

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 510663
Telephone: +86 (0) 20 82155555
Fax: +86 (0) 20 82075059
Email: ee.guangzhou@sgs.com

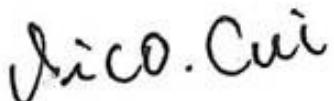
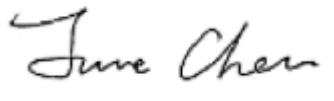
Report No.: GZEM160700522201
Page: 1 of 40
FCC ID: 2AHVO-OZO040101

TEST REPORT

The following sample(s) was/were submitted and identified on behalf of the client as:

Application No.:	GZEM1607005222CR
Applicant:	Evollve, Inc
Manufacturer:	Same as the applicant.
Factory:	Jetta (China) Industries Co., Ltd.
FCC ID:	2AHVO-OZO040101
Product Description:	Ozobot Evo (Ozobot EVO – White, Ozobot EVO – Black)
Model No.:	040101
SKU	OZO-070601-01, OZO-070601-02 *
*	Please refer to section 3 of this report for further details.
Trade Mark:	Ozobot Evo
Standards:	CFR 47 FCC PART 15 Subpart C: 2015 section 15.247
Date of Receipt:	2016-07-26
Date of Test:	2016-07-28 to 2016-07-31
Date of Issue:	2016-08-10
Test Result :	Pass*

* In the configuration tested, the EUT detailed in this report complied with the standards specified above.



The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
00		2016-08-10		Original Report

Authorized for issue by:			
Tested By		 (Vico Cui) / Project Engineer	2016-07-28 to 2016-07-31
Prepared By		 (June Chen) / Clerk	2016-08-09
Checked By		 (Ricky Liu) / Reviewer	2016-08-10

3 Test Summary

Test	Test Requirement	Test method	Result
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS
6 dB Bandwidth	FCC PART 15 C section 15.247 (a)(2)	ANSI C63.10: Clause 11.8	PASS
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(3)	ANSI C63.10: Clause 11.9	PASS
Peak Power Spectral Density	FCC PART 15 C section 15.247(e)	ANSI C63.10: Clause 11.10	PASS
Conducted Spurious Emission	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.11	PASS
Radiated Spurious Emission	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 11.12,6.3,6.5 and 6.6	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10: Clause 11.13	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS

Remark1:
EUT: In this whole report EUT means Equipment Under Test.
N/A: not applicable. Refer to the relative section for the details.
EUT: In this whole report EUT means Equipment Under Test.
Tx: In this whole report Tx (or tx) means Transmitter.
Rx: In this whole report Rx (or rx) means Receiver.
RF: In this whole report RF means Radio Frequency.
ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.

SKU.: OZO-070601-01, OZO-070601-02
According to the declaration from the applicant, SKU means different color of the same sample.
The electrical circuit design, layout, components used and internal wiring were identical for all models, with only difference being the color and package.

4 Contents

1	Cover Page	1
2	Version.....	2
3	Test Summary	3
4	Contents	4
5	General Information.....	5
5.1	Client Information.....	5
5.2	General Description of E.U.T.....	5
5.3	Details of E.U.T	5
5.4	Description of Support Units.....	6
5.5	Deviation from Standards	6
5.6	Abnormalities from Standard Conditions	6
5.7	Other Information Requested by the Customer.....	6
5.8	Test Location.....	6
5.9	Test Facility	7
6	Equipment List.....	8
7	Test Results	10
7.1	E.U.T. test conditions	10
7.2	Antenna Requirement.....	13
7.3	6 dB Bandwidth.....	14
7.4	Maximum Peak Output Power	17
7.5	Peak Power Spectral Density	21
7.6	Conducted Spurious Emissions.....	25
7.7	Radiated Emissions which fall in the restricted bands	28
7.8	Band Edges Requirement	34
7.9	Conducted Emissions at Mains Terminals 150 kHz to 30 MHz	37

5 General Information

5.1 Client Information

Applicant:	Evollve, Inc
Address of Applicant:	129 W. Torrance Blvd., Redondo Beach, CA 90277
Manufacturer:	Same as the applicant.
Address of Manufacturer:	Same as the applicant.
Factory:	Jetta (China) Industries Co., Ltd.
Address of Factory:	333 Cai Xin Lu, Lan He Zhen, Nan Sha Qu, Guangzhou Shi, Guangdong Province, China

5.2 General Description of E.U.T.

Product Description:	Ozobot Evo (Ozobot EVO – White, Ozobot EVO – Black)
Model No.:	040101

5.3 Details of E.U.T.

Operating Frequency	2402 MHz to 2480 MHz
Type of Modulation:	GFSK
	DSSS with Adaptive
Equipment types:	(Only one adaptive mode is implemented and could not operate in a non-adaptive mode.)
Number of Channels	40 Channels
Channel Separation:	2 MHz
Duty Cycle:	Continuous operation possible for testing purposes
Antenna Type	Integral antenna
Antenna gain:	-0.5 dBi
Speciality:	Bluetooth 4.1 Smart single mode (BLE)
Power Supply:	3.7V DC

5.4 Description of Support Units

The EUT has been tested with corresponding accessories as below:

Supplied by SGS:

Description	Manufacturer	Model No.	SN/Certificate NO
NoteBook	IBM	T30	S/N78-3VMLX 06/01

Using the special software and development board we can enter the product for engineer mode then we can control the EUT to select the wanted channel for test. The test board and PC are only to configure the engineer mode and not used to final test.

5.5 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

5.6 Abnormalities from Standard Conditions

None.

5.7 Other Information Requested by the Customer

None.

5.8 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory,
198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District,
Guangzhou, China 510663
Tel: +86 20 82155555 Fax: +86 20 82075059

No tests were sub-contracted.

5.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **NVLAP (Lab Code: 200611-0)**

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

- **ACMA**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

- **SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO**

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

- **CNAS (Lab Code: L0167)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

- **FCC (Registration No.: 282399)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

- **Industry Canada (Registration No.: 4620B-1)**

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

- **VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co. Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

- **CBTL (Lab Code: TL129)**

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01 and Rules of procedure IECEE 02, and the relevant IECEE CB-Scheme Operational documents.

6 Equipment List

RE in Chamber						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
					(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0525	Compact Semi-Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2014-12-05	2016-12-04
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2016-02-01	2017-01-31
EMC0056	EMI Test Receiver	Rohde & Schwarz	ESCI	100236	2016-02-01	2017-01-31
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2016-04-19	2018-04-18
EMC2025	Trilog Broadband Antenna 30-1000MHz	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	9160-3372	2014-07-14	2017-07-13
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2013-08-31	2016-08-30
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2014-05-04	2017-05-03
EMC2026	Horn Antenna 1-18GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	9120D-841	2013-08-31	2016-08-30
EMC0521	1-26.5 GHz Pre-Amplifier	Agilent	8449B	3008A01649	2016-01-25	2017-01-24
EMC2065	Amplifier	HP	8447F	N/A	2016-07-04	2017-07-03
EMC2086	PRE AMPLIFIER MH648A	ANRITSU CORP	MH648A	N/A	2015-12-19	2016-12-18
EMC2063	Pre-amplifier 1GHz-26GHz	Compliance Direction Systems Lnc.	PAP-1G26-48	6279.628	2016-01-06	2017-01-05
EMC0523	Active Loop Antenna	EMCO	6502	42963	2016-02-27	2018-02-26
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESS-ELEKTRONI	BBHA 9170	9170-375	2014-05-26	2017-05-25
EMC2079	High Pass Filter(915MHz)	FSY MICROWAVE	HM1465-9SS	009	2016-01-25	2017-01-24
EMC2069	2.4GHz Filter	Micro-Tronics	BRM 50702	149	2016-01-25	2017-01-24
EMC0530	10m Semi-Anechoic Chamber	ETS	N/A	N/A	2016-04-30	2018-04-29

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM160700522201
Page: 9 of 40:

Conducted Emission						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
					(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	N/A	N/A
EMC0118	Two-line v-netwok	R&S	ENV216	100359	2016-01-25	2017-01-24
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	2015-09-24	2016-09-23
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2015-12-19	2016-12-18
EMC0107	Coaxial Cable	SGS	2m	N/A	2016-07-24	2018-07-23
EMC0106	Voltage Probe	SGS	N/A	N/A	2016-04-05	2018-04-04
EMC0120	8 Line ISN	Fischer Custom Communications	FCC-TLISN-T8-02	20550	2015-09-28	2016-09-27
EMC0121	4 Line ISN	Fischer Custom Communications	FCC-TLISN-T4-02	20549	2015-09-28	2016-09-27
EMC0122	2 Line ISN	Fischer Custom Communications	FCC-TLISN-T2-02	20548	2015-09-28	2016-09-27
EMC2047	CDN	Elektronik-Feinmechanik	L-801:AF2	2793	2015-09-19	2018-09-18
EMC2048	CDN	Elektronik-Feinmechanik	L-801:M2/M3	2738	2015-09-25	2018-09-24
EMC2062	6dB Attenuator	HP	8491A	24487	2016-04-05	2018-04-04
EMC0167	Conical metal housing	SGS-EMC	N/A	N/A	2016-04-19	2018-04-18

