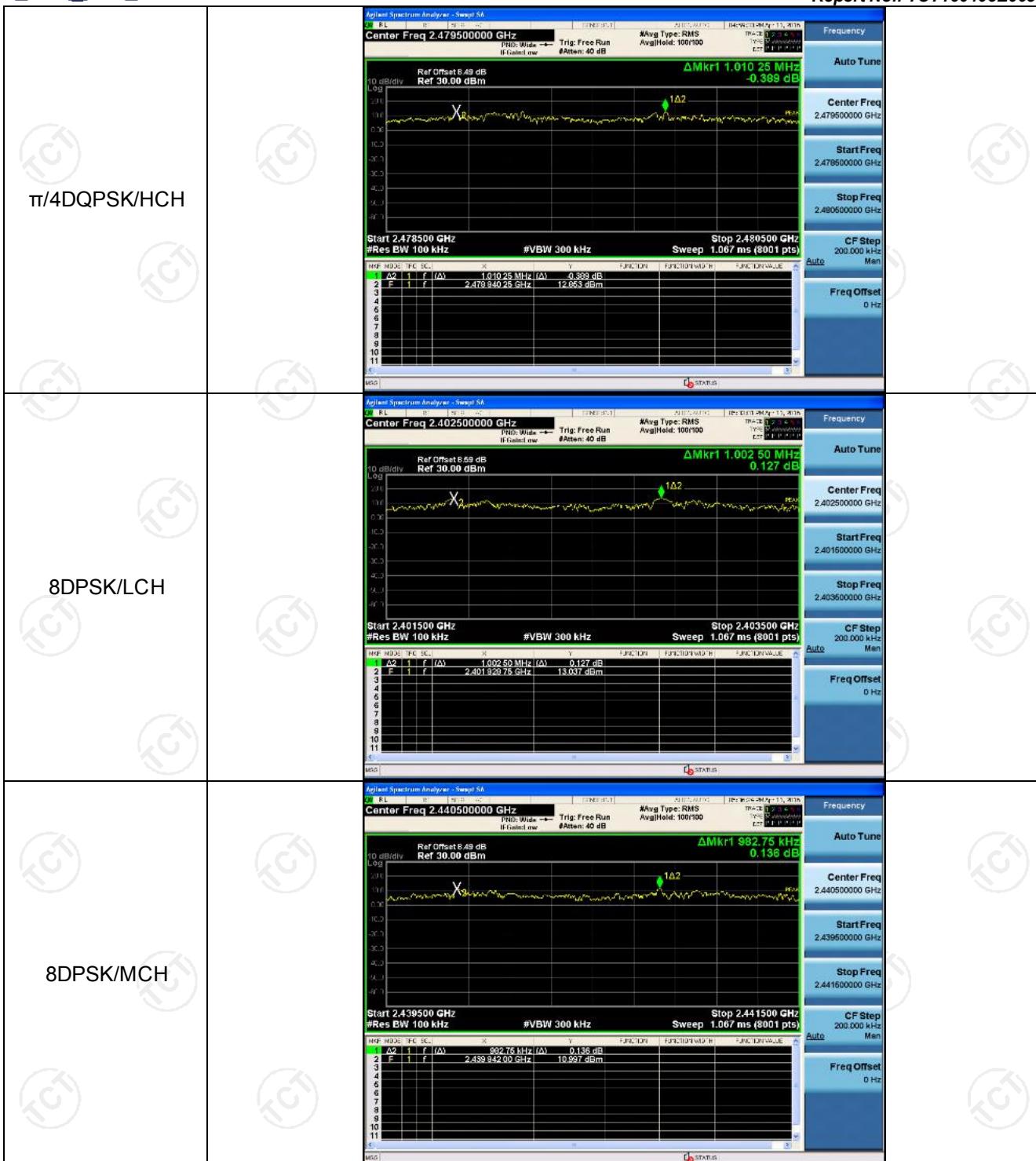
π/4DQPSK/HCH	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.480000000 GHz</p> <p>Ref Offset 0.49 dB</p> <p>Ref 30.00 dBm</p> <p>Frequency</p> <p>Center Freq 2.480000000 GHz</p> <p>CF Step 200.000 kHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p> <p>Occupied Bandwidth 1.2223 MHz</p> <p>Total Power 19.6 dBm</p> <p>Transmit Freq Error -5.678 kHz</p> <p>OBW Power 99.00 %</p> <p>x dB Bandwidth 1.387 MHz</p> <p>x dB -20.00 dB</p>
8DPSK/LCH	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.402000000 GHz</p> <p>Ref Offset 0.59 dB</p> <p>Ref 30.00 dBm</p> <p>Frequency</p> <p>Center Freq 2.402000000 GHz</p> <p>CF Step 200.000 kHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p> <p>Occupied Bandwidth 1.2268 MHz</p> <p>Total Power 19.9 dBm</p> <p>Transmit Freq Error -2.966 kHz</p> <p>OBW Power 99.00 %</p> <p>x dB Bandwidth 1.396 MHz</p> <p>x dB -20.00 dB</p>
8DPSK/MCH	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref Offset 0.49 dB</p> <p>Ref 30.00 dBm</p> <p>Frequency</p> <p>Center Freq 2.441000000 GHz</p> <p>CF Step 200.000 kHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p> <p>Occupied Bandwidth 1.2305 MHz</p> <p>Total Power 17.9 dBm</p> <p>Transmit Freq Error -1.759 kHz</p> <p>OBW Power 99.00 %</p> <p>x dB Bandwidth 1.380 MHz</p> <p>x dB -20.00 dB</p>

