

TEST REPORT

Applicant Name: Bytech NY Inc.

Address: 2585 West 13th Street, Brooklyn NY 11223, New York, United

States

Report Number: 2501S51761E-RF-00 FCC ID: 2AHN6-BYBE225

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: OWS EClip Earbuds-ASST

Model No.: BY-AU-BE-225-AC

Multiple Model(s) No.: N/A

Trade Mark: BYTECH

Date Received: 2025-04-07 Issue Date: 2025-05-12

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Allen. Bai

Allen Bai Nancy Wang RF Engineer RF Supervisor

Note: The information marked * is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

Approved By:

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF001 Page 1 of 67 Version 4.1

TABLE OF CONTENTS

Report No.: 2501S51761E-RF-00

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	5
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
REQUIREMENTS AND TEST PROCEDURES	10
AC LINE CONDUCTED EMISSIONS	10
RADIATED EMISSIONS	
20 dB Emission Bandwidth	
CHANNEL SEPARATION TEST	
QUANTITY OF HOPPING CHANNEL TEST	
TIME OF OCCUPANCY (DWELL TIME)	19
PEAK OUTPUT POWER MEASUREMENT	
BAND EDGES	
ANTENNA REQUIREMENT	23
TEST DATA AND RESULTS	24
RADIATED EMISSIONS	24
20 dB Emission Bandwidth	
99% Occupied Bandwidth	
CHANNEL SEPARATION	
Number of Hopping Frequency	
MAXIMUM CONDUCTED OUTPUT POWER	
100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
TIME OF OCCUPANCY (DWELL TIME)	
RF EXPOSURE EVALUATION	63
EUT PHOTOGRAPHS	66
TEST SETUD DUOTOCD ADUS	67

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2501S51761E-RF-00	Original Report	2025-05-12

Report No.: 2501S51761E-RF-00

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

UPC number	805112136803 805112136810			
SKU number	9194959			
Lot number	BY041525			
Frequency Range	2402~2480MHz			
Transmit Peak Power	4.07dBm			
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK			
Antenna Specification#	-0.08dBi (provided by the applicant)			
Voltage Range	DC 3.7V from battery			
Sample serial number	30ZY-1 for Radiated Emissions Test 30ZY-3 for RF Conducted Test (Assigned by BACL, Shenzhen)			
Sample/EUT Status	Good condition			
Adapter Information	N/A			
Note: The sample being tested is the right earbud.				

Report No.: 2501S51761E-RF-00

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty		
Occupied Channel Bandwidth		Bandwidth	109.2kHz(k=2, 95% level of confidence)		
RF output power, conducted		onducted	0.86dB(k=2, 95% level of confidence)		
D	well Tim	e	$\pm 1\%$ (k=2, 95% level of confidence)		
AC Power Lines Cond	ucted	9kHz-150kHz	3.63dB(k=2, 95% level of confidence)		
Emissions		150kHz-30MHz	3.66dB(k=2, 95% level of confidence)		
	0	.009MHz~30MHz	3.60dB(k=2, 95% level of confidence)		
	30MHz~200MHz (Horizontal)		5.32dB(k=2, 95% level of confidence)		
	30MHz~200MHz (Vertical)		5.43dB(k=2, 95% level of confidence)		
Radiated Emissions	200MHz~1000MHz (Horizontal)		5.77dB(k=2, 95% level of confidence)		
Radiated Emissions	200MHz~1000MHz (Vertical)		5.73dB(k=2, 95% level of confidence)		
	1GHz - 6GHz		5.34dB(k=2, 95% level of confidence)		
		6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)		
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)		
Te	Temperature		Temperature		±1°C
Humidity			$\pm 1\%$		
Supply voltages		ges	±0.4%		

Report No.: 2501S51761E-RF-00

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

TR-EM-RF001 Page 5 of 67 Version 4.1

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)		
0	2402	40	2442		
1	2403	41	2443		
2	2404	42	2444		
		•••			
		•••			
36	2438	75	2477		
37	2439	76	2478		
38	2440	77	2479		
39	2441	78	2480		
EUT was tested with Channel 0, 39 and 78.					

Report No.: 2501S51761E-RF-00

EUT Exercise Software

Exercise Software#	bt.tool_v 1.2.exe
Power Level [#]	7

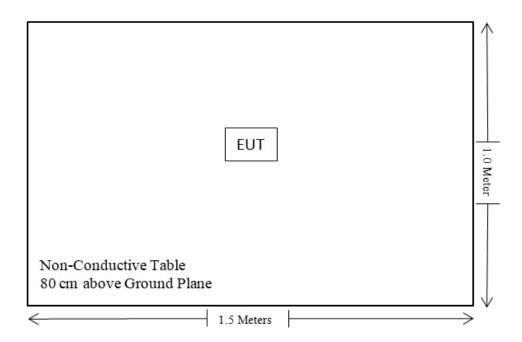
Special Accessories

No special accessory.

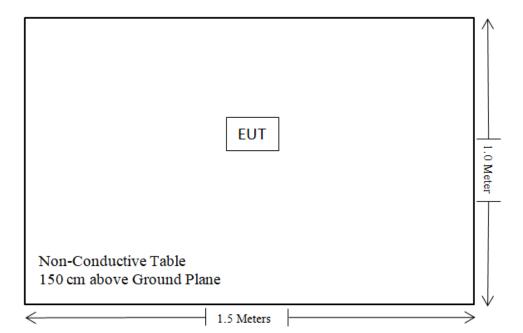
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable


Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Not Applicable
FCC §15.205, §15.209, §15.247(d)	Radiated Emissions	Compliant
FCC §15.247(a)(1)	20 dB Emission Bandwidth	Compliant
FCC §15.247(a)(1)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1)	Peak Output Power Measurement	Compliant
FCC §15.247(d)	Band edges	Compliant
C63.10 §11.6	Duty Cycle	/
§15.247 (i), §1.1307(b)(3)(i)(B) §2.1093	SAR-Based Exemption	Compliant

Report No.: 2501S51761E-RF-00

Not Applicable: The EUT powered by battery only.

