Report Number: STD-FCC-16007

TEST REPORT

1. Applicant	
Name	: Ani Fit Co., Ltd.
Brand Name	: N/A
Address	. 302, Shinwon Vision Tower, 88, Jeonpa-ro, Dongan-gu, · Anyang-si, Gyeonggi-do, 14042 South Korea
FCC ID	: 2AHMGANIFIT
2. Products	
Name	: Wearable Appcessory
Model No.	: ANIFIT
Variant Model No.	: N/A
Manufacturer	: Ani Fit Co., Ltd.
Address	. 302, Shinwon Vision Tower, 88, Jeonpa-ro, Dongan-gu, · Anyang-si, Gyeonggi-do, 14042 South Korea
3. Test Standard	: 47 CFR Part 15, Subpart C
4. Test Method	: ANSI C63.10-2009
5. Test Result	: PASS
6. Dates of Test	: November 09, 2015 to November 13, 2015
7. Date of Issue	: March 08, 2016
8. Test Laboratory	: Standard Engineering Co. Ltd. FCC Designation Number : 624439

Tested by	Approved by	
SoonHo, Kim / Test Engineer	SeongSeok, Seo / Compliance Engineer	

This report may not be reproduced without the full written consent of Standard Engineering Laboratory.

Standard Engineering Co. Ltd.

377-11, Sinjang-ri, Eumam-myeon, Seosan-si, ChoongNam 356-844, South Korea Tel.: +82-41-663-9436, Fax :+82-41-663-9434 www.stdeng.com

Report Number : STD-FCC-16007

1. Test Summary

Test	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C	ANSI C63.10 2009	PASS
	Section 15.203/15.247 (c)		
AC Power Line	47 CFR Part 15, Subpart C		
Conducted	Section 15.207	ANSI C63.10 2009	PASS
Emission	3cction 13.207		
Conducted Peak Output	47 CFR Part 15, Subpart C	KDB558074 D01	PASS
Power	Section 15.247 (b)(3)	v03r03	1 733
6dB Occupied	47 CFR Part 15, Subpart C	KDB558074 D01	PASS
Bandwidth	Section 15.247 (a)(2)	v03r03	rass
Power Spectral Density	47 CFR Part 15, Subpart C	KDB558074 D01	PASS
Fower spectral Density	Section 15.247 (e)	v03r03	r A33
Band-edge for RF	47 CFR Part 15, Subpart C	KDB558074 D01	PASS
Conducted Emissions	Section 15.247(d)	v03r03	r Abb
RF Conducted Spurious	47 CFR Part 15, Subpart C	KDB558074 D01	PASS
Emissions	Section 15.247(d)	v03r03	PASS
Radiated Spurious	47 CFR Part 15, Subpart C	ANSI C63.10 2009	PASS
Emissions	Section 15.205/15.209	AINSI C03.10 2009	rass
Band Edge (Radiated	47 CFR Part 15, Subpart C	ANSI C63.10 2009	PASS
Emission)	Section 15.205/15.209	AINSI C05.10 2009	rass

Report Number: STD-FCC-16007

2. TABLE OF CONTENTS

1. Test Summary	2
2. Table of Contents	3
3. General Information	4
3.1 Client Information	4
3.2 General Description of E.U.T	4
3.3 Details of E.U.T	
3.4 Operation Frequency each of channel	5
3.5 Description of Support Units	
3.6 Abnormalities from Standard Conditions	
3.7 Other Information Requested by the Customer	
3.8 Test Location	6
4. Equipment Used during Test	7
5. Test Results and Measurement Data	
5.1 Antenna Requirement	
5.2 Conducted Peak Output Power	
5.3 6dB Occupy Bandwidth	
5.4 Power Spectral Density	
5.5 Band-edge for RF Conducted Emissions	
5.6 RF Conducted Spurious Emissions	
5.7 Radiated Spurious Emissions	
5.7.1Harmonic and other spurious emissions	
5.7.1.1 Test at Lowest Channel in transmitting status	
5.7.1.2 Test at Middle Channel in transmitting status	
5.7.1.3 Test at Highest Channel in transmitting status	
5.8 Band Edge (Radiated Emission)5.9 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz	
5.9.1 Measurement Data5.10 Radio Frequency Exposure Procedures	
** ADDENINTY	/10

Report Number: STD-FCC-16007

3. General Information

3.1. Client Information

Applicant : Ani Fit Co., Ltd.