8DPSK/HCH



Carrier Frequency Separation

Result Table


Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.990	PASS
GFSK	MCH	0.949	PASS
GFSK	HCH	1.017	PASS
$\pi/4$ DQPSK	LCH	1.012	PASS
$\pi/4$ DQPSK	MCH	1.029	PASS
$\pi/4$ DQPSK	HCH	1.010	PASS
8DPSK	LCH	1.003	PASS
8DPSK	MCH	0.983	PASS
8DPSK	HCH	1.042	PASS

Test Graph

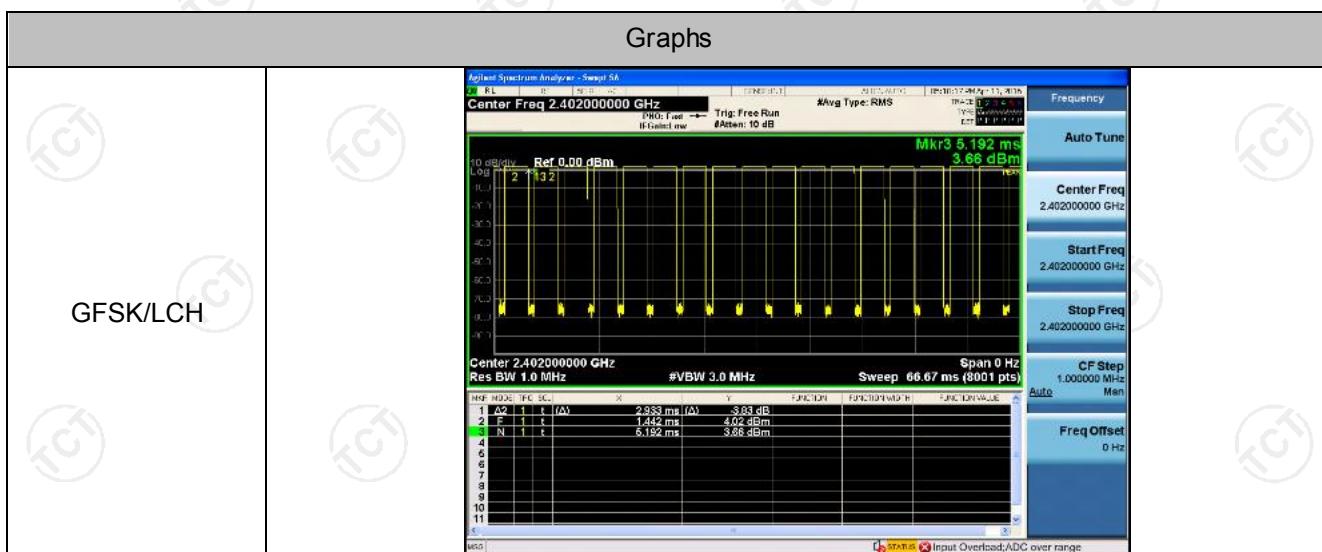


Report No.: TCI100400200

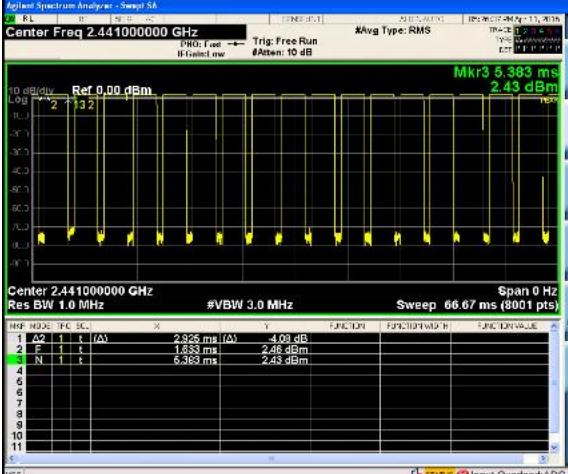
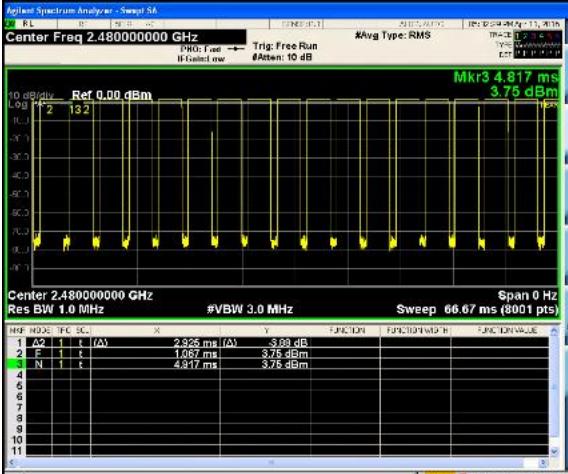
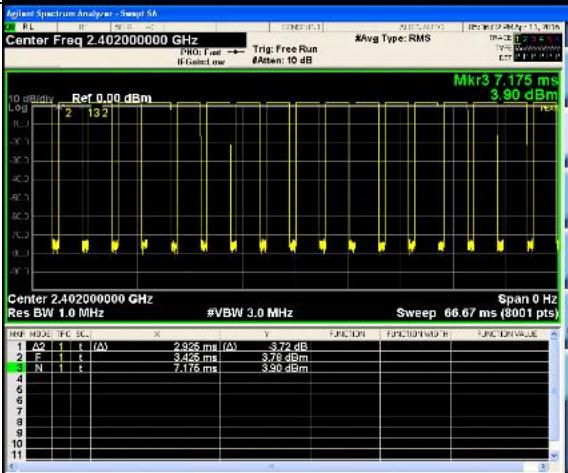
GFSK/HCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.479500000 GHz</p> <p>Ref Offset 8.49 dB Ref 30.00 dBm</p> <p>Start 2.478500 GHz #Res BW 100 kHz Stop 2.480500 GHz #VBW 300 kHz Sweep 1.067 ms (8001 pts)</p> <p>HF¹ HQ² IFC³ SC⁴ X Y FUNCTION/DIV FUNCTION/WAVEFORM FUNCTION VALUE</p> <table border="1"> <tr> <td>1 A2</td> <td>1 f</td> <td>1.01650 MHz</td> <td>0.460 dB</td> </tr> <tr> <td>2 F</td> <td>1 f</td> <td>2.47891480 GHz</td> <td>3.269 dBm</td> </tr> <tr> <td>3</td> <td></td> <td></td> <td></td> </tr> <tr> <td>4</td> <td></td> <td></td> <td></td> </tr> <tr> <td>5</td> <td></td> <td></td> <td></td> </tr> <tr> <td>6</td> <td></td> <td></td> <td></td> </tr> <tr> <td>7</td> <td></td> <td></td> <td></td> </tr> <tr> <td>8</td> <td></td> <td></td> <td></td> </tr> <tr> <td>9</td> <td></td> <td></td> <td></td> </tr> <tr> <td>10</td> <td></td> <td></td> <td></td> </tr> <tr> <td>11</td> <td></td> <td></td> <td></td> </tr> </table> <p>MSG STATUS</p>	1 A2	1 f	1.01650 MHz	0.460 dB	2 F	1 f	2.47891480 GHz	3.269 dBm	3				4				5				6				7				8				9				10				11			
1 A2	1 f	1.01650 MHz	0.460 dB																																										
2 F	1 f	2.47891480 GHz	3.269 dBm																																										
3																																													
4																																													
5																																													
6																																													
7																																													
8																																													
9																																													
10																																													
11																																													
$\pi/4$ DQPSK/LCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.402500000 GHz</p> <p>Ref Offset 8.49 dB Ref 30.00 dBm</p> <p>Start 2.401500 GHz #Res BW 100 kHz Stop 2.403500 GHz #VBW 300 kHz Sweep 1.067 ms (8001 pts)</p> <p>HF¹ HQ² IFC³ SC⁴ X Y FUNCTION/DIV FUNCTION/WAVEFORM FUNCTION VALUE</p> <table border="1"> <tr> <td>1 A2</td> <td>1 f</td> <td>1.01175 MHz</td> <td>0.728 dB</td> </tr> <tr> <td>2 F</td> <td>1 f</td> <td>2.40194475 GHz</td> <td>12.985 