TR-EM-RF001 Page 8 of 67 Version 4.1

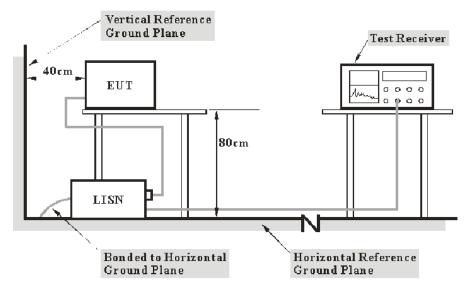
TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03	
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19	
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17	
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13	
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03	
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03	
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2025/03/26	2026/03/25	
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14	
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25	
Unknown	RF Cable	KMSE	0735	2024/12/06	2025/12/05	
Unknown	RF Cable	UFA147	219661	2024/12/06	2025/12/05	
Unknown	RF Cable	XH750A-N	J-10M	2024/12/06	2025/12/05	
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17	
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08	
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17	
Electro- Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17	
UTIFLEX	RF Cable	NO. 13	232308-001	2024/12/18	2025/12/17	
Audix	EMI Test software	Е3	191218(V9)	NCR	NCR	
RF Conducted Test						
Rohde&Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/12/04	2025/12/03	
R&S	Spectrum Analyzer	FSU26	200120	2024/12/04	2025/12/03	
MARCONI	10dB Attenuator	6534/3	2942	2024/06/27	2025/06/26	

Report No.: 2501S51761E-RF-00

TR-EM-RF001 Page 9 of 67 Version 4.1

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

AC Line Conducted Emissions

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: 2501S51761E-RF-00

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2020. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Report No.: 2501S51761E-RF-00

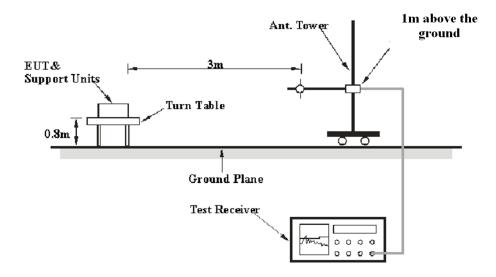
```
Factor = LISN VDF + Cable Loss
```

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

```
Over Limit = Level – Limit
Level = Read Level + Factor
```

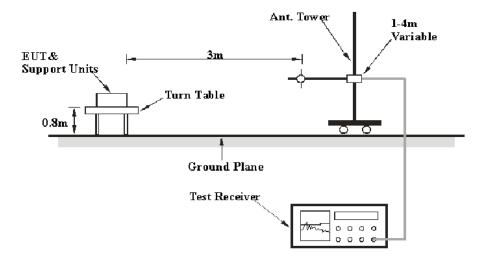
Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

TR-EM-RF001 Page 11 of 67 Version 4.1

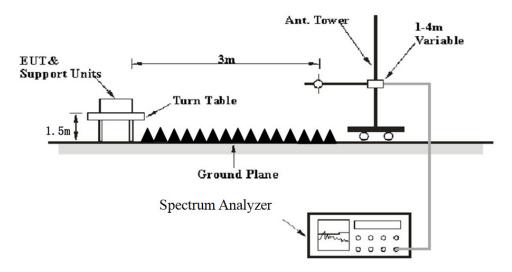

Radiated Emissions

Applicable Standard

FCC §15.205; §15.209; §15.247(d)


EUT Setup

9 kHz-30MHz:



Report No.: 2501S51761E-RF-00

30MHz-1GHz:

Above 1GHz:

Report No.: 2501S51761E-RF-00

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2020. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	PK	Peak
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	PK	Peak
20.141 1000.141	/	/	120 kHz	QP	QP
30 MHz – 1000 MHz	100 kHz	300 kHz	/	PK	Peak
	Harmonics				
	1MHz	3 MHz	/	PK	Peak
Above 1 GHz	Average Emission Level=Peak Emission Level+20*log(Duty cycle)				
Above 1 GHZ	Band Edge & Other Emissions				
	1MHz	3 MHz	/	PK	Peak
	1MHz	≥10 Hz	/	Average	Peak

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Report No.: 2501S51761E-RF-00

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

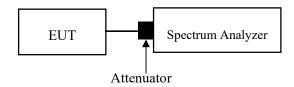
20 dB Emission Bandwidth

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: 2501S51761E-RF-00

Test Procedure


Test Method: ANSI C63.10-2020 Clause 6.9.2

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be at least three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to max-hold.
- g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The dBc bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

Report No.: 2501S51761E-RF-00

k) The dBc bandwidth shall be reported by providing spectral plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Note:A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss.

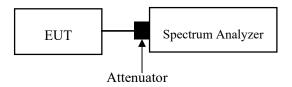
Channel Separation Test

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: 2501S51761E-RF-00

Test Procedure


Test Method: ANSI C63.10-2020 Clause 7.8.2

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth $(VBW) \ge RBW$.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

Where the device shares the same channel plan (carrier frequencies and number of channels) across multiple data rates or modulation schemes then the carrier separation need only be measured for one of those modulation schemes or data rates.

Note: The limit is 2/3*20 dB bandwidth

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

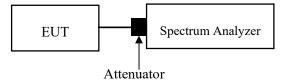
Quantity of Hopping Channel Test

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: 2501S51761E-RF-00

Test Procedure


Test Method: ANSI C63.10-2020 Clause 7.8.3

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

Where the device shares the same channel plan (carrier frequencies and number of channels) across multiple data rates or modulation schemes then the number of channels need only be measured for one of those modulation schemes or data rates.

Note:A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

Time of Occupancy (Dwell Time)

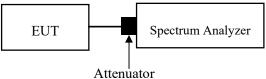
Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: 2501S51761E-RF-00

Test Procedure

Test Method: ANSI C63.10-2020 Clause 7.8.4


Use the following spectrum analyzer settings to determine the dwell time per hop:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop.
- c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this.
- d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel.
- e) Detector function: Peak.
- f) Trace: Clear-write, single sweep.
- g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers.

To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.

The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3/0.5 \times 10$, or 60 hops.

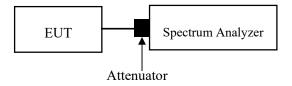
The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

Note: A short RF cable with low cable loss connected to the EUT antenna port, whi client or lab, the cable loss was add with offset into test equipment, the total offset and/or RF cable loss.	ch was provided by consists of attenuator

Peak Output Power Measurement

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.


Report No.: 2501S51761E-RF-00

Test Procedure

Test Method: ANSI C63.10-2020 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings:

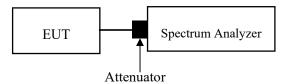
- a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- b) RBW > 20 dB bandwidth of the emission being measured.
- c) VBW \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow trace to stabilize.
- h) Use the marker-to-peak function to set the marker to the peak of the emission.
- i) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- j) A spectral plot of the test results and setup description shall be included in the test report.

Note: A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer

Note:A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss.

Band Edges

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: 2501S51761E-RF-00

Test Procedure

Test Method: ANSI C63.10-2020 Clause 7.8.7.2 & Clause 6.10

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products that fall outside of the authorized band of operation.
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: No faster than coupled (auto) time.
- 5) Resolution bandwidth: 100 kHz.
- 6) Video bandwidth: 300 kHz.
- 7) Detector: Peak. 8) Trace: Max-hold.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss.

ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: 2501S51761E-RF-00

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain[#] is -0.08dBi, fulfill the requirement of this section. Please refer to the EUT photos.