Address of Applicant: 302, Shinwon Vision Tower, 88, Jeonpa-ro, Dongan-gu,

Anyang-si, Gyeonggi-do, 14042 South Korea

3.2. General Description of E.U.T.

Product Name : Wearable Appcessory

Model No. : ANIFIT

3.3. Details of E.U.T.

Operation Frequency	:	2402 MHz to 2480 MHz
Wireless Type	:	Bluetooth
Channel Numbers	:	40 Channels
Channel Spacing	:	2MHz
Type of Modulation	:	GFSK
Antenna Type	:	Chip Antenna
Antenna Gain	:	0.5 dBi
Test Software	:	uEnergyTest: CSR μEnergy
Power Supply	:	DC 5.0 V
Test Voltage	:	DC 3.7 V

Report Number: STD-FCC-16007

3.4. Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz

3.5. **Description of Support Units**

The EUT has been tested with corresponding accessories as below: Supplied by Standard Engineering Laboratory.:

Description	Manufacturer	Model No.	Serial No.
NoteBook	COMPAQ	PP2140	1V2CKSBZ52C0
USB Cable	-	-	-
Jig	CSR	USB-SPI	-
Power Supply	Provice	PWS-5005D	205050

Report Number: STD-FCC-16007

3.6. Abnormalities from Standard Conditions

None.

3.7. Other Information Requested by the Customer

None.

3.8. Test Location

377-11, Sinjang-ri, Eumam-myeon, Seosan-si, ChoongNam 356-844, South Korea (FCC Designation Number : 624439)

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

Report Number: STD-FCC-16007

4. Equipment Used during Test

No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Data	Used equipment
1	EMI Test Receiver	LIG	LSA-265	L07098033	20/12/2014	12/20/2015	
2	EMI Test Receiver	Rhode & Schwarz	ESIB7	3311	02/11/2015	02/11/2016	
2	Bi-log Antenna	Schwarzbeck	VULB9163	164	09/15/2014	09/15/2016	
5	Loop Antenna	EMCO	6502	9206-2769	02/13/2014	02/13/2016	
6	Spectrum Analyzer	Agilent	E4440A	US45303130	02/04/2015	02/04/2016	
8	Frequency Counter	HP	5347A	3009A02742	02/04/2015	02/04/2016	
13	Attenuator	Agilent	8495B	3308A22485	02/04/2015	02/04/2016	
15	Power Meter	Agilent	E4418B	MY405111655	02/04/2015	02/04/2016	
16	Power Sensor	HP	8485A	2347A02746	02/04/2015	02/04/2016	
18	RF Cable	Gigalane	SMS102-MF1 41-SMS102-1.0 M	PB1252301285	N/A	N/A	
20	Signal Generator	HP	83630A	3420A00728	02/04/2015	02/04/2016	
21	Oscilloscope	HP	54815A	US38380122	02/04/2015	02/04/2016	
23	Pre Amplifier	Agilent	8449B	3008A02105	02/04/2015	02/04/2016	
25	Signal Generator	Rhode & Schwarz	SML03	102330	01/23/2015	02/04/2016	
26	POWER DIVIDER	Agilent	11636B	50309	02/04/2015	02/04/2016	
27	Power Sensor	Agilent	8482B	3318A05111	02/04/2015	02/04/2016	
29	DC Power Supply	HP	6032A	US35420383	02/04/2015	02/04/2016	
30	Slidacs	Sunchang Electrics	5KV	N/A	02/04/2015	02/04/2016	
32	Bandreject Filter	K&L Microwave	50140	555	02/04/2015	02/04/2016	
33	Horn Antenna	SCHWARZBECK	BBHA9120A	346	01/27/2014	01/27/2016	
34	Horn Antenna	A.H. SYSTEMS	SAS-572	269	08/07/2015	08/07/2017	
35	DC Power Supply	Provice	PWS-5005D	205050	02/04/2015	02/04/2016	
36	LISN	Rhode & Schwarz	ESH2-Z5	100164	01/27/2015	01/27/2016	
38	Pulse Limiter	Rhode & Schwarz	ESH3-Z2	100137	11/13/2015	11/13/2016	