dBm</td> </tr> <tr> <td>3</td> <td></td> <td></td> <td></td> </tr> <tr> <td>4</td> <td></td> <td></td> <td></td> </tr> <tr> <td>5</td> <td></td> <td></td> <td></td> </tr> <tr> <td>6</td> <td></td> <td></td> <td></td> </tr> <tr> <td>7</td> <td></td> <td></td> <td></td> </tr> <tr> <td>8</td> <td></td> <td></td> <td></td> </tr> <tr> <td>9</td> <td></td> <td></td> <td></td> </tr> <tr> <td>10</td> <td></td> <td></td> <td></td> </tr> <tr> <td>11</td> <td></td> <td></td> <td></td> </tr> </table> <p>MSG STATUS</p>	1 A2	1 f	1.01175 MHz	0.728 dB	2 F	1 f	2.40194475 GHz	12.985 dBm	3				4				5				6				7				8				9				10				11			
1 A2	1 f	1.01175 MHz	0.728 dB																																										
2 F	1 f	2.40194475 GHz	12.985 dBm																																										
3																																													
4																																													
5																																													
6																																													
7																																													
8																																													
9																																													
10																																													
11																																													
$\pi/4$ DQPSK/MCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.440500000 GHz</p> <p>Ref Offset 8.49 dB Ref 30.00 dBm</p> <p>Start 2.439500 GHz #Res BW 100 kHz Stop 2.441500 GHz #VBW 300 kHz Sweep 1.067 ms (8001 pts)</p> <p>HF¹ HQ² IFC³ SC⁴ X Y FUNCTION/DIV FUNCTION/WAVEFORM FUNCTION VALUE</p> <table border="1"> <tr> <td>1 A2</td> <td>1 f</td> <td>1.02950 MHz</td> <td>0.402 dB</td> </tr> <tr> <td>2 F</td> <td>1 f</td> <td>2.43991100 GHz</td> <td>10.821 dBm</td> </tr> <tr> <td>3</td> <td></td> <td></td> <td></td> </tr> <tr> <td>4</td> <td></td> <td></td> <td></td> </tr> <tr> <td>5</td> <td></td> <td></td> <td></td> </tr> <tr> <td>6</td> <td></td> <td></td> <td></td> </tr> <tr> <td>7</td> <td></td> <td></td> <td></td> </tr> <tr> <td>8</td> <td></td> <td></td> <td></td> </tr> <tr> <td>9</td> <td></td> <td></td> <td></td> </tr> <tr> <td>10</td> <td></td> <td></td> <td></td> </tr> <tr> <td>11</td> <td></td> <td></td> <td></td> </tr> </table> <p>MSG STATUS</p>	1 A2	1 f	1.02950 MHz	0.402 dB	2 F	1 f	2.43991100 GHz	10.821 dBm	3				4				5				6				7				8				9				10				11			
1 A2	1 f	1.02950 MHz	0.402 dB																																										
2 F	1 f	2.43991100 GHz	10.821 dBm																																										
3																																													
4																																													
5																																													
6																																													
7																																													
8																																													
9																																													
10																																													
11																																													