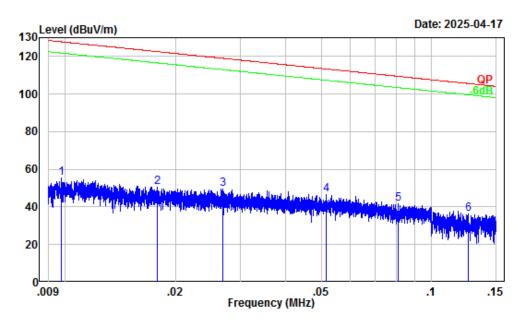
Result: Compliant

TR-EM-RF001 Page 23 of 67 Version 4.1

TEST DATA AND RESULTS

Radiated Emissions

Environmental Conditions


Temperature (°C)	24.1~25.5	Relative Humidity (%)	46.2~50.2				
ATM Pressure (kPa):	101.3	Test engineer:	Anson Su&Zenos Qiao				
Test date:	2025/04/15~2025/04/17						
EUT operation mode:	Below 1GHz: Transmitting(Maximum output power mode, EDR (8DPSK) High Channel) Above 1GHz: Transmitting(Maximum output power mode, EDR (8DPSK))						
Note:	recorded. 2. For the radiated spurious than the limit of QP/	ous emission below 30MF/Average more than 6dB, Y, Y and Z axes of oriental	Hz, only the worst case (parallel) was Hz, When the test result of peak was just peak value were recorded. tion, the worst case z-axis of				

Report No.: 2501S51761E-RF-00

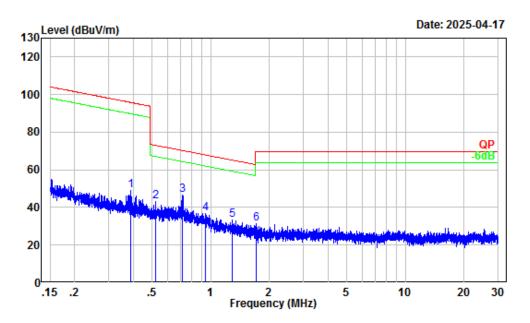
Below 1GHz:

9kHz-150kHz

Report No.: 2501S51761E-RF-00

Site : Chamber A

Condition : 3m


Project Number : 2501S51761E-RF Test Mode : BT Transmitting

Detector: Peak RBW/VBW: 0.3/1kHz Tester : Anson Su

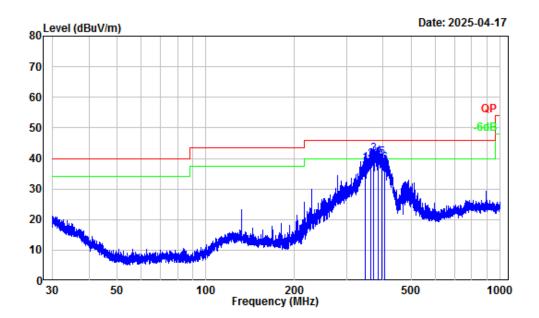
			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	32.34	23.32	55.66	127.78	-72.12	Peak
2	0.02	30.80	19.86	50.66	122.56	-71.90	Peak
3	0.03	29.07	20.56	49.63	118.97	-69.34	Peak
4	0.05	26.25	20.36	46.61	113.36	-66.75	Peak
5	0.08	23.31	18.46	41.77	109.41	-67.64	Peak
6	0.13	20.46	15.88	36.34	105.59	-69.25	Peak

150kHz-30MHz

Report No.: 2501S51761E-RF-00

Site : Chamber A

Condition : 3m

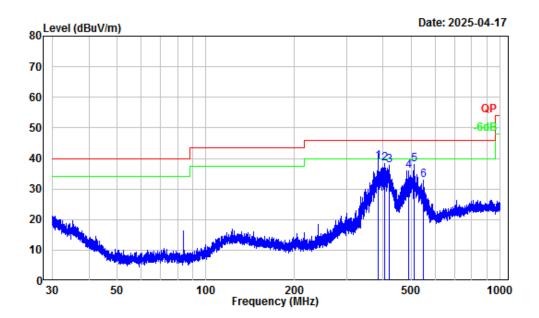

Project Number : 2501S51761E-RF Test Mode : BT Transmitting

Detector: Peak RBW/VBW: 10/30kHz Tester : Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	0.39	8.48	40.39	48.87	95.78	-46.91	Peak
2	0.52	6.13	37.05	43.18	73.24	-30.06	Peak
3	0.72	3.70	43.11	46.81	70.40	-23.59	Peak
4	0.95	1.61	35.38	36.99	67.97	-30.98	Peak
5	1.29	0.40	32.75	33.15	65.24	-32.09	Peak
6	1.72	-0.82	32.33	31.51	69.54	-38.03	Peak

30MHz-1GHz_Horizontal

Report No.: 2501S51761E-RF-00


Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501S51761E-RF
Test Mode : BT Transmitting

Detector: Peak RBW/VBW: 100/300kHz Tester : Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	348.33	-10.20	48.50	38.30	46.00	-7.70	QP
2	364.26	-9.69	49.10	39.41	46.00	-6.59	QP
3	372.00	-9.43	50.80	41.37	46.00	-4.63	QP
4	384.44	-9.03	49.50	40.47	46.00	-5.53	QP
5	396.24	-8.59	48.60	40.01	46.00	-5.99	QP
6	405.55	-8.24	46.70	38.46	46.00	-7.54	QP

30MHz-1GHz_Vertical

Report No.: 2501S51761E-RF-00

Site : Chamber A
Condition : 3m Vertical
Project Number : 2501S51761E-RF
Test Mode : BT Transmitting

Detector: Peak RBW/VBW: 100/300kHz Tester : Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m		dBuV/m	dBuV/m	dB	
		•					00
1		-9.03					_
2	404.67	-8.25	46.60	38.35	46.00	-7.65	Peak
3	420.21	-7.94	45.55	37.61	46.00	-8.39	Peak
4	489.24	-6.03	41.97	35.94	46.00	-10.06	Peak
5	508.48	-5.77	43.68	37.91	46.00	-8.09	Peak
6	548.78	-5.53	38.35	32.82	46.00	-13.18	Peak

Above 1GHz:

	Receiver				Corrected					
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)			
8DPSK										
Low Channel										
4804	56.81	PK	Н	-7.79	49.02	74	-24.98			
4804	55.96	PK	V	-7.79	48.17	74	-25.83			
			Middle (Channel						
4882	61.45	PK	Н	-7.58	53.87	74	-20.13			
4882	60.58	PK	V	-7.58	53.00	74	-21.00			
High Channel										
4960	66.69	PK	Н	-7.56	59.13	74	-14.87			
4960	65.74	PK	V	-7.56	58.18	74	-15.82			

Report No.: 2501S51761E-RF-00

Note:

Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

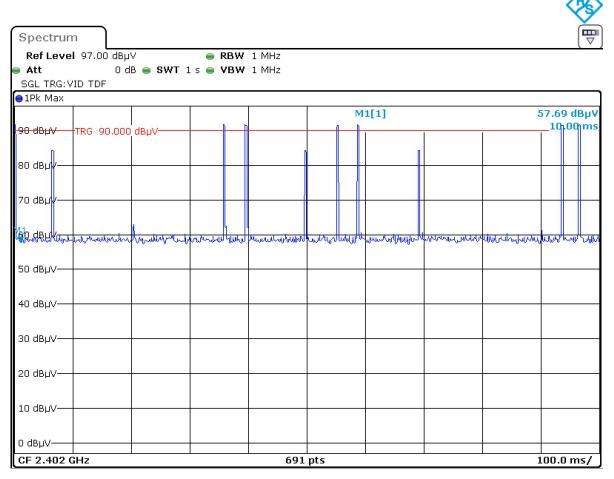
 $Corrected\ Amplitude = Factor + Reading$

Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

	Field Strength of Average										
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar Correction Level		Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Comment				
	High Channel										
4960	59.13	Н	-24.73	34.40	54.00	-19.60	Harmonic				
4960	58.18	V	-24.73	33.45	54.00	-20.55	Harmonic				

Note: Average level= Peak level + Duty Cycle Corrected Factor

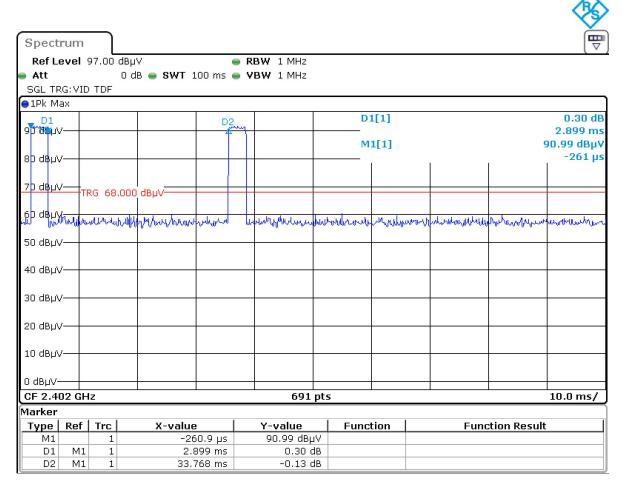

Worst case duty cycle:

Duty cycle = Ton/100ms = 2.899*2/100=0.05798

Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.05798 = -24.73

BT_Duty Cycle_1s

Report No.: 2501S51761E-RF-00

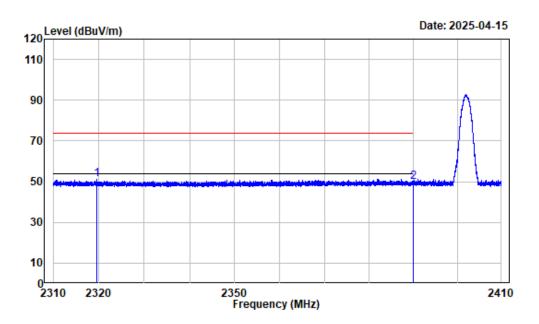


ProjectNo.:2501S51761E-RF Tester:Zenos Qiao

Date: 15.APR.2025 06:03:49

BT_Duty Cycle_100ms

Report No.: 2501S51761E-RF-00


ProjectNo.:2501S51761E-RF Tester:Zenos Qiao

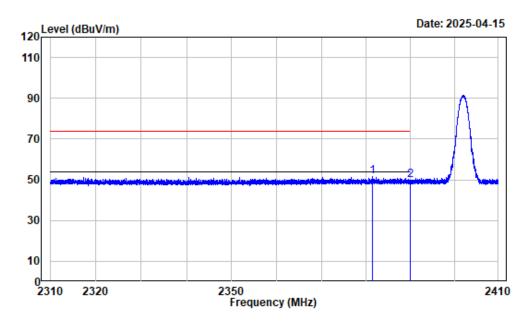
Date: 15.APR.2025 06:05:33

Test plots

Left Band edge_Horizontal

Report No.: 2501S51761E-RF-00

Condition : Horizontal
Project No. : 2501S51761E-RF
Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2402

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2319.639	-10.81	61.98	51.17	74.00	-22.83	Peak
2	2390.000	-10.98	60.84	49.86	74.00	-24.14	Peak

Left Band edge_Vertical

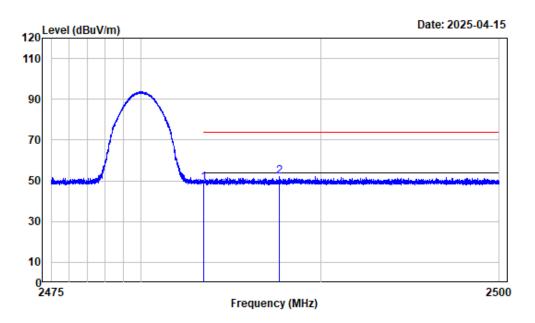
Report No.: 2501S51761E-RF-00

Condition : Vertical

Project No. : 2501S51761E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2402


Read Limit Over
Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 2381.509 -10.96 62.49 51.53 74.00 -22.47 Peak
2 2390.000 -10.98 61.01 50.03 74.00 -23.97 Peak

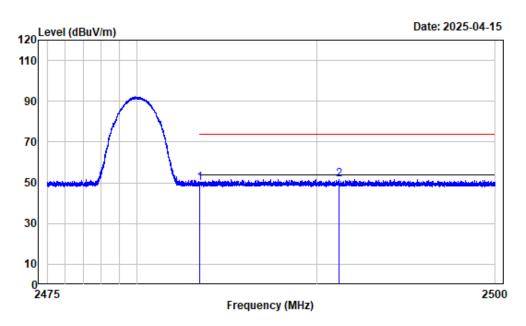
Right Band edge_Horizontal

Report No.: 2501S51761E-RF-00

Condition : Horizontal
Project No. : 2501S51761E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2480


Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 2483.500 -10.97 59.80 48.83 74.00 -25.17 Peak
2 2487.695 -10.98 62.92 51.94 74.00 -22.06 Peak

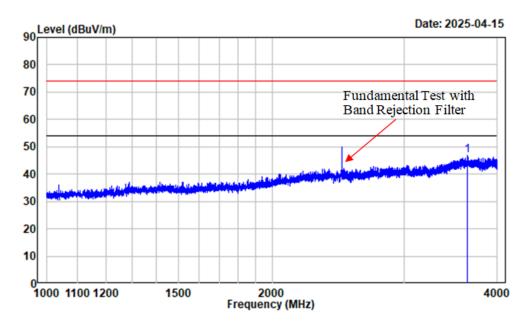
Right Band edge_Vertical

Report No.: 2501S51761E-RF-00

Condition : Vertical

Project No. : 2501S51761E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : BT-3DH5-2480

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	2483.500	-10.97	60.77	49.80	74.00	-24.20	Peak
2	2491.255	-10.98	62.70	51.72	74.00	-22.28	Peak

Listed with the worst harmonic margin test plot

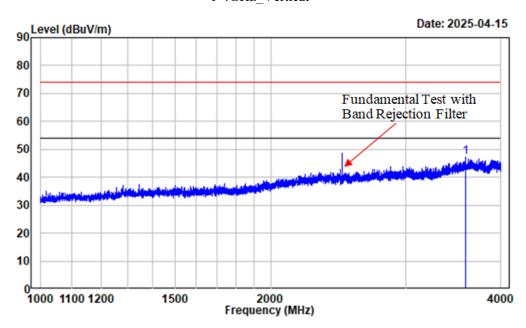
1-4GHz_Horizontal

Report No.: 2501S51761E-RF-00

Condition : Horizontal
Project No. : 2501S51761E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2480