Report Number: STD-FCC-16007

Test Results and Measurement Data

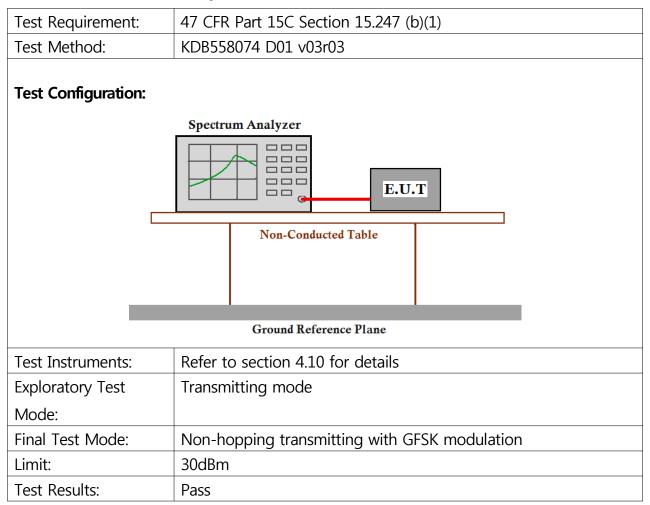
5.1. Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

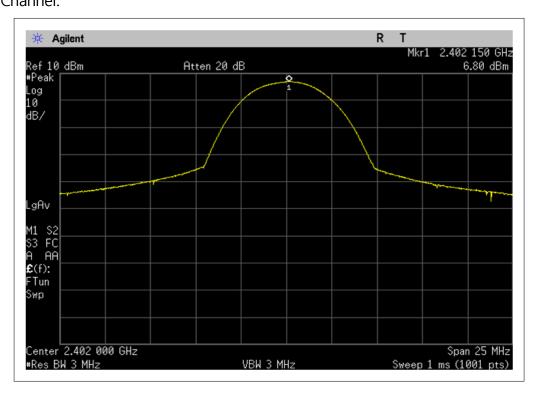

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna PASS

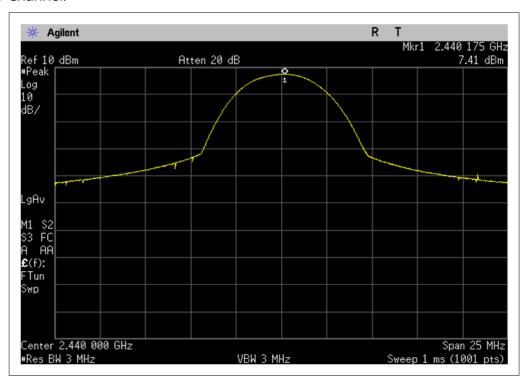
The transmitter has an Internal Chip antenna. The directional gain of the antenna is 0.5 dBi. please refer to the EUT Internal photos and Antenna gain.