General used equipment						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
					(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0006	DMM	Fluke	73	70681569	2015-09-17	2016-09-16
EMC0007	DMM	Fluke	73	70671122	2015-09-17	2016-09-16

7 Test Results

7.1 E.U.T. test conditions

Test Voltage:	DC3.7V
Temperature:	20.0 -25.0 °C
Humidity:	38-50 % RH
Atmospheric Pressure:	1000 -1010 mbar
Requirements:	<p>15.31(e): For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.</p> <p>15.32: Power supplies and CPU boards used with personal computers and for which separate authorizations are required to be obtained shall be tested as follows: Testing shall be in accordance with the procedures specified in Section 15.31 of this part.</p>
Test frequencies and frequency range:	<p>According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:</p> <p>According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:</p>

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	27	2456
1	2404	28	2458
2	2406	29	2460
3	2408	30	2462
4	2410	31	2464
5	2412	32	2466
6	2414	33	2468
7	2416	34	2470
8	2418	35	2472
9	2420	36	2474
10	2422	37	2476
11	2424	38	2478
12	2426	39	2480
13	2428	40	/
14	2430	41	/
15	2432	42	/
16	2434	43	/
17	2436	44	/
18	2438	45	/
19	2440	46	/
20	2442	47	/
21	2444	48	/
22	2446	49	/
23	2448	50	/
24	2450	51	/
25	2452	52	/
26	2454	53	/

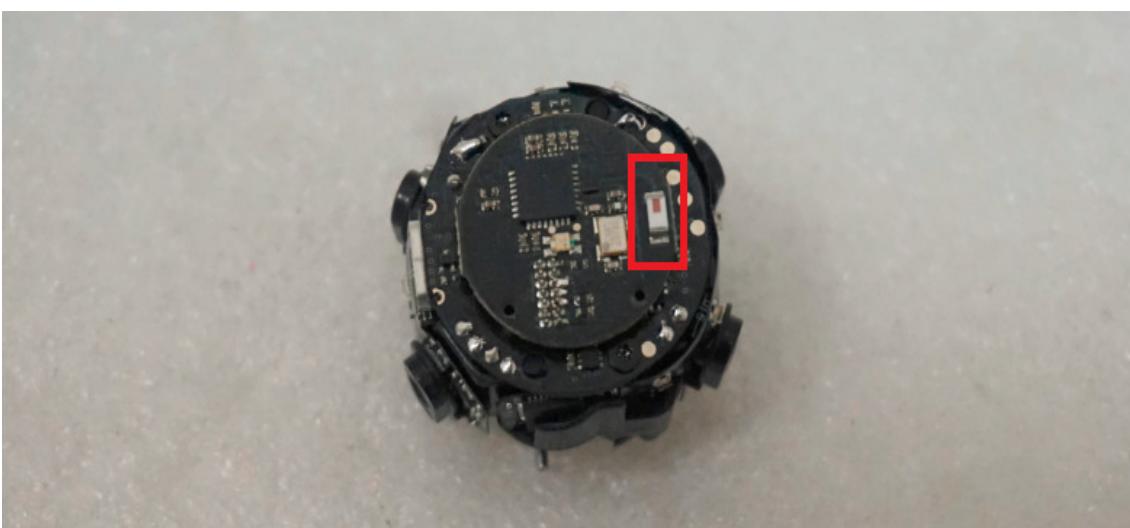
Using the special software and development board we can enter the product for engineer mode then we can control the EUT to select the wanted channel for test as above list.

Test frequencies are the lowest channel: 0 channel(2402MHz), middle channel: 20 channel(2442 MHz) and highest channel: 39 channel(2480 MHz)

7.2 Antenna Requirement

Standard requirement

15.203 requirement:


For intentional device. According to 15.203. an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

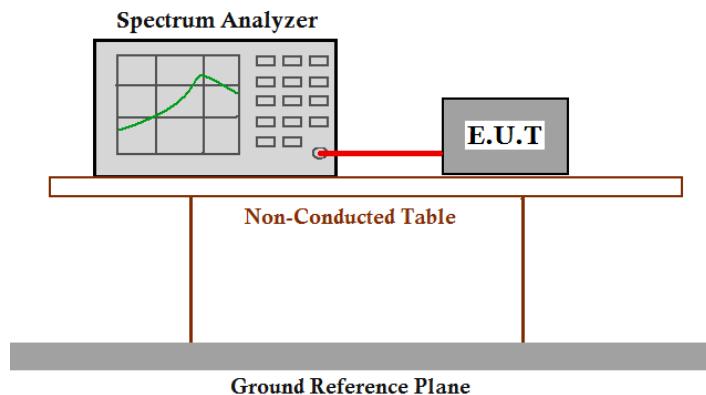
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is chip antenna and no consideration of replacement. The best case gain of the antenna is -0.5dBi.

Test result: The unit does meet the FCC requirements.


7.3 6 dB Bandwidth

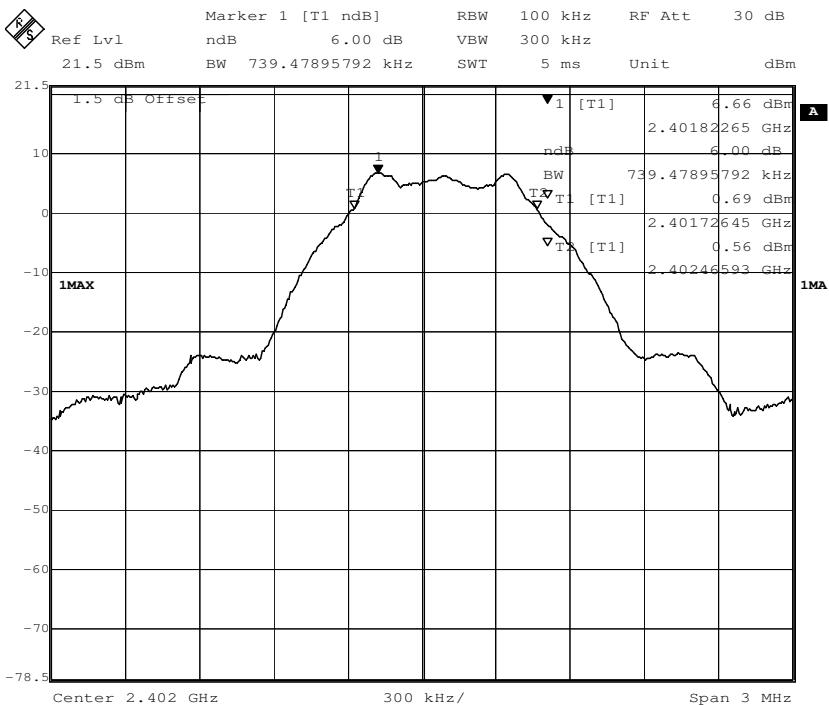
Test Requirement: FCC Part 15 C section 15.247
(a)(2)Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Method: ANSI C63.10: Clause 11.8

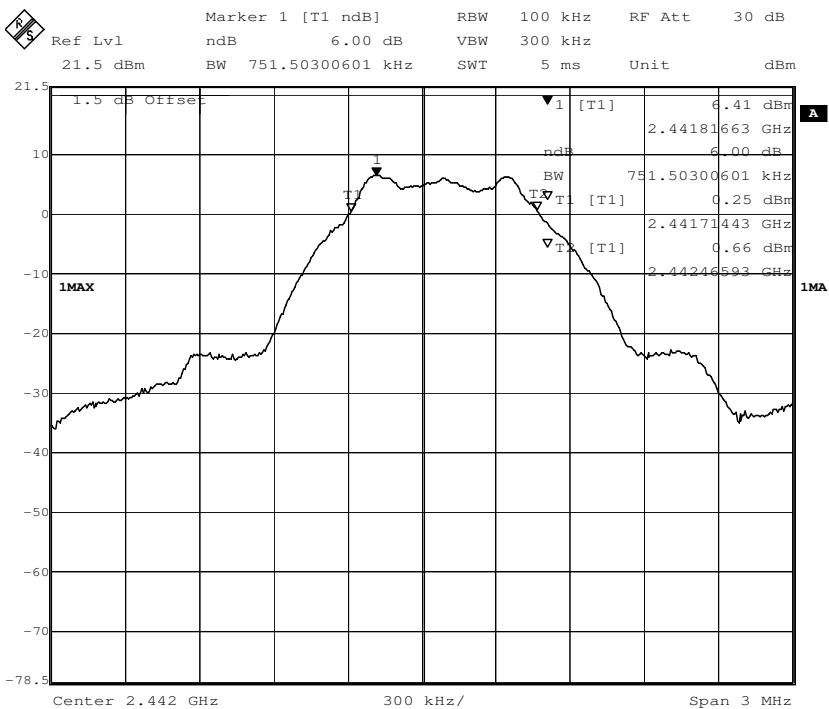
Test Status: Enter test mode for the product. Test in Channel lowest (2402MHz), middle (2442MHz) and highest (2480MHz), keep in continuously transmitting status.