Read Limit Over
Freq Factor Level Level Line Limit Remark

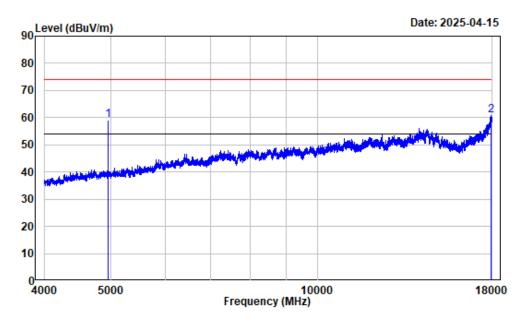
MHz dB/m dBuV dBuV/m dBuV/m dB

1 3644.081 -9.83 56.85 47.02 74.00 -26.98 Peak

1-4GHz Vertical

Report No.: 2501S51761E-RF-00

Condition : Vertical


Project No. : 2501S51761E-RF Tester : Zenos Qiao

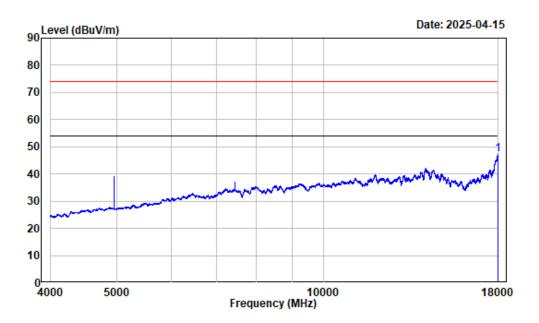
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2480

4-18GHz_Horizontal_Peak

Report No.: 2501S51761E-RF-00

Condition : Horizontal
Project No. : 2501S51761E-RF
Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2480

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	4960.000	-7.56	66.69	59.13	74.00	-14.87	Peak	
2	17954.490	12.97	47.66	60.63	74.00	-13.37	Peak	

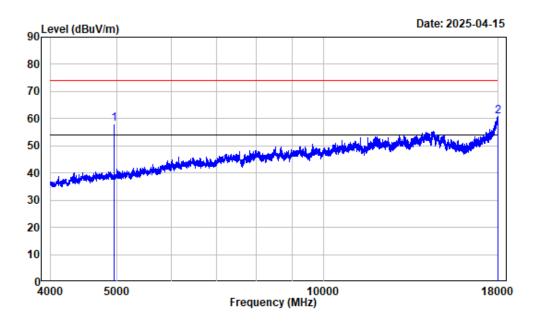
4-18GHz_Horizontal_Average

Report No.: 2501S51761E-RF-00

Condition : Horizontal
Project No. : 2501S51761E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : BT-3DH5-2480


Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

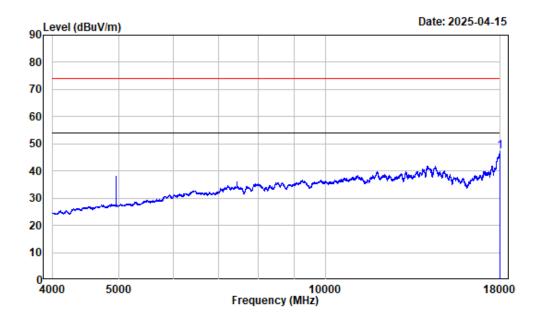
1 17986.000 13.12 34.08 47.20 54.00 -6.80 Average

4-18GHz_Vertical_Peak

Report No.: 2501S51761E-RF-00

Condition : Vertical
Project No. : 2501S51761E-RF

Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2480

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	4960.000	-7.56	65.74	58.18	74.00	-15.82	Peak
2	17993.000	13.17	47.57	60.74	74.00	-13.26	Peak

4-18GHz_Vertical_Average

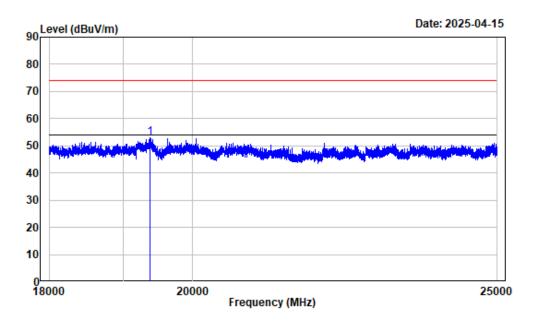
Report No.: 2501S51761E-RF-00

Condition : Vertical

Project No. : 2501S51761E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

Note : BT-3DH5-2480


Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB dB

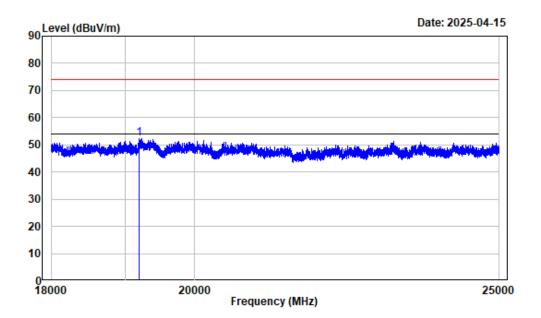
1 17993.000 13.17 33.91 47.08 54.00 -6.92 Average

18-25GHz_Horizontal

Report No.: 2501S51761E-RF-00

Condition : Horizontal
Project No. : 2501S51761E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : BT-3DH5-2480

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB dB
1 19387.050 15.46 37.40 52.86 74.00 -21.14 peak

18-25GHz_Vertical

Report No.: 2501S51761E-RF-00

Condition : Vertical

Project No. : 2501S51761E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : BT-3DH5-2480

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

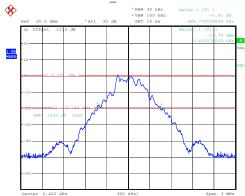
1 19201.530 15.40 37.06 52.46 74.00 -21.54 peak

20 dB Emission Bandwidth

Test Information:

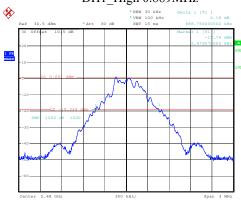
Sample No.:	30ZY-3	Test Date:	2025/04/14~2025/04/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

Report No.: 2501S51761E-RF-00

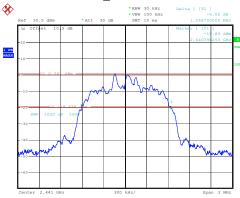

Environmental Conditions:

Temperature: (°C)	22.5~23.8	Relative Humidity: (%)	42.1~48.6	ATM Pressure: (kPa)	101.2
-------------------	-----------	------------------------------	-----------	------------------------	-------

Test Data:

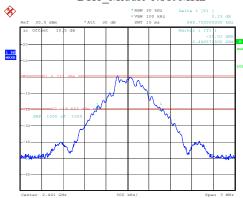

Mode	Channel	Result (MHz)
	Low Channel	0.889
DH1	Middle Channel	0.889
	High Channel	0.889
	Low Channel	1.241
2DH1	Middle Channel	1.249
	High Channel	1.253
	Low Channel	1.219
3DH1	Middle Channel	1.219
	High Channel	1.219

DH1_Low 0.889MHz

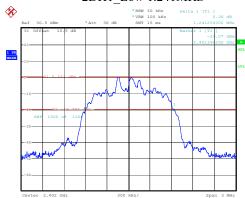

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 14.APR.2025 22:47:23

DH1_High 0.889MHz

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 00:05:21


2DH1_Middle 1.249MHz

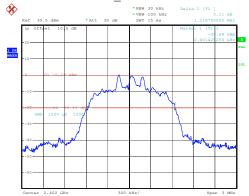
ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 00:29:17


$DH1_Middle~0.889MHz$

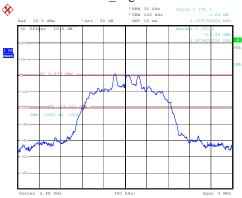
Report No.: 2501S51761E-RF-00

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 14.APR.2025 22:49:54

2DH1_Low 1.241MHz

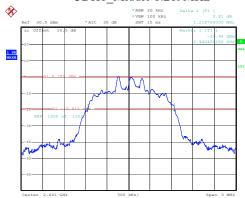

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.AFR.2025 00:14:15

2DH1_High 1.253MHz


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.AFR.2025 03:23:15

3DH1_Low 1.219MHz

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:15:22


3DH1_High 1.219MHz

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.AFR.2025 03:20:05

3DH1_Middle 1.219MHz

Report No.: 2501S51761E-RF-00

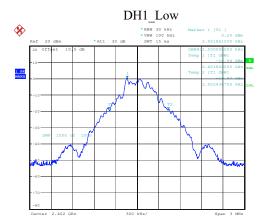
ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:17:36

99% Occupied Bandwidth

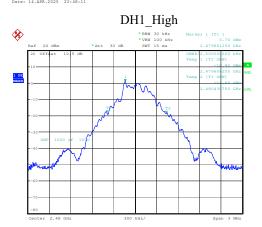
Test Information:

Sample No.:	30ZY-3	Test Date:	2025/04/14~2025/04/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

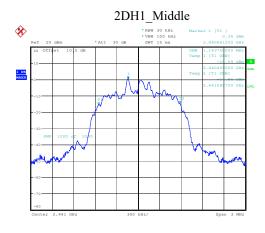
Report No.: 2501S51761E-RF-00

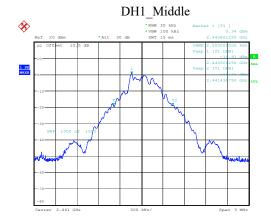

Environmental Conditions:

Temperature: (°C)	22.5~23.8	Relative Humidity: (%)	42.1~48.6	ATM Pressure: (kPa)	101.2
-------------------	-----------	------------------------------	-----------	------------------------	-------

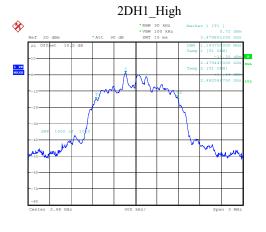

Test Data:

Mode	Channel	99% OBW (MHz)
	Low Channel	0.833
DH1	Middle Channel	0.833
	High Channel	0.833
2DH1	Low Channel	1.144
	Middle Channel	1.144
	High Channel	1.144
	Low Channel	1.129
3DH1	Middle Channel	1.129
	High Channel	1.129

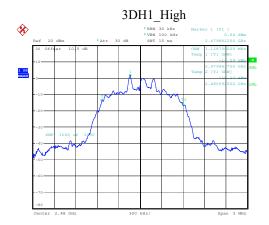

Report No.: 2501S51761E-RF-00


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang
Date: 14.AFR.2025 22:48:11

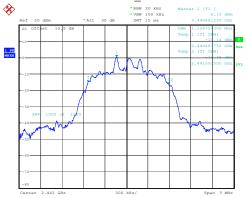
ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 00:06:06


ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 00:30:01

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 14.APR.2025 22:50:39


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.AFR.2025 00:15:03

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.AFR.2025 03:13:26


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:16:11

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang
Date: 15.AFR.2025 03:20:50

3DH1_Middle

Report No.: 2501S51761E-RF-00

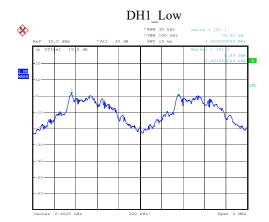
ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:18:21

Channel Separation

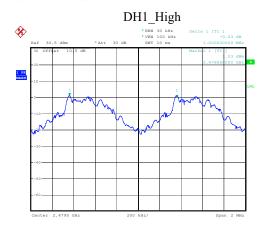
Test Information:

Sample No.:	30ZY-3	Test Date:	2025/04/23
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

Report No.: 2501S51761E-RF-00

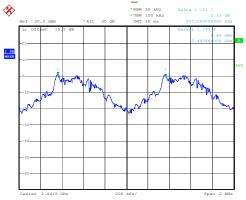

Environmental Conditions:

Temperature: (°C)	22.5~23.8	Relative Humidity: (%)	42.1~48.6	ATM Pressure: (kPa)	101.2
-------------------	-----------	------------------------------	-----------	---------------------	-------


Test Data:

Mode	Channel	Result (MHz)	Limit (MHz)	Verdict
DH1	Low Channel	1.000	0.835	Pass
	Middle Channel	0.998	0.835	Pass
	High Channel	1.000	0.835	Pass

Note: Only the BDR (GFSK) mode result is reported since EDR (π /4-DQPSK) and EDR (8DPSK) modes have the exact same channel plan, and the limit is the maximum 20dB bandwidth *2/3.