Report Number: STD-FCC-16007

5.2. Conducted Peak Output Power

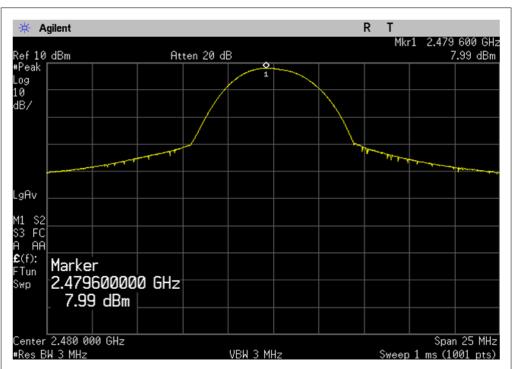

Measurement Data

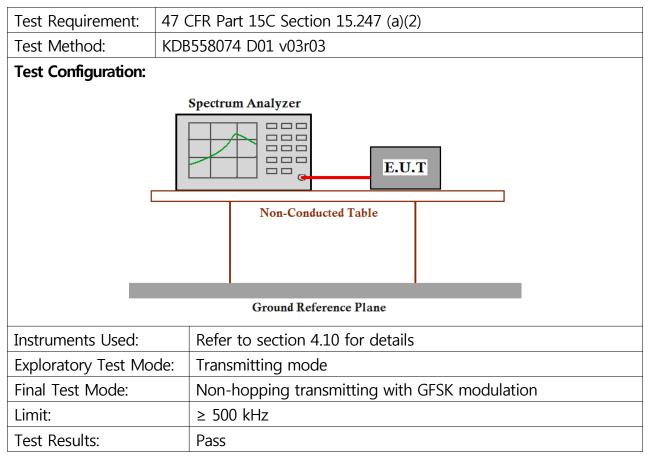
GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	6.80	30.00	Pass	
Middle	7.41	30.00	Pass	
Highest	7.99	30.00	Pass	


Report Number: STD-FCC-16007

Result plot as follows:

Test mode: GFSK Lowest Channel:

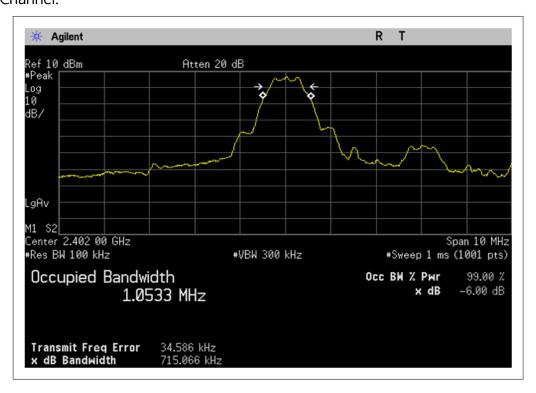

Middle Channel:


Report Number: STD-FCC-16007

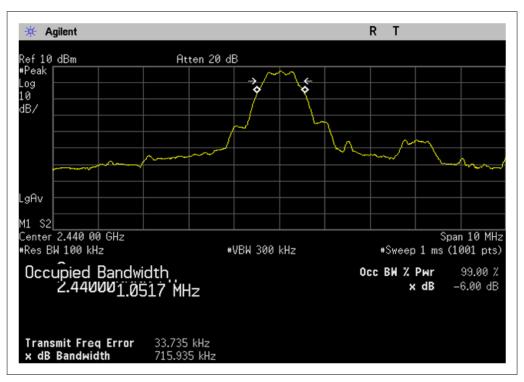
Highest Channel:

Report Number: STD-FCC-16007

5.3. 6dB Occupy Bandwidth

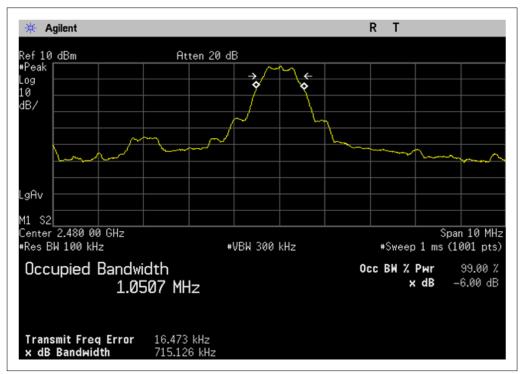

Measurement Data

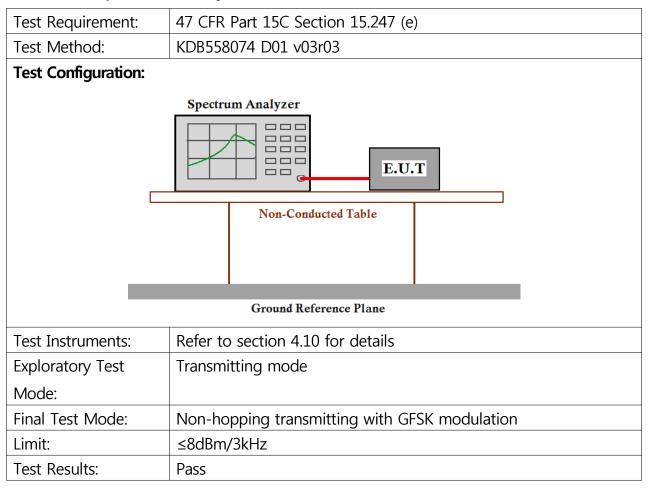
Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest	715	≥ 500	Pass
Middle	715	≥ 500	Pass
Highest	715	≥ 500	Pass


Report Number: STD-FCC-16007

Result plot as follows:

Test mode: GFSK Lowest Channel:

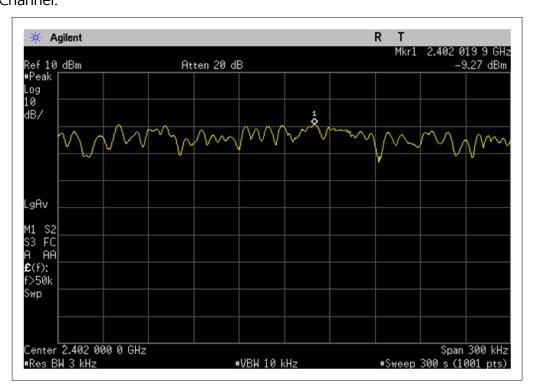

Middle Channel:


Report Number: STD-FCC-16007

Highest Channel:

Report Number: STD-FCC-16007

5.4. Power Spectral Density

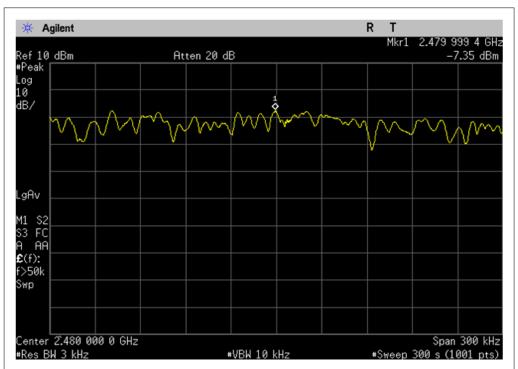

Measurement Data

GFSK mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-9.27	≤8 dBm/3kHz	Pass	
Middle	-8.71	≤8 dBm/3kHz	Pass	
Highest	-7.35	≤8 dBm/3kHz	Pass	