Test Configuration:

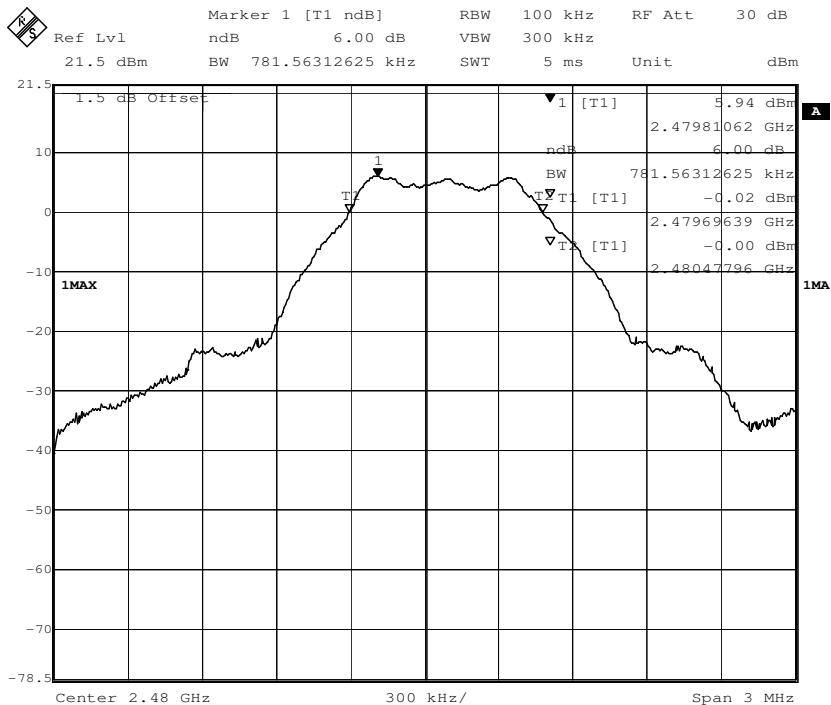
Test Procedure:


1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1.5dB) from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW=100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max Hold, Set span to encompass the entire emission bandwidth of the signal.
3. Mark the peak power frequency and -6dB (upper and lower) power frequency.
4. Repeat until all the test status is investigated.
5. Report the worse case.

Channel No.	Frequency (MHz)	Mode	Measured -6dB bandwidth (kHz)	Limit	Result
0	2402	GFSK	739.48	≥500KHz	Pass
20	2442		751.50		Pass
39	2480		781.56		Pass

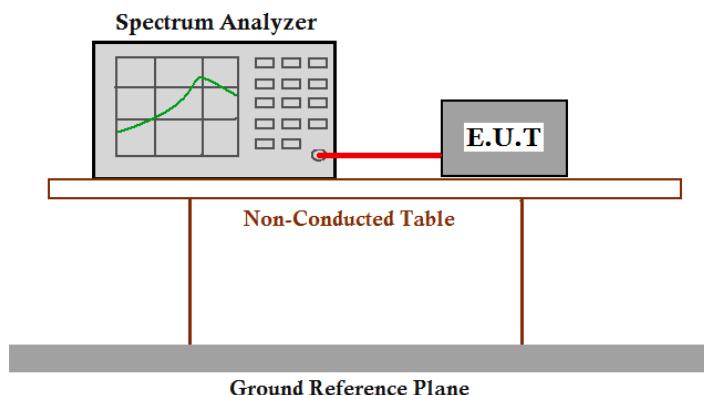

Test result: The unit does meet the FCC requirements.

Result plot as follows:


Channel 0:2.402GHz:

Channel 20:2.442GHz:

Channel 39:2.480GHz:



7.4 Maximum Peak Output Power

Test Requirement: FCC Part 15 C section 15.247
(b)(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.
Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Method: ANSI C63.10: Clause 11.9
Test Status: Enter test mode for the product. Test in Channel lowest (2402MHz), middle (2442MHz) and highest (2480MHz), keep in continuously transmitting status.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (Cable loss =1.5dB) from the antenna port to the spectrum.
2. Set the RBW = 1 MHz.
3. Set the VBW \geq 3 x RBW
4. Set the span \geq 1.5 x DTS bandwidth.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.

Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

10. Measure the channel power of the test frequency with special test status.

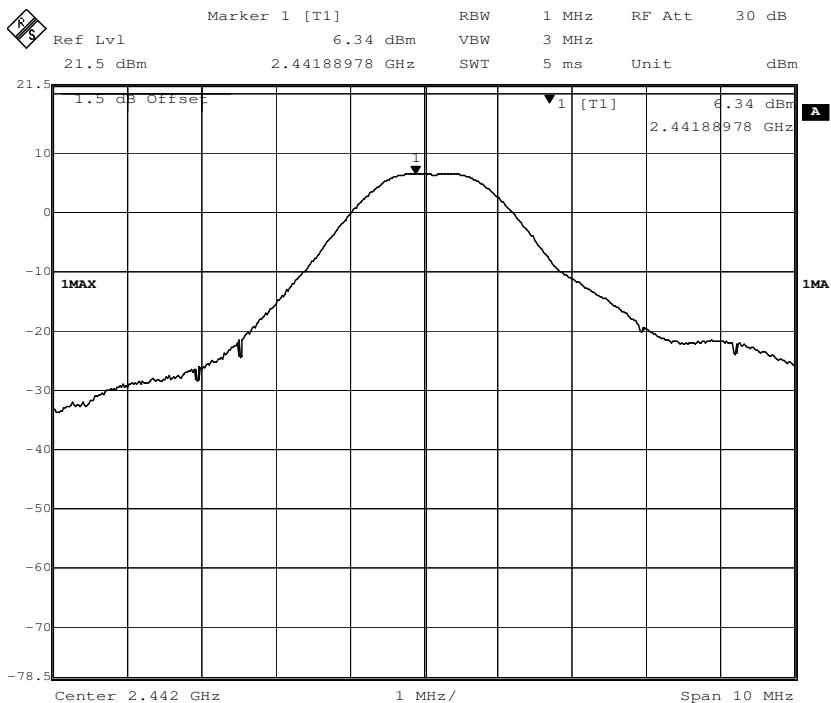
11. Repeat until all the test status is investigated.

Report the worse case.

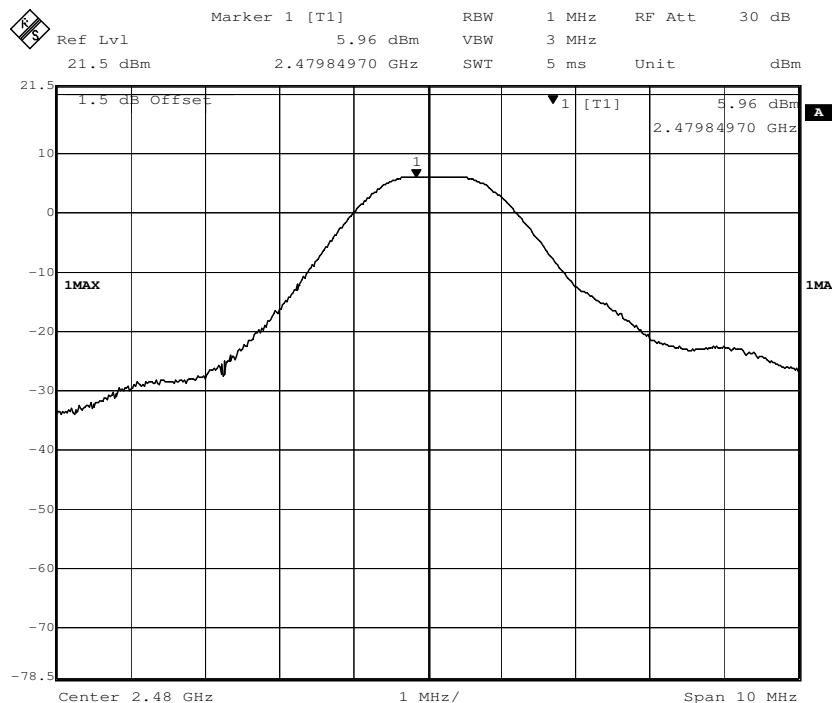
Test result:

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Channel Power (dBm)	Limit	Result
0	2402	GFSK	1Mbps	6.63	1W(30dBm)	Pass
20	2442		1Mbps	6.34		Pass
39	2480		1Mbps	5.96		Pass

Remark: Level = Read Level + Cable Loss + Antenna Gain

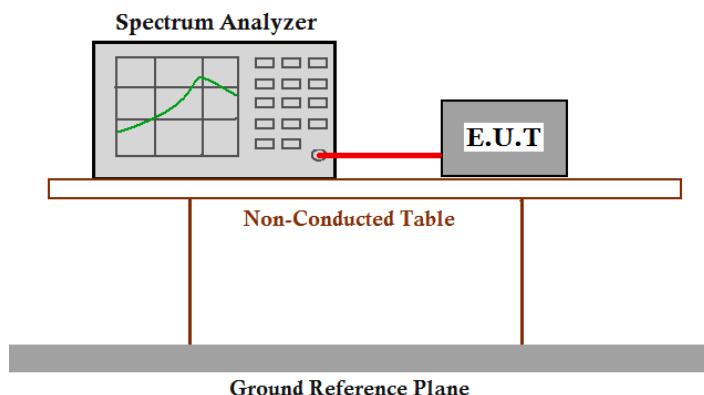

The unit does meet the FCC requirements.