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:31:53

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.AFR.2025 18:40:14

DH1_Middle

Report No.: 2501S51761E-RF-00

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:35:09

Number of Hopping Frequency

Test Information:

Sample No.:	30ZY-3	Test Date:	2025/04/23
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

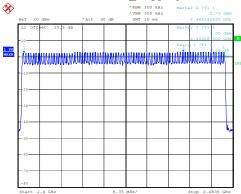
Report No.: 2501S51761E-RF-00

Environmental Conditions:

Temperature: (°C)	22.5~23.8	Relative Humidity: (%)	42.1~48.6	ATM Pressure: (kPa)	101.2
-------------------	-----------	------------------------------	-----------	------------------------	-------

Test Data:

Mode	Channel	Result	Limit	Verdict
DH1	Hopping Channel	79	15	Pass
2DH1	Hopping Channel	79	15	Pass
3DH1	Hopping Channel	79	15	Pass


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:45:29

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:56:12

2DH1_Hopping

Report No.: 2501S51761E-RF-00

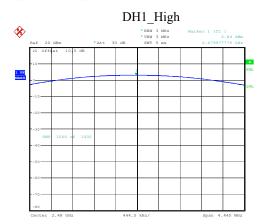
ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:52:15

Maximum Conducted Output Power

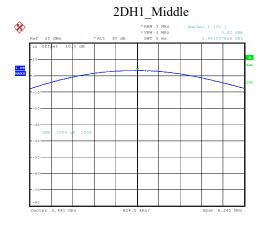
Test Information:

Sample No.:	30ZY-3	Test Date:	2025/04/14~2025/04/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

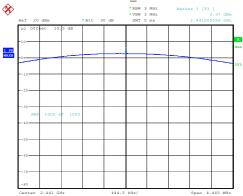
Report No.: 2501S51761E-RF-00


Environmental Conditions:

Test Data:


Mode	Test Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)	Verdict
	2402	2.28	21.00	Pass
DH1	2441	2.37	21.00	Pass
	2480	2.84	21.00	Pass
	2402	2.96	21.00	Pass
2DH1	2441	3.02	21.00	Pass
	2480	3.52	21.00	Pass
	2402	3.33	21.00	Pass
3DH1	2441	3.45	21.00	Pass
	2480	4.07	21.00	Pass

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 14.APR.2025 22:48:38


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.AFR.2025 00:09:34

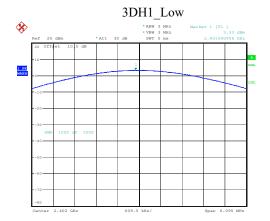
ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 00:44:30

DH1_Middle

Report No.: 2501S51761E-RF-00

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 14.APR.2025 22:53:06

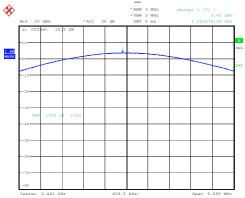
2DH1_Low



ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 00:21:12

$2DH1_High$

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:23:52


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:16:40

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:21:28

3DH1_Middle

Report No.: 2501S51761E-RF-00

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 15.APR.2025 03:19:10

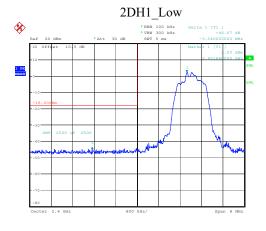
100 kHz Bandwidth of Frequency Band Edge

Test Information:

Sample No.:	30ZY-3	Test Date:	2025/04/23
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

Report No.: 2501S51761E-RF-00

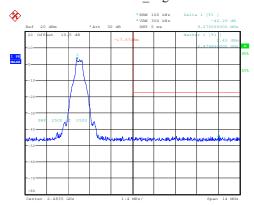
Environmental Conditions:


Temperature: (°C)	22.5~23.8	Relative Humidity: (%)	42.1~48.6	ATM Pressure: (kPa)	101.2
-------------------	-----------	------------------------------	-----------	---------------------	-------

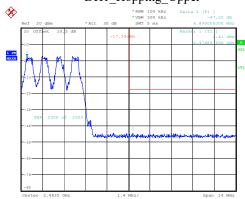
DH1_Low **%**

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:05:42

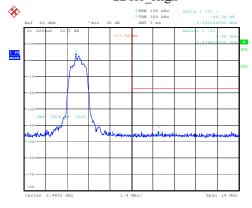
$DH1_Hopping_Lower$ **%** 1 PK


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:14:36

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:08:35


DH1_High

Report No.: 2501S51761E-RF-00


ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.AFR.2025 19:07:27

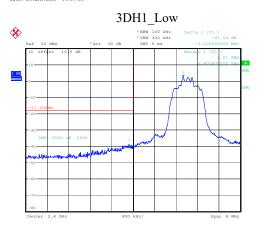
$DH1_Hopping_Upper$

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:16:12

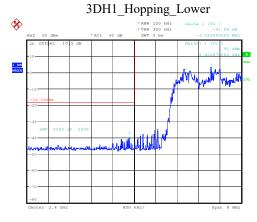
$2DH1_High$

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:10:25

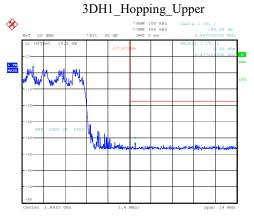
Report No.: 2501S51761E-RF-00


 $2DH1_Hopping_Upper$

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:18:50


%

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:17:15



3DH1_High **%** 1 PK MAXH

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:11:33

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:13:18

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:19:52

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:21:52

Time of Occupancy (dwell time)

Test Information:

Sample No.:	30ZY-3	Test Date:	2025/04/23
Test Site:	RF	Test Mode:	Transmitting
Tester:	Kungfumaster Liang	Test Result:	Pass

Report No.: 2501S51761E-RF-00

Environmental Conditions:

Temperature: (°C)	22.5~23.8	Relative Humidity: (%)	42.1~48.6	ATM Pressure: (kPa)	101.2
-------------------	-----------	------------------------------	-----------	------------------------	-------

Test Data:

Mode	Channel	Channel Pulse width (ms) Dwell time (s)		Limit (s)	Verdict
DH1	Hopping Channel	0.415	0.133	0.400	Pass
DH3	Hopping Channel	1.680	0.269	0.400	Pass
DH5	Hopping Channel	2.944	0.314	0.400	Pass
2DH1	Hopping Channel	0.425	0.136	0.400	Pass
2DH3	Hopping Channel	1.688	0.270	0.400	Pass
2DH5	Hopping Channel	2.950	0.315	0.400	Pass
3DH1	Hopping Channel	0.426	0.136	0.400	Pass
3DH3	Hopping Channel	1.684	0.269	0.400	Pass
3DH5	Hopping Channel	2.956	0.315	0.400	Pass

Note:

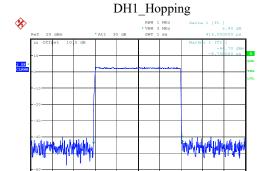
DH1:Dwell time=Pulse width (ms) \times (1600/2/79) \times 31.6 s

DH3:Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

DH5:Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

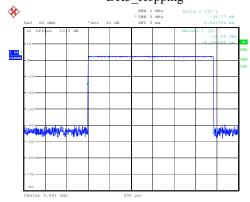
2DH1: Dwell time=Pulse width (ms) \times (1600/2/79) \times 31.6 s

2DH3: Dwell time=Pulse width (ms) \times (1600/4/79) \times 31.6 s

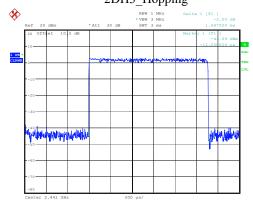

2DH5: Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

3DH1: Dwell time=Pulse width (ms) \times (1600/2/79) \times 31.6 s

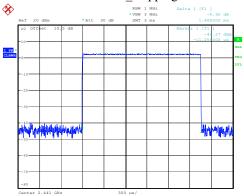
3DH3: Dwell time=Pulse width (ms) \times (1600/4/79) \times 31.6 s