8DPSK/HCH

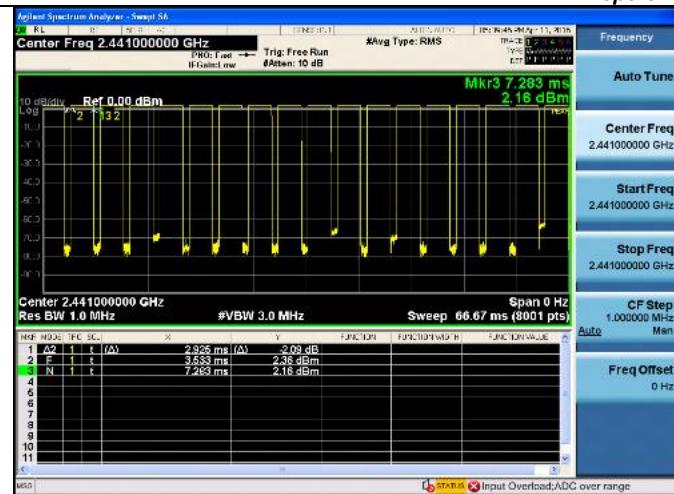
Dwell Time

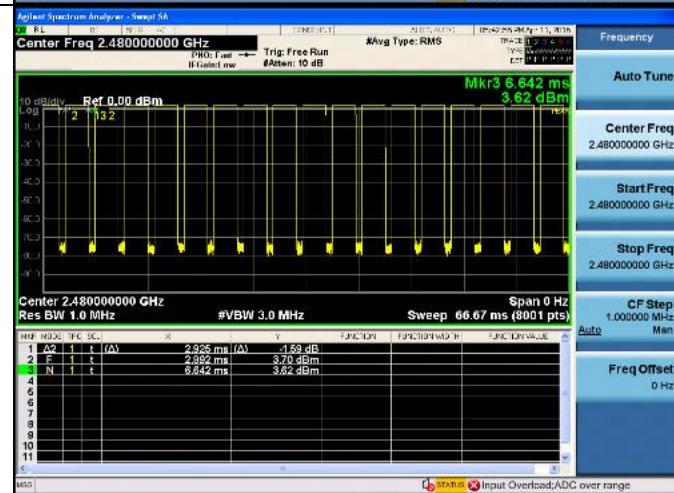

Result Table

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:




- The duration for dwell time calculation: $0.4[\text{s}]*\text{hopping number}=0.4[\text{s}]*79[\text{ch}]=31.6[\text{s}*\text{ch}]$;
- The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.
- The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is $1600/6=266.67[\text{ch}*\text{hop}/\text{s}]$
- The hops per second on one channel: $266.67[\text{ch}*\text{hop}/\text{s}]/79[\text{ch}]=3.38[\text{hop}/\text{s}]$;
- The total hops for all channels within the dwell time calculation duration: $3.38[\text{hop}/\text{s}]*31.6[\text{s}*\text{ch}]=106.67[\text{hop}*\text{ch}]$;
- The dwell time for all channels hopping: $106.67[\text{hop}*\text{ch}]*\text{Burst Width}[\text{ms}/\text{hop}/\text{ch}]$.

Mode	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	LCH	2.933	106.7	0.313	78.22	PASS
GFSK	MCH	2.933	106.7	0.313	78.22	PASS
GFSK	HCH	2.933	106.7	0.313	78.22	PASS
π/4DQPSK	LCH	2.925	106.7	0.312	78.00	PASS
π/4DQPSK	MCH	2.925	106.7	0.312	78.00	PASS
π/4DQPSK	HCH	2.925	106.7	0.312	78.00	PASS
8DPSK	LCH	2.925	106.7	0.312	78.00	PASS
8DPSK	MCH	2.925	106.7	0.312	78.00	PASS
8DPSK	HCH	2.925	106.7	0.312	78.00	PASS