Result plot as follows:


Channel 0:2.402GHz:

Channel 20:2.442GHz:

Channel 39:2.480GHz:


7.5 Peak Power Spectral Density

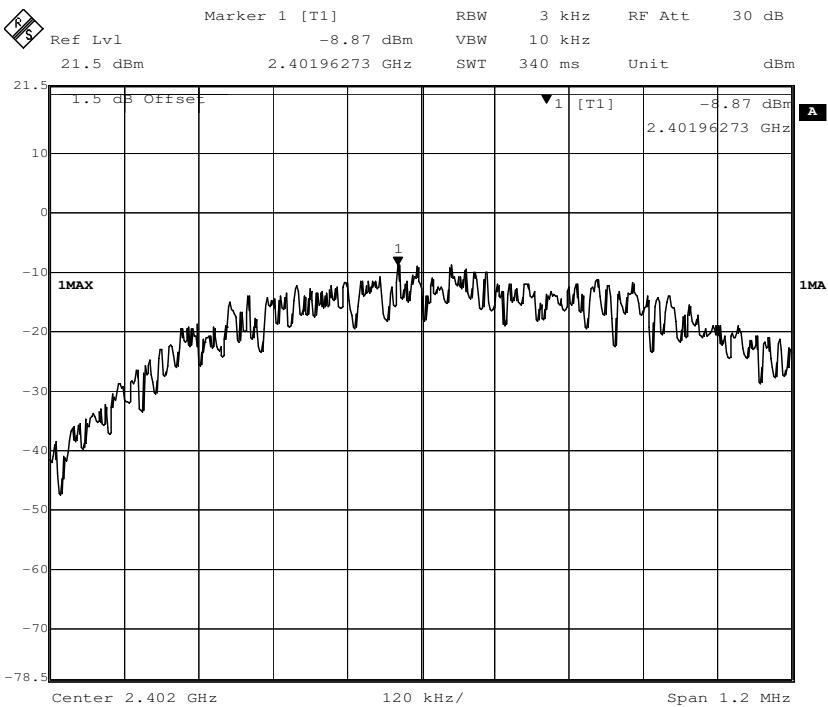
Test Requirement: FCC Part 15 C section 15.247
(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Method: ANSI C63.10: Clause 11.10

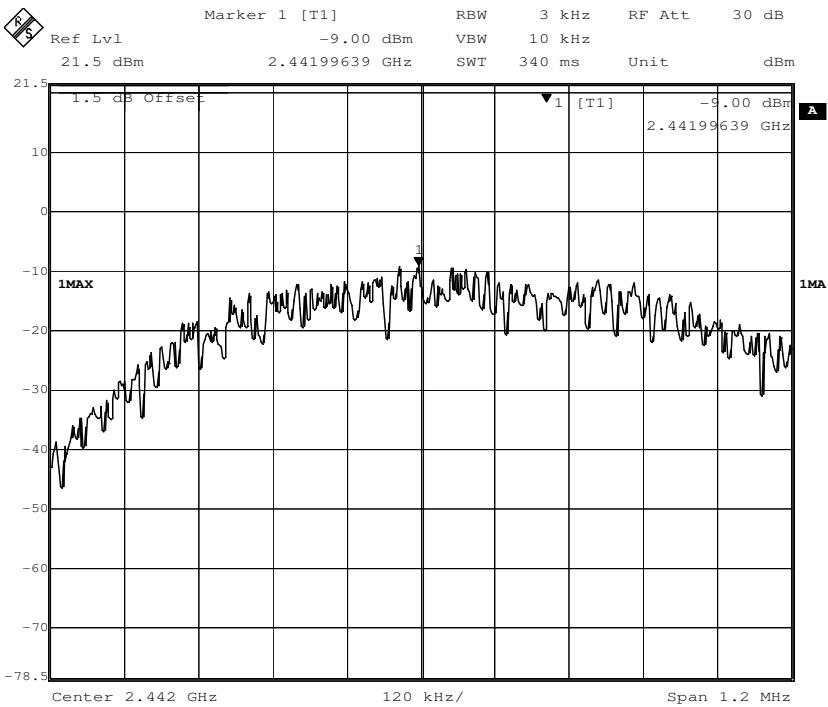
Test Status: Enter test mode for the product. Test in lowest Channel 2402MHz, middle Channel 2442MHz and highest Channel 2480MHz, keep in continuously transmitting status.

Test Configuration:

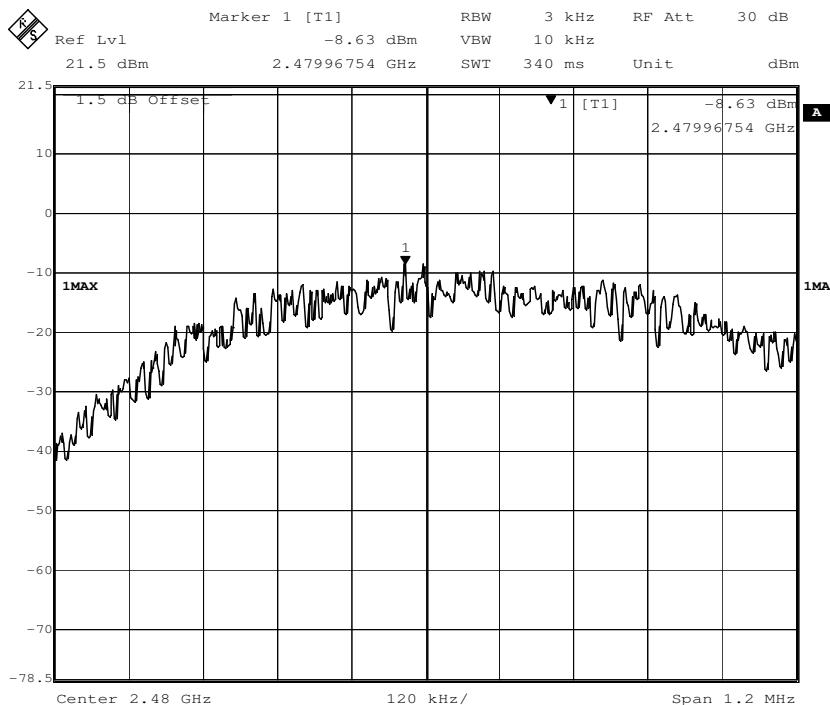
Test Procedure:


1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1.5dB) from the antenna port to the spectrum analyzer or power meter.
2. Set the spectrum analyzer: RBW=3 kHz. VBW = 30 kHz. sweep= (SPAN/3 kHz); Detector Function = Peak. Trace = Max Hold, Centre = the Peak Power of the signal.
3. Measure the Power Spectral Density of the test frequency with special test status.
4. Repeat until all the test status is investigated.
5. Report the worse case.

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured Peak Power Spectral Density (dBm/3KHz)	Limit	Result
0	2402	GFSK	1 Mbps	-8.87	8dBm/3KHz	Pass
20	2442		1 Mbps	-9.00		Pass
39	2480		1 Mbps	-8.63		Pass


Test result: Level = Read Level + Cable Loss.**The unit does meet the FCC requirements.**

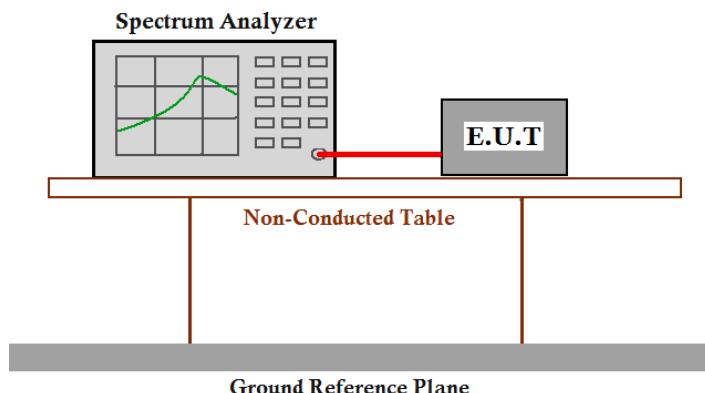
Result plot as follows:


Channel 0:2.402 GHz:

Channel 20:2.442 GHz:

Channel 39:2.480 GHz:

7.6 Conducted Spurious Emissions

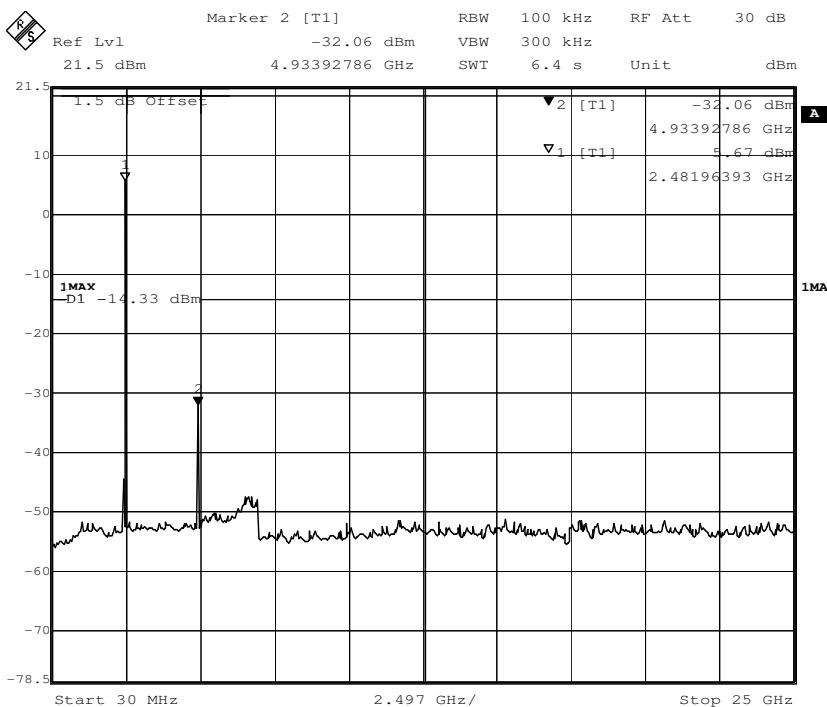

Test Requirement: FCC Part 15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10: Clause 11.11

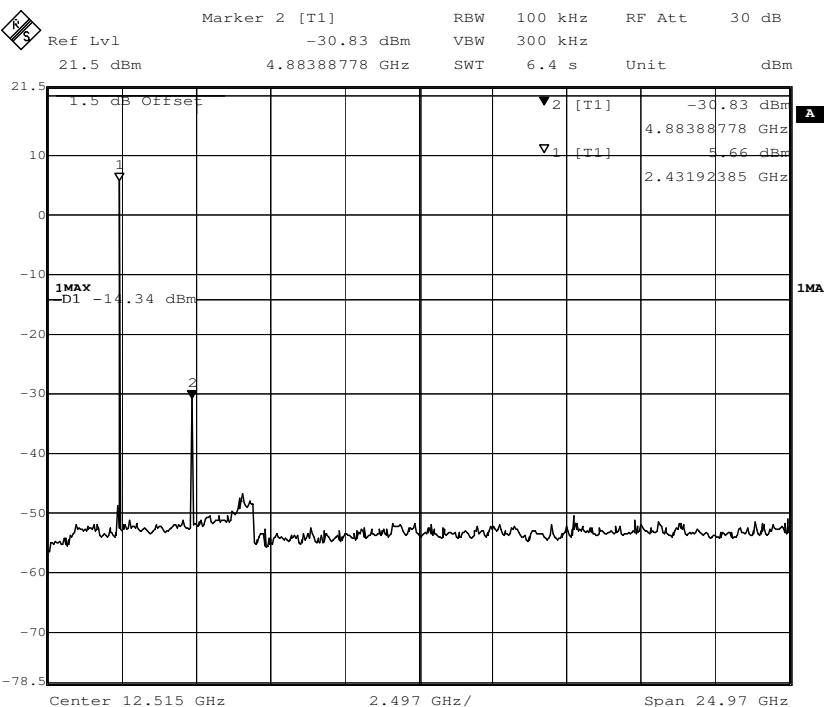
Test Status: Enter test mode for the product. Test in lowest Channel 2402MHz, middle Channel 2442MHz and highest Channel 2480MHz, keep in continuously transmitting status.

Test Configuration:

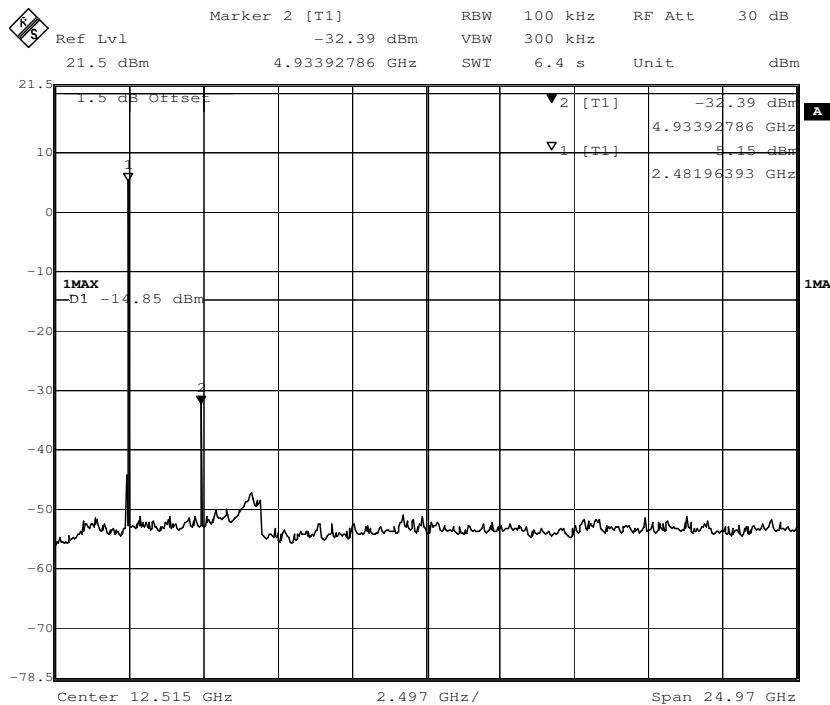

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
2. Set the spectrum analyzer: RBW=100 KHz, VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max Hold, Scan up through 10th harmonic.
3. Measure the Conducted Spurious Emissions of the test frequency with special test status.
4. Repeat until all the test status is investigated.
5. Report the worse case.

Result plot as follows:

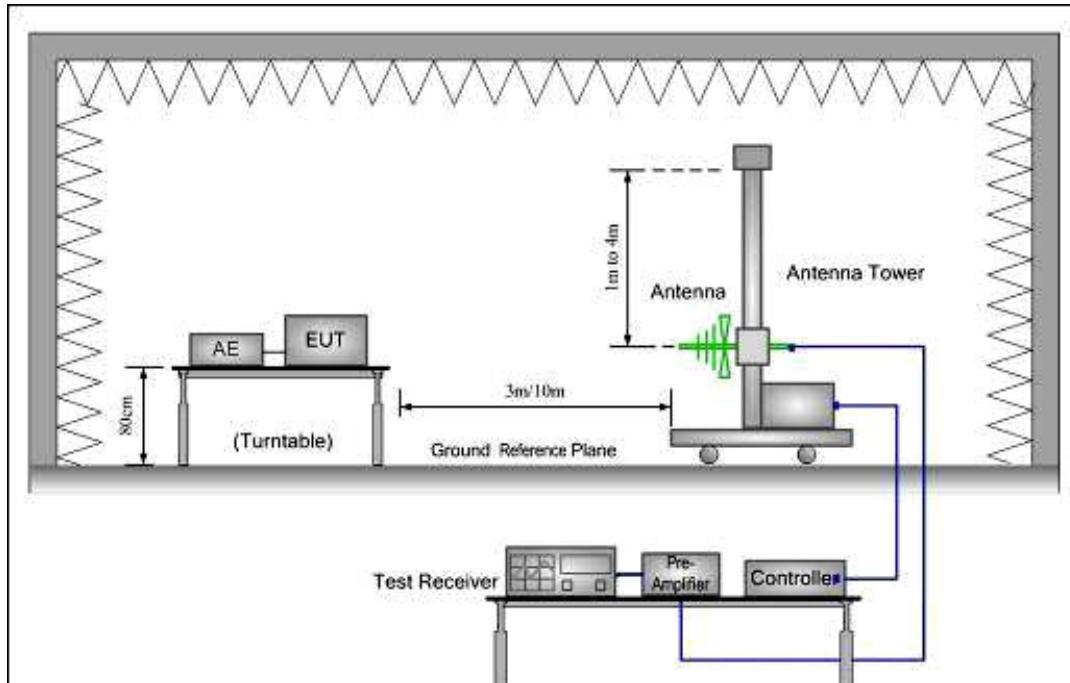

Channel 0: 2.402 GHz

30 MHz to 25GHz

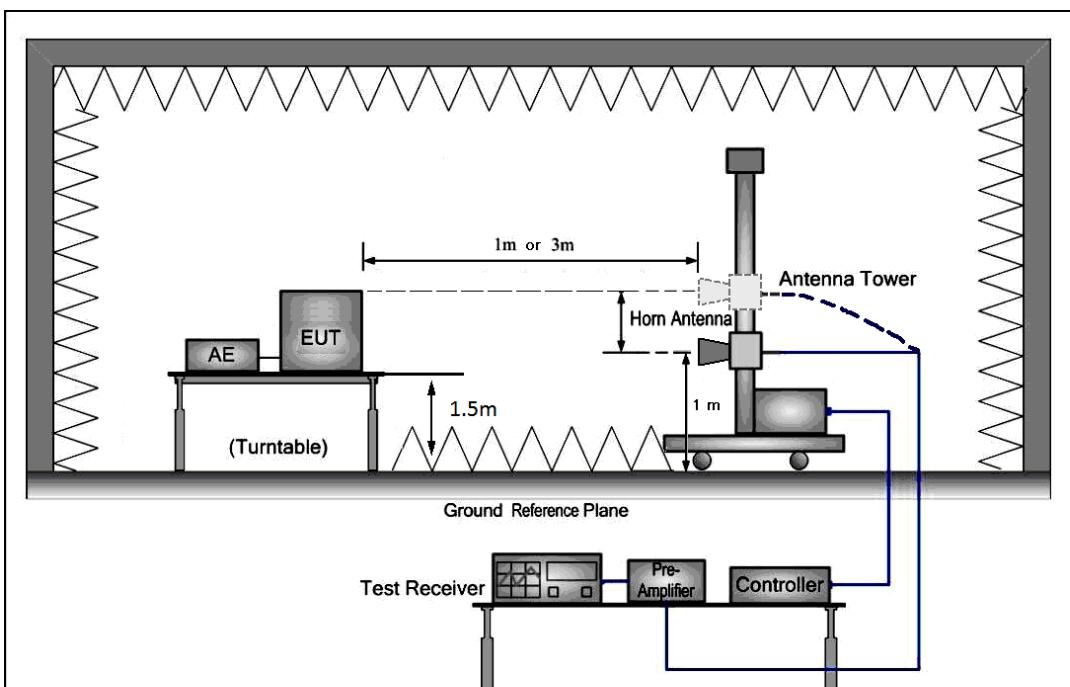


Channel 20:2.442GHz

30 MHz to 25GHz



Channel 39:2.480GHz


30 MHz to 25GHz

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement:	FCC Part 15 C section 15.247
	(d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	ANSI C63.10: Clause 11.12, 6.3, 6.5 and 6.6
Test Status:	Enter test mode for the product. Test in lowest channel 2402 MHz and highest channel 2480 MHz, keep in continuously transmitting status with GFSK modulation.
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)
Limit:	40.0 dB μ V/m between 30MHz & 88MHz; 43.5 dB μ V/m between 88MHz & 216MHz; 46.0 dB μ V/m between 216MHz & 960MHz; 54.0 dB μ V/m above 960MHz.
Detector:	For PK value: RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold For AV value: RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz VBW = 10Hz Sweep = auto Detector function = peak Trace = max hold
Test Frequency Range	30M~26GHz
Test Configuration:	1). 30 MHz to 1 GHz emissions:

2). 1 GHz to 40 GHz emissions:

Test Procedure:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz.

The receiver scanned from the lowest frequency generated within the EUT to 25GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was

performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

From 30MHz to 1GHz, read the Quasi-Peak field strength of the emissions with receiver QP detector RBW=120KHz.

Above 1GHz, read the Peak field strength and Average field strength.

Read the Peak field strength through RBW=1MHz, VBW=3MHz in spectrum analyzer setting;

Read the Average field strength through RBW=1MHz, VBW=10Hz in spectrum analyzer setting;

While maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the average field strength reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from $20\log(\text{dwell time}/100 \text{ ms})$, in an effort to demonstrate compliance with the 15.209 limit.

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

Test Result:**Test at lowest Channel (2.402 GHz) in transmitting status****30MHz~1000 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement**

The measurements with Log antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Antenna polarization
2310.00	28.00	6.80	39.07	48.37	44.10	74.00	Vertical
2390.00	28.15	6.87	39.10	67.18	63.10	74.00	V
2483.50	28.28	7.07	39.14	44.65	40.86	74.00	V
2500.00	28.30	7.10	39.14	49.18	45.44	74.00	V
2310.00	28.00	6.80	39.07	45.08	40.81	74.00	Horizontal
2390.00	28.15	6.87	39.10	67.35	63.27	74.00	H
2483.50	28.28	7.07	39.14	45.32	41.53	74.00	H
2500.00	28.30	7.10	39.14	47.18	43.44	74.00	H

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Antenna polarization
2310.00	28.00	6.80	39.07	34.69	30.42	54.00	Vertical
2390.00	28.15	6.87	39.10	47.49	43.41	54.00	V
2483.50	28.28	7.07	39.14	35.77	31.98	54.00	V
2500.00	28.30	7.10	39.14	35.53	31.79	54.00	V
2310.00	28.00	6.80	39.07	35.51	31.24	54.00	Horizontal
2390.00	28.15	6.87	39.10	46.98	42.90	54.00	H
2483.50	28.28	7.07	39.14	36.38	32.59	54.00	H
2500.00	28.30	7.10	39.14	35.94	32.20	54.00	H

Test at middle Channel(2.442 GHz) in transmitting status**30MHz~1000 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement**

The measurements with Log antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Antenna polarization
2310.00	28.00	6.80	39.07	46.98	42.71	74.00	Vertical
2390.00	28.15	6.87	39.10	55.78	51.70	74.00	V
2483.50	28.28	7.07	39.14	50.19	46.40	74.00	V
2500.00	28.30	7.10	39.14	50.01	46.27	74.00	V
2310.00	28.00	6.80	39.07	51.25	46.98	74.00	Horizontal
2390.00	28.15	6.87	39.10	49.77	45.69	74.00	H
2483.50	28.28	7.07	39.14	49.30	45.51	74.00	H
2500.00	28.30	7.10	39.14	51.83	48.09	74.00	H

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Antenna polarization
2310.00	28.00	6.80	39.07	35.71	31.44	54.00	Vertical
2390.00	28.15	6.87	39.10	35.51	31.43	54.00	V
2483.50	28.28	7.07	39.14	35.11	31.32	54.00	V
2500.00	28.30	7.10	39.14	33.51	29.77	54.00	V
2310.00	28.00	6.80	39.07	34.93	30.66	54.00	Horizontal
2390.00	28.15	6.87	39.10	33.76	29.68	54.00	H
2483.50	28.28	7.07	39.14	34.52	30.73	54.00	H
2500.00	28.30	7.10	39.14	33.57	29.83	54.00	H

Test at highest Channel (2.480 GHz) in transmitting status**30MHz~1000 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement**

The measurements with Log antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Antenna polarization
2310.00	28.00	6.80	39.07	49.55	45.28	74.00	Vertical
2390.00	28.15	6.87	39.10	52.69	48.61	74.00	V
2483.50	28.28	7.07	39.14	67.57	63.78	74.00	V
2500.00	28.30	7.10	39.14	50.79	47.05	74.00	V
2310.00	28.00	6.80	39.07	48.34	44.07	74.00	Horizontal
2390.00	28.15	6.87	39.10	54.32	50.24	74.00	H
2483.50	28.28	7.07	39.14	66.95	63.16	74.00	H
2500.00	28.30	7.10	39.14	48.34	44.60	74.00	H

Average Measurement:

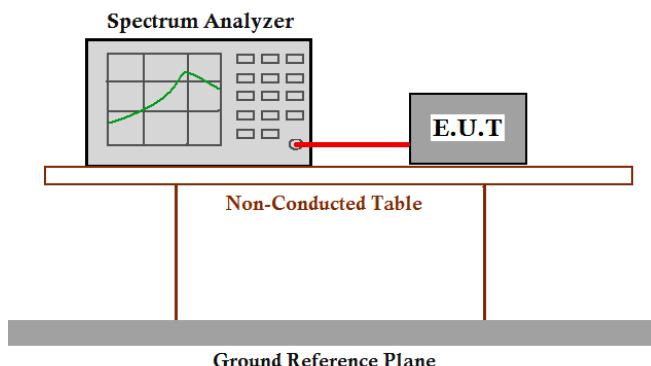
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dB μ V)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Antenna polarization
2310.00	28.00	6.80	39.07	33.66	29.39	54.00	Vertical
2390.00	28.15	6.87	39.10	34.31	30.23	54.00	V
2483.50	28.28	7.07	39.14	45.85	42.06	54.00	V
2500.00	28.30	7.10	39.14	33.98	30.24	54.00	V
2310.00	28.00	6.80	39.07	32.31	28.04	54.00	Horizontal
2390.00	28.15	6.87	39.10	34.78	30.70	54.00	H
2483.50	28.28	7.07	39.14	47.30	43.51	54.00	H
2500.00	28.30	7.10	39.14	31.90	28.16	54.00	H

Remark: above table only record the worse data of emissions in restricted frequency bands.

Test result: The unit does meet the FCC requirements.