3DH5: Dwell time=Pulse width (ms) \times (1600/6/79) \times 31.6 s

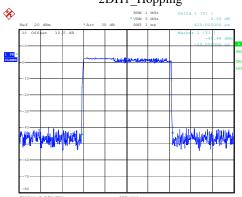
Report No.: 2501S51761E-RF-00


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:57:03

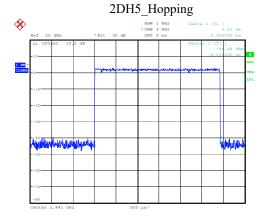
DH5_Hopping


ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:04:08

2DH3_Hopping

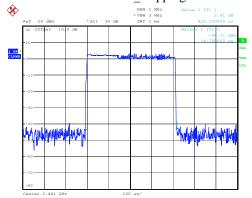

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:59:50

DH3_Hopping

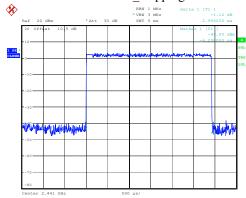


ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:03:27

2DH1_Hopping

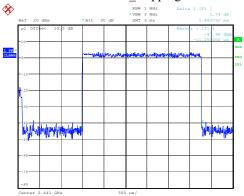


ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 18:59:16


ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:00:26

$3DH1_Hopping$

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:01:14


3DH5_Hopping

ProjectNo.:2501851761E-RF Tester:Kungfumaster Liang Date: 23.AFR.2025 19:02:28

3DH3_Hopping

Report No.: 2501S51761E-RF-00

ProjectNo.:2501S51761E-RF Tester:Kungfumaster Liang Date: 23.APR.2025 19:01:44

RF EXPOSURE EVALUATION

SAR-BASED EXEMPTION

Applicable Standard

According to FCC §2.1093 and §1.1307(b)(3)(i)(B)

According to KDB 447498 D04 Interim General RF Exposure Guidance v01

This exemption is applicable to the frequency range between 300 MHz and 6 GHz, with test separation distances between 0.5 cm and 40 cm, and for all RF sources in fixed, mobile, and portable device exposure conditions.

Report No.: 2501S51761E-RF-00

Accordingly, a RF source is considered an RF exempt device if its available maximum time averaged (matched conducted) power or its effective radiated power (ERP), whichever is greater, are below a specified threshold. This exemption threshold was derived based on general population 1-g SAR requirements and is detailed in Appendix C.

Either SAR-based or MPE-based exemption may be considered for test exemption for fixed, mobile, or portable device exposure conditions; therefore, the contributions from each exemption in conjunction with the measured SAR (Evaluated term) shall be used to determine exemption for simultaneous transmission according to Formula (C.1) [repeated from § 1.1307(b)(3)(ii)(B)].

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time averaged power or maximum time-averaged ERP, whichever is greater.

If the ERP of a device is not easily determined, such as for a portable device with a small form factor, the applicant may use the available maximum time-averaged power exclusively if the device antenna or radiating structure does not exceed an electrical length of $\lambda/4$.

As for devices with antennas of length greater than $\lambda/4$ where the gain is not well defined, but always less than that of a half-wave dipole (length $\lambda/2$), the available maximum time-averaged power generated by the device may be used in place of the maximum time-averaged ERP, where that value is not known.

The separation distance is the smallest distance from any part of the antenna or radiating structure for all persons, during operation at the applicable ERP. In the case of mobile or portable devices, the separation distance is from the outer housing of the device where it is closest to the antenna.

The SAR-based exemption formula of § 1.1307(b)(3)(i)(B), repeated here as Formula (B.2), applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by Formula (B.2).

$$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

Report No.: 2501S51761E-RF-00

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20} \text{ cm}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Table B.2—Example Power Thresholds (mW)

_	Table B.2—Example Fower Thresholds (III w)										
		Distance (mm)									
		5	10	15	20	25	30	35	40	45	50
$\widehat{\mathbf{z}}$	300	39	65	88	110	129	148	166	184	201	217
(MHz)	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
Frequency	1900	3	12	26	44	66	92	122	157	195	236
l d	2450	3	10	- 22	38	59	83	111	143	179	219
F	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

$$P_{\text{th}} (\text{mW}) = ERP_{20 \text{ cm}} (\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{\text{th},j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$
 (C. 1)

- a number of fixed, mobile, or portable RF sources claiming exemption using the $\S 1.1307(b)(3)(i)(B)$ formula for P_{th} , including existing exempt transmitters and those being added.
- b number of fixed, mobile, or portable RF sources claiming exemption using the applicable § 1.1307(b)(3)(i)(C) Table 1 formula for Threshold ERP, including existing exempt transmitters and those being added.
- c number of existing fixed, mobile, or portable RF sources with known evaluation for the specified minimum distance.
- the available maximum time-averaged power or the ERP, whichever is greater, for fixed, mobile, or portable RF source i at a distance between 0.5 cm and 40 cm (inclusive).
- $P_{\text{th},i}$ the exemption threshold power (Pth) according to the § 1.1307(b)(3)(i)(B) formula for fixed, mobile, or portable RF source i.
- ERPj the available maximum time-averaged power or the ERP, whichever is greater, of fixed, mobile, or portable RF source j.
- $ERP_{th,j}$ exemption threshold ERP for fixed, mobile, or portable RF source j, at a distance of at least $\lambda/2\pi$, according to the applicable § 1.1307(b)(3)(i)(C) Table 1 formula at the location in question.
- $Evaluated_k$ the maximum reported SAR or MPE of fixed, mobile, or portable RF source k either in the device or at the transmitter site from an existing evaluation.
- Exposure
 Limit_k either the general population/uncontrolled maximum permissible exposure
 (MPE) or specific absorption rate (SAR) limit for each fixed, mobile, or
 portable sources, as applicable

The sum of the ratios of the applicable terms for SAR-based, MPE-based and measured SAR or MPE shall be less than 1, to determine simultaneous transmission exposure compliance.

TR-EM-RF001 Page 64 of 67 Version 4.1

Measurement Result

For worst case:

Radio	Frequency (MHz)	Distance (mm)	P _{th} (mW)	Maximum Conducted Power including Tune-up Tolerance (dBm)	Antenna Gain (dBi)	matched	reater of conducted wer mW
BT	2402-2480	5	2.72	4.1	-0.08	4.1	2.57

Report No.: 2501S51761E-RF-00

Note: Max tune-up conducted power# and antenna gain# was declared and provided by the applicant

Result: Compliant

Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2501S51761E-RF-00
EUT PHOTOGRAPHS	
	105010517(1F DF L 1 . 1
Please refer to the attachment 2501S51761E-RF External pl	noto and 2501851761E-RF Internal photo.

TR-EM-RF001 Page 66 of 67 Version 4.1

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2501S51761E-RF Test Setup photo.

***** END OF REPORT *****

Report No.: 2501S51761E-RF-00