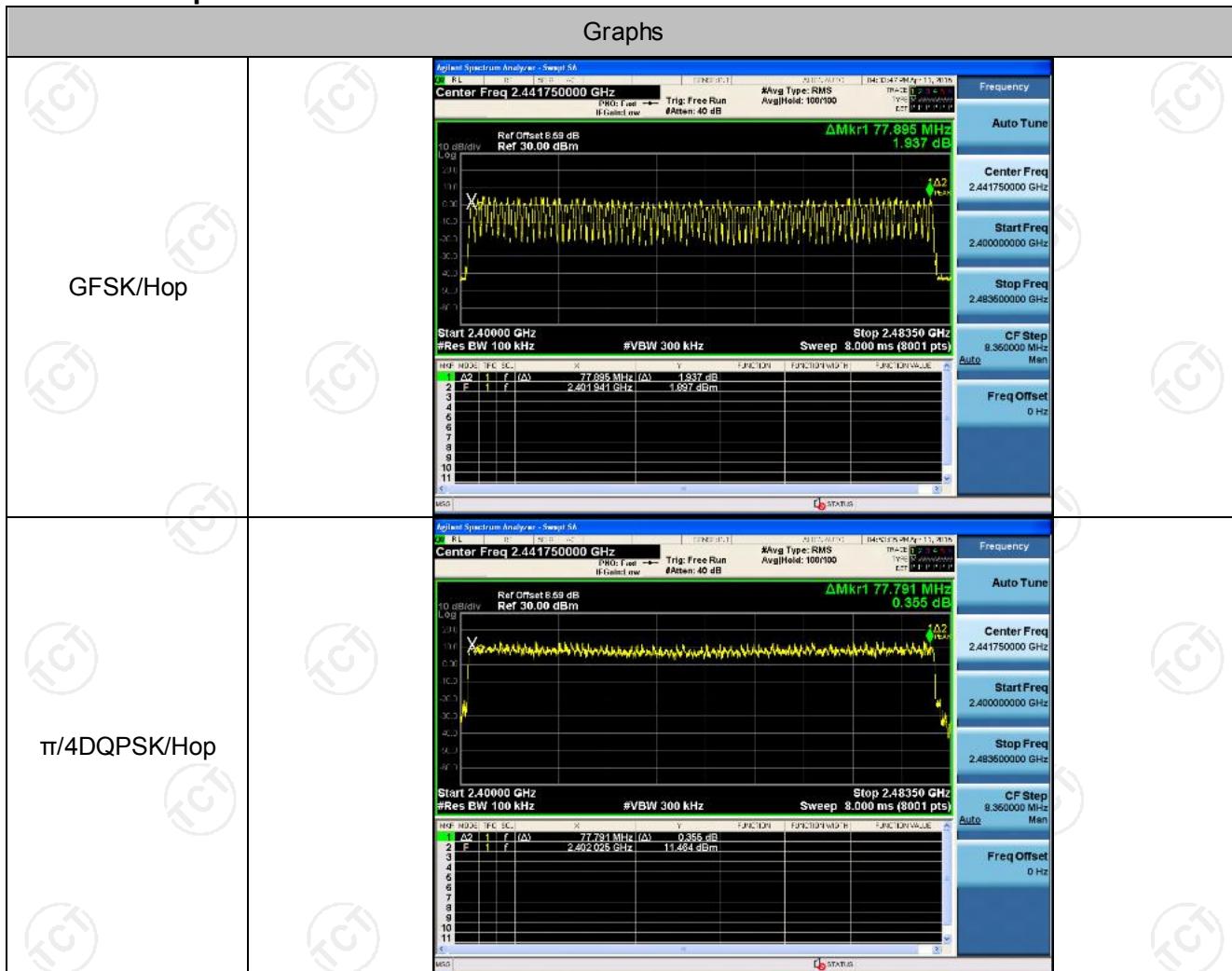

Test Graph



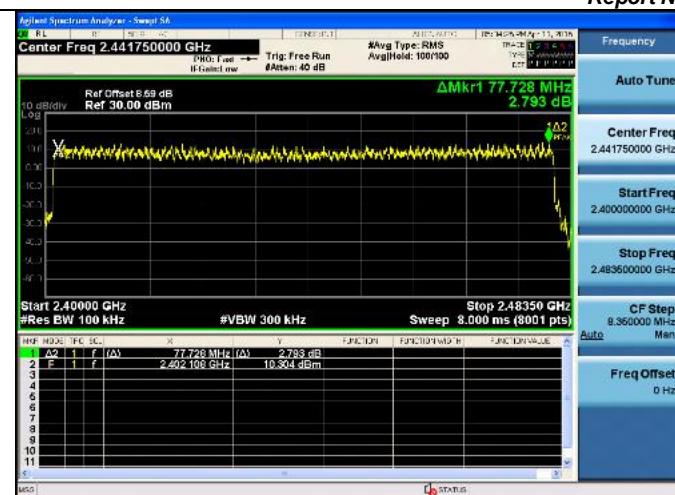
π/4DQPSK/MCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>PRO: Free Run IF Gain: 10 dB #Ave: 10 dB</p> <p>Ref 0.00 dBm</p> <p>Mkr3 5.363 ms 2.43 dBm</p> <p>10 dB/div Log 2 132</p> <p>Y: 10 dB</p> <p>Center 2.441000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 66.67 ms (8001 pts)</p> <p>Span 0 Hz</p> <p>HF: 1.024 FC: 500 X: Y: FUNCTION FUNCTION WIDTH FUNCTION VALUE</p> <p>1 A2 1 t [Δ] 2.926 ms [Δ] -3.88 dB</p> <p>2 E 1 t 1.633 ms 2.48 dBm</p> <p>3 N 1 t 5.363 ms 2.43 dBm</p> <p>4</p> <p>5</p> <p>6</p> <p>7</p> <p>8</p> <p>9</p> <p>10</p> <p>11</p> <p>MSO</p> <p>STATS Input Overload/ADC over range</p>
π/4DQPSK/HCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.480000000 GHz</p> <p>PRO: Free Run IF Gain: 10 dB #Ave: 10 dB</p> <p>Ref 0.00 dBm</p> <p>Mkr3 4.817 ms 3.75 dBm</p> <p>10 dB/div Log 2 132</p> <p>Y: 10 dB</p> <p>Center 2.480000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 