7.8 Band Edges Requirement

Test Requirement: FCC Part 15 C section 15.247


(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

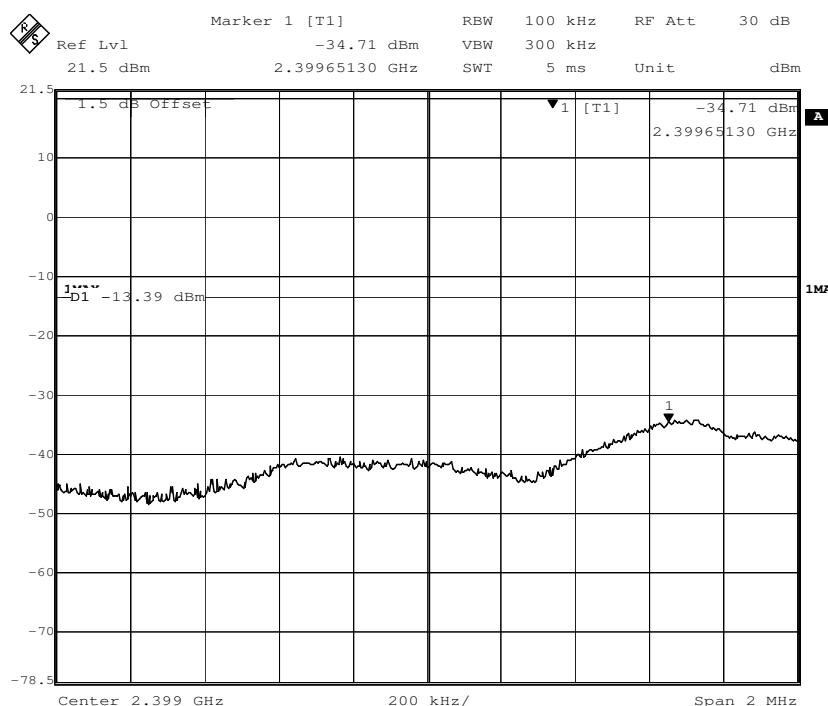
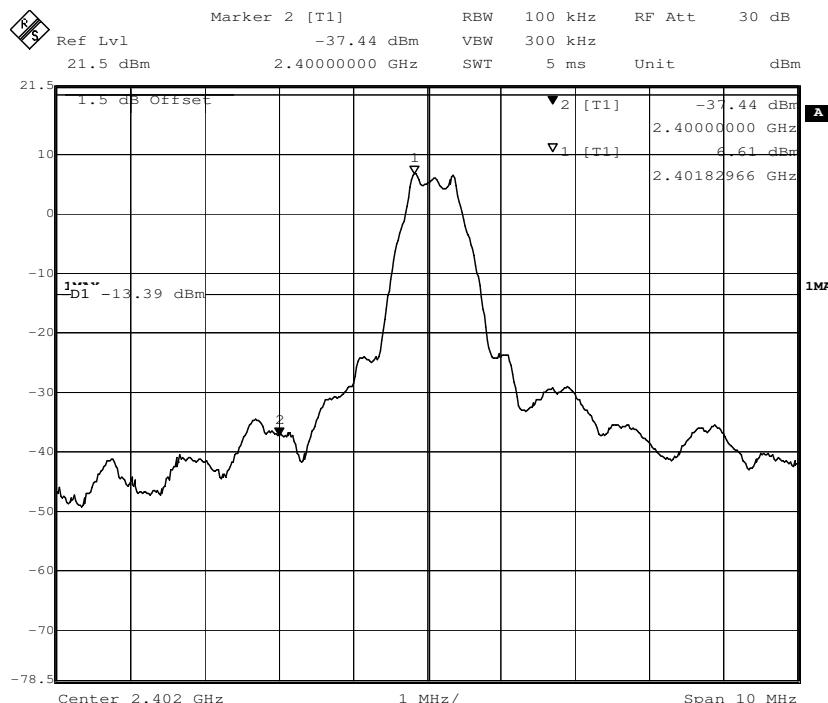
Frequency Band: 2400 MHz to 2483.5 MHz

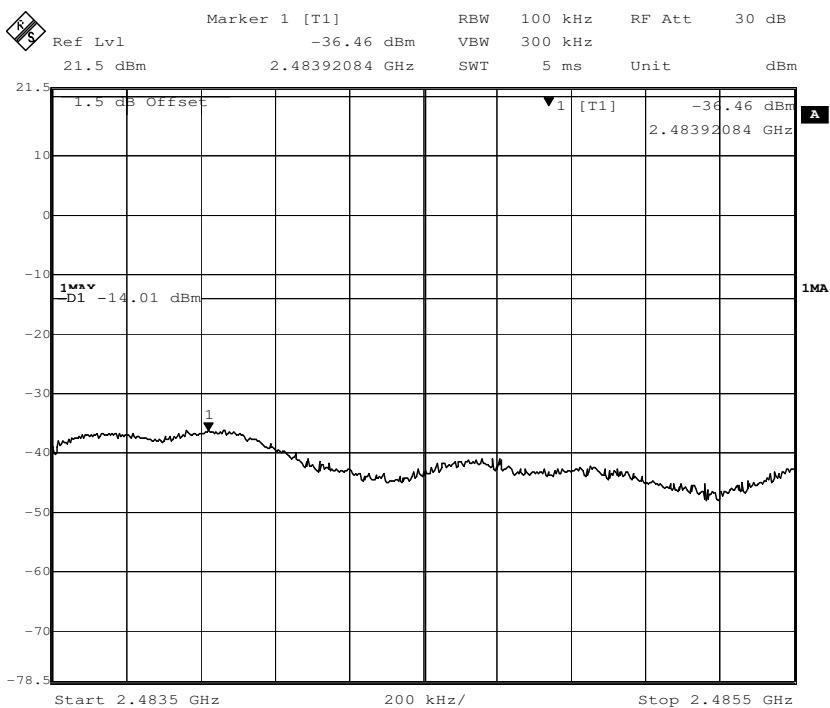
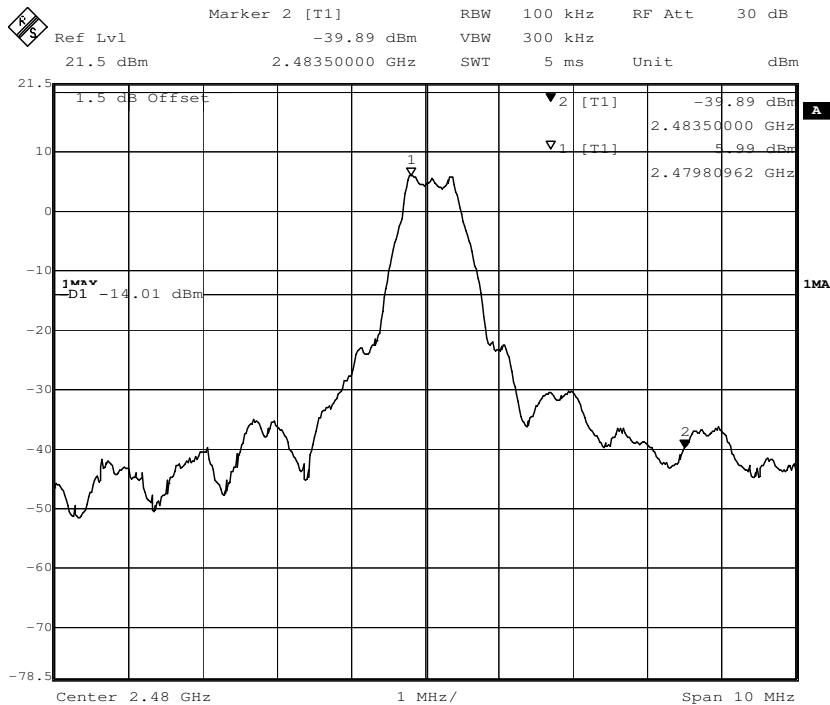
Test Method: ANSI C63.10: Clause 11.13

Test Status: Enter test mode for the product. Test in lowest channel 2402 MHz and highest channel 2480 MHz, keep in continuously transmitting status with GFSK modulation.

Test Configuration:

Test Procedure:



1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
2. Set instrument center frequency to the frequency of the emission to be measured(must be within 2MHz of the authorized band edge).
3. Set span to 2MHz,
4. RBW=100kHz,
5. $VBW \geq 3 \times RBW$
6. Detector=peak
7. Sweep time =auto,
8. Trace mode=max hold.
9. Allow sweep to continue until the trace stabilizes(required measurement time may increase for low duty cycle applications)
10. Compute the power by integrating the spectrum over 1MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency(f_{emission}) $\pm 0.5\text{MHz}$.If the instrument does not have a band power function,the sum the amplitude levels(in power units) at 100kHz intervals extending across the 1MHz spectrum defined by $f_{\text{emission}}\pm 0.5\text{MHz}$.



Test result with plots as follows:

Compare with the output power of the lowest frequency, the Lower Edges attenuated more than 20dB
Compare with the output power of the highest frequency, the Upper Edges attenuated more than 20dB.

Result plot as follows:

Channel 0: 2.402 GHz

Channel 39: 2.480GHz

7.9 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement: FCC Part 15 C section 15.207

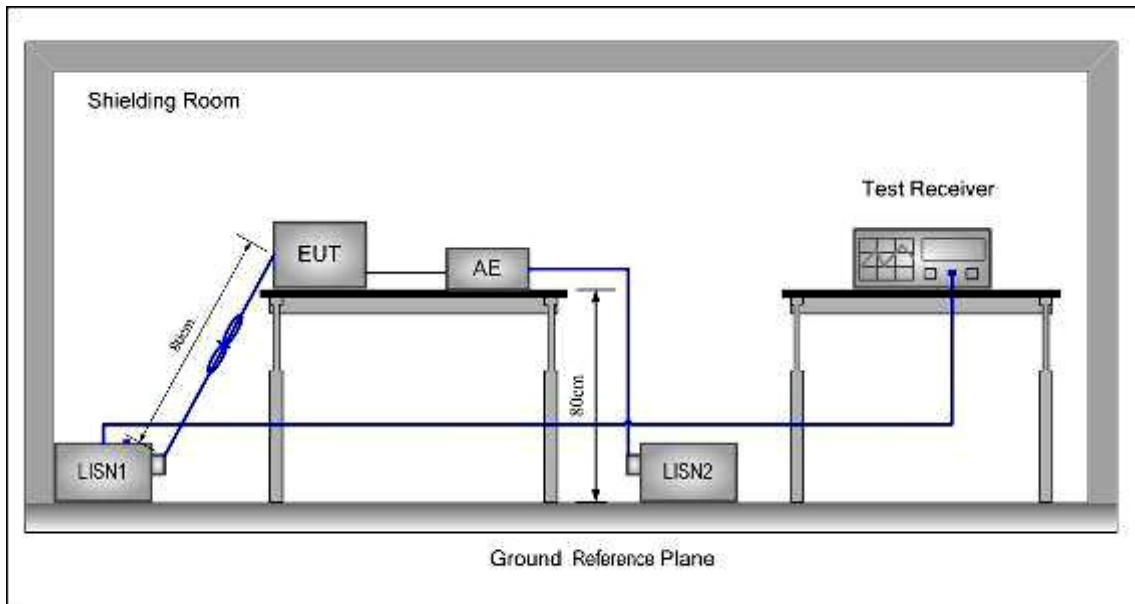
Test Method: ANSI C63.10: Clause 6.2

Frequency Range: 150 kHz to 30 MHz

Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B


Frequency Range (MHz)	Class B Limit dB(µV)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

EUT Operation: Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

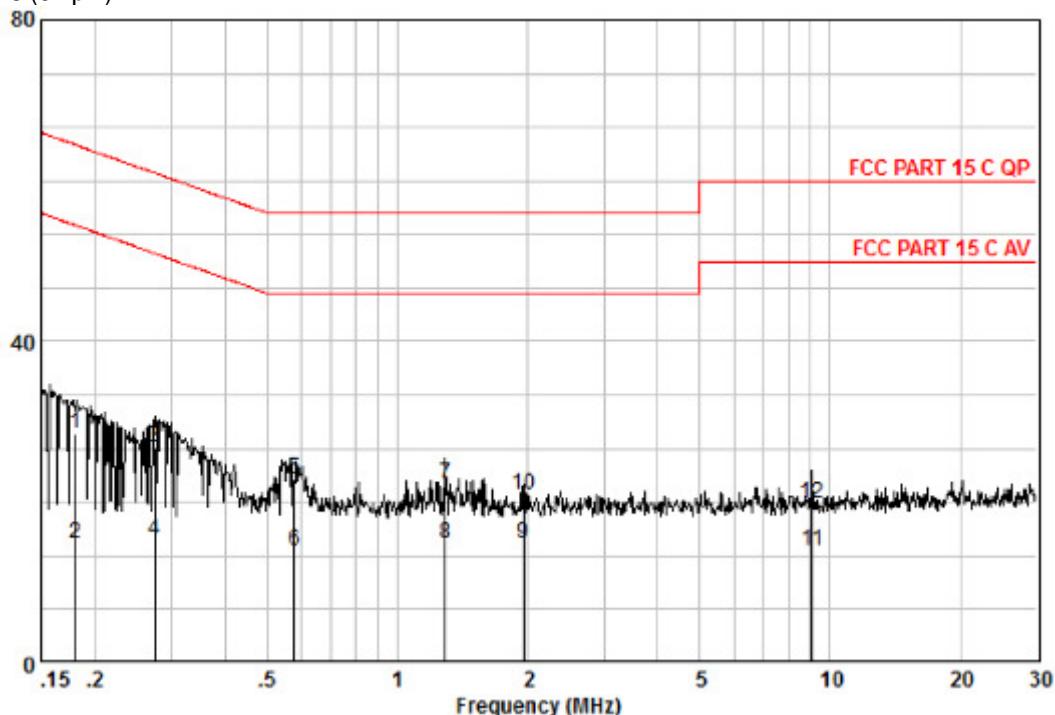
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Test Configuration:

Test procedure:

1. The mains terminal disturbance voltage test was conducted in a shielded room.
2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

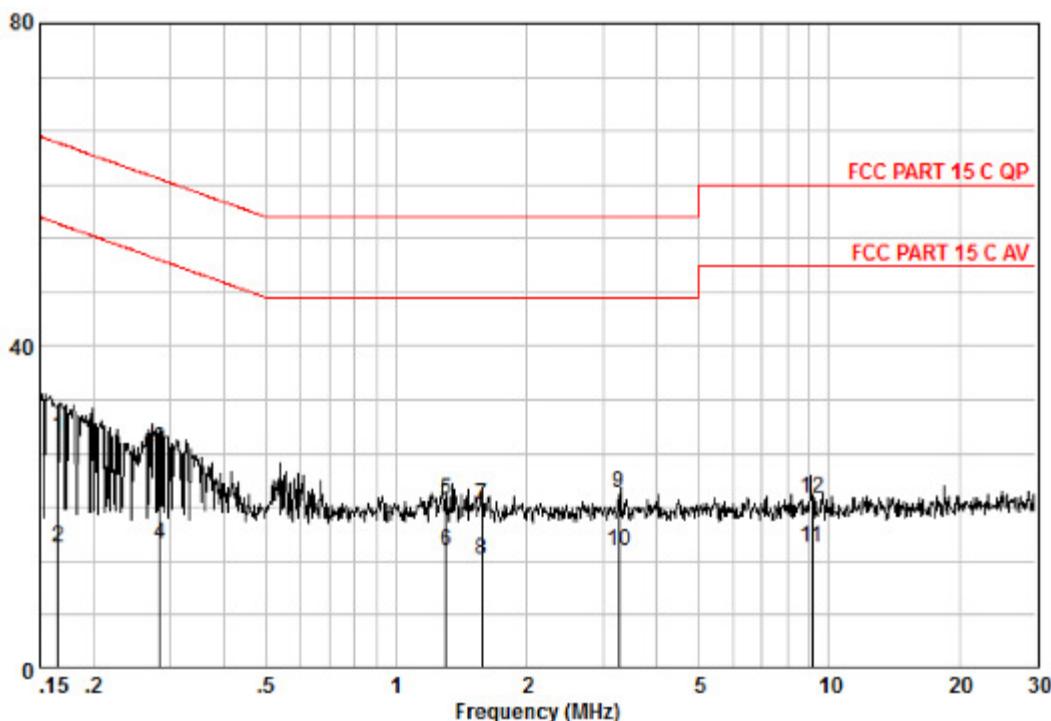
7.9.1 Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.

The following Quasi-Peak and Average measurements were performed on the EUT:

Neutral Line


Level(dB μ V)

Measure data:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit Line	Over Limit	Remark
MHz	dB μ V	dB	dB	dB μ V	dB μ V	dB	
0.180	18.92	0.09	9.56	28.57	64.50	-35.93	QP
0.180	5.12	0.09	9.56	14.77	54.50	-39.73	AVERAGE
0.274	17.15	0.07	9.56	26.77	60.98	-34.22	QP
0.274	5.54	0.07	9.56	15.17	50.98	-35.82	AVERAGE
0.576	13.39	0.03	9.54	22.96	56.00	-33.04	QP
0.576	4.30	0.03	9.54	13.87	46.00	-32.13	AVERAGE
1.289	12.59	0.03	9.57	22.19	56.00	-33.81	QP
1.289	5.21	0.03	9.57	14.81	46.00	-31.19	AVERAGE
1.959	5.08	0.09	9.57	14.74	46.00	-31.26	AVERAGE
1.959	11.34	0.09	9.57	21.00	56.00	-35.00	QP
9.107	4.01	0.29	9.70	14.00	50.00	-36.00	AVERAGE
9.107	9.88	0.29	9.70	19.87	60.00	-40.13	QP

Live Line
Level(dB μ V)

Measure result:

Freq MHz	Read Level dB μ V	Cable Loss dB	LISN Factor dB	Level dB μ V	Limit Line dB μ V	Over Limit dB		Remark
						Line	Limit	
0.165	19.01	0.10	9.69	28.80	65.21	-36.41	QP	
0.165	5.18	0.10	9.69	14.97	55.21	-40.24	AVERAGE	
0.283	17.60	0.07	9.69	27.35	60.72	-33.36	QP	
0.283	5.62	0.07	9.69	15.37	50.72	-35.34	AVERAGE	
1.303	11.19	0.04	9.71	20.94	56.00	-35.06	QP	
1.303	4.88	0.04	9.71	14.63	46.00	-31.37	AVERAGE	
1.577	10.44	0.06	9.70	20.20	56.00	-35.80	QP	
1.577	3.82	0.06	9.70	13.58	46.00	-32.42	AVERAGE	
3.276	11.91	0.15	9.71	21.77	56.00	-34.23	QP	
3.276	4.73	0.15	9.71	14.59	46.00	-31.41	AVERAGE	
9.156	4.87	0.29	9.82	14.98	50.00	-35.02	AVERAGE	
9.156	11.00	0.29	9.82	21.11	60.00	-38.89	QP	

--End of Report--