66.67 ms (8001 pts)</p> <p>Span 0 Hz</p> <p>HF: 1.024 FC: 500 X: Y: FUNCTION FUNCTION WIDTH FUNCTION VALUE</p> <p>1 A2 1 t [Δ] 2.926 ms [Δ] -3.88 dB</p> <p>2 E 1 t 1.687 ms 3.75 dBm</p> <p>3 N 1 t 4.817 ms 3.75 dBm</p> <p>4</p> <p>5</p> <p>6</p> <p>7</p> <p>8</p> <p>9</p> <p>10</p> <p>11</p> <p>MSO</p> <p>STATS Input Overload/ADC over range</p>
8DPSK/LCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.402000000 GHz</p> <p>PRO: Free Run IF Gain: 10 dB #Ave: 10 dB</p> <p>Ref 0.00 dBm</p> <p>Mkr3 7.175 ms 3.90 dBm</p> <p>10 dB/div Log 2 132</p> <p>Y: 10 dB</p> <p>Center 2.402000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 66.67 ms (8001 pts)</p> <p>Span 0 Hz</p> <p>HF: 1.024 FC: 500 X: Y: FUNCTION FUNCTION WIDTH FUNCTION VALUE</p> <p>1 A2 1 t [Δ] 2.926 ms [Δ] -3.72 dB</p> <p>2 E 1 t 3.426 ms 3.78 dBm</p> <p>3 N 1 t 7.175 ms 3.90 dBm</p> <p>4</p> <p>5</p> <p>6</p> <p>7</p> <p>8</p> <p>9</p> <p>10</p> <p>11</p> <p>MSO</p> <p>STATS Input Overload/ADC over range</p>

8DPSK/MCH

8DPSK/HCH



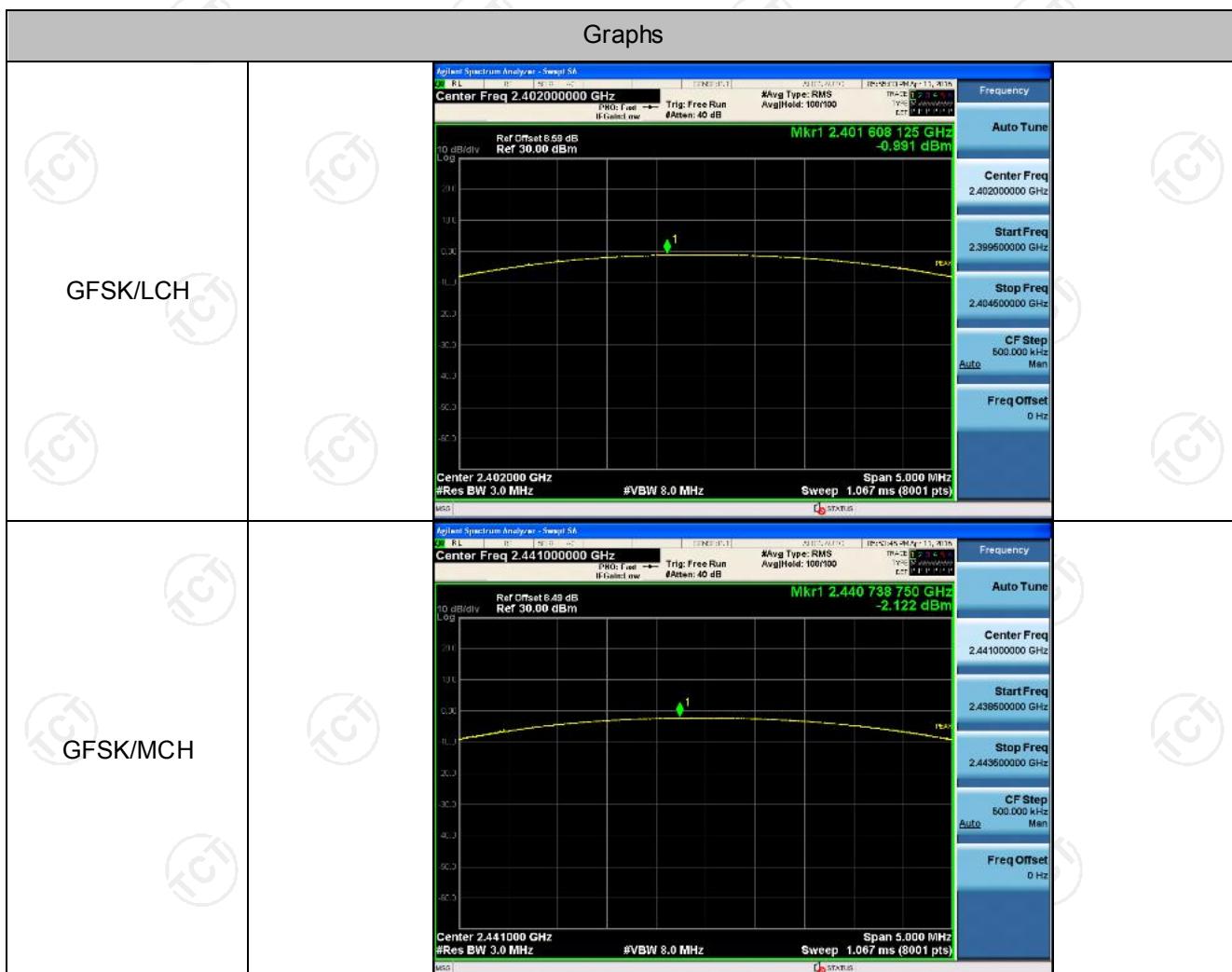
Hopping Channel Number


Result Table

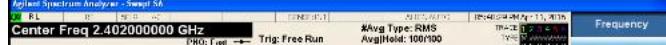
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Hop	79	PASS
$\pi/4$ DQPSK	Hop	79	PASS
8DPSK	Hop	79	PASS

Test Graph

8DPSK/Hop



Conducted Peak Output Power


Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-0.991	PASS
GFSK	MCH	-2.122	PASS
GFSK	HCH	-0.108	PASS
$\pi/4$ DQPSK	LCH	1.182	PASS
$\pi/4$ DQPSK	MCH	-0.116	PASS
$\pi/4$ DQPSK	HCH	1.903	PASS
8DPSK	LCH	1.526	PASS
8DPSK	MCH	0.095	PASS
8DPSK	HCH	2.135	PASS

Test Graph

GFSK/HCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.480000000 GHz</p> <p>Ref Offset 8.49 dB</p> <p>Ref 30.00 dBm</p> <p>Mkr1 2.479 777 500 GHz -0.108 dBm</p> <p>10 dB/div</p> <p>Log</p> <p>Center 2.480000 GHz</p> <p>#Res BW 3.0 MHz</p> <p>#VBW 8.0 MHz</p> <p>Span 5.000 MHz</p> <p>Sweep 1.067 ms (8001 pts)</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.480000000 GHz</p> <p>Start Freq 2.477600000 GHz</p> <p>Stop Freq 2.482600000 GHz</p> <p>CF Step 500.000 kHz</p> <p>Auto</p> <p>Man</p> <p>Freq Offset 0 Hz</p>
$\pi/4$ DQPSK/LCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.402000000 GHz</p> <p>Ref Offset 8.49 dB</p> <p>Ref 30.00 dBm</p> <p>Mkr1 2.402 075 000 GHz 1.182 dBm</p> <p>10 dB/div</p> <p>Log</p> <p>Center 2.402000 GHz</p> <p>#Res BW 3.0 MHz</p> <p>#VBW 8.0 MHz</p> <p>Span 5.000 MHz</p> <p>Sweep 1.067 ms (8001 pts)</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.402000000 GHz</p> <p>Start Freq 2.399600000 GHz</p> <p>Stop Freq 2.404600000 GHz</p> <p>CF Step 500.000 kHz</p> <p>Auto</p> <p>Man</p> <p>Freq Offset 0 Hz</p>
$\pi/4$ DQPSK/MCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref Offset 8.49 dB</p> <p>Ref 30.00 dBm</p> <p>Mkr1 2.440 931 875 GHz -0.116 dBm</p> <p>10 dB/div</p> <p>Log</p> <p>Center 2.441000 GHz</p> <p>#Res BW 3.0 MHz</p> <p>#VBW 8.0 MHz</p> <p>Span 5.000 MHz</p> <p>Sweep 1.067 ms (8001 pts)</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.438600000 GHz</p> <p>Stop Freq 2.443600000 GHz</p> <p>CF Step 500.000 kHz</p> <p>Auto</p> <p>Man</p> <p>Freq Offset 0 Hz</p>

π/4DQPSK/HCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.48000000 GHz</p> <p>Ref Offset 8.49 dB</p> <p>Ref 30.00 dBm</p> <p>Mkr1 2.479 768 125 GHz 1.903 dBm</p> <p>10 dB/div</p> <p>Log</p> <p>Center 2.480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 5.000 MHz Span 1.067 ms (8001 pts)</p>
8DPSK/LCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.40200000 GHz</p> <p>Ref Offset 8.49 dB</p> <p>Ref 30.00 dBm</p> <p>Mkr1 2.401 850 000 GHz 1.526 dBm</p> <p>10 dB/div</p> <p>Log</p> <p>Center 2.402000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 5.000 MHz Span 1.067 ms (8001 pts)</p>
8DPSK/MCH	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.44100000 GHz</p> <p>Ref Offset 8.49 dB</p> <p>Ref 30.00 dBm</p> <p>Mkr1 2.440 985 250 GHz 0.095 dBm</p> <p>10 dB/div</p> <p>Log</p> <p>Center 2.441000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 5.000 MHz Span 1.067 ms (8001 pts)</p>