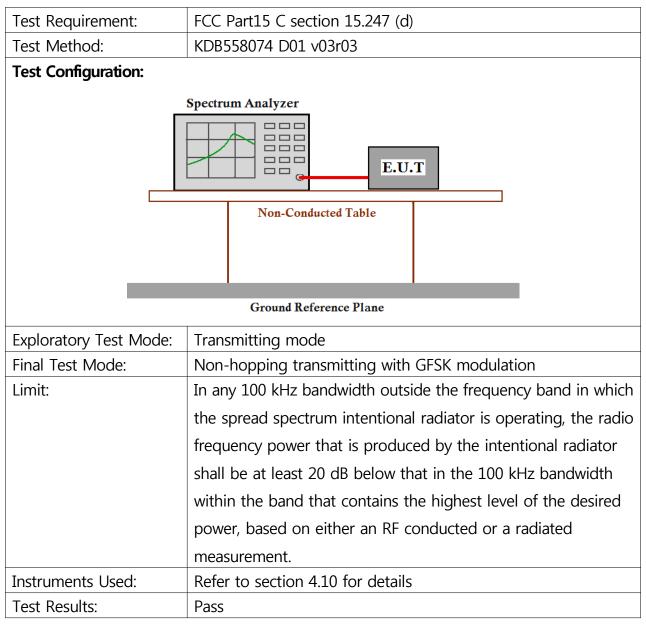
Report Number: STD-FCC-16007

Result plot as follows:

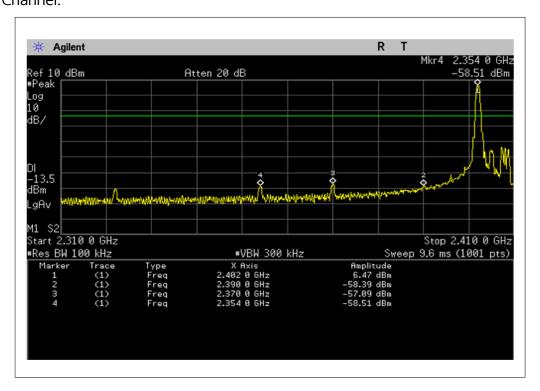
Test mode: GFSK Lowest Channel:

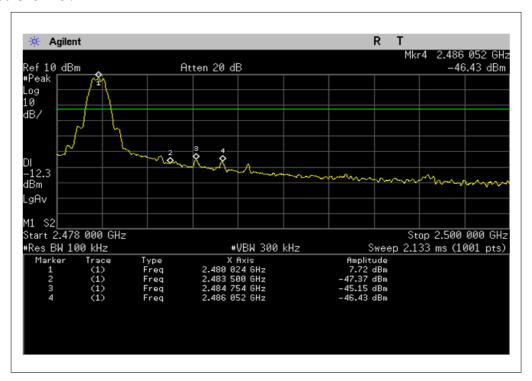

Middle Channel:

Report Number: STD-FCC-16007


Highest Channel:

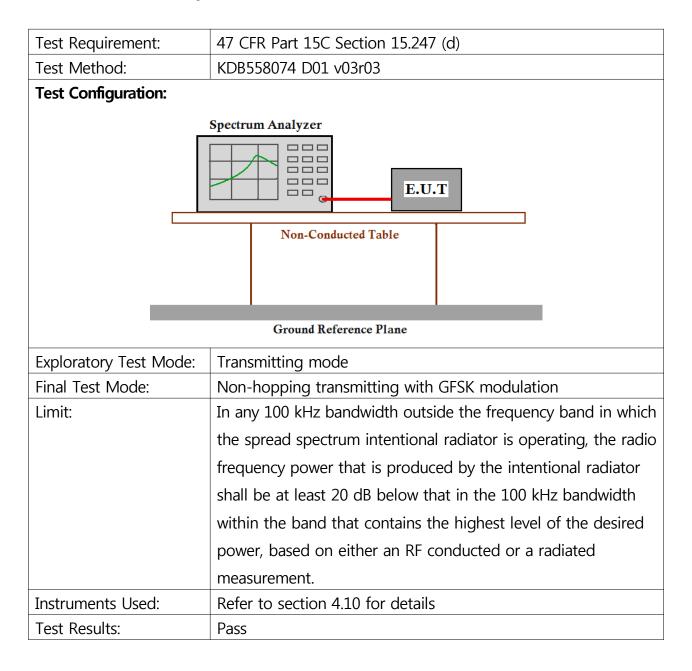
Report Number: STD-FCC-16007


5.5. Band-edge for RF Conducted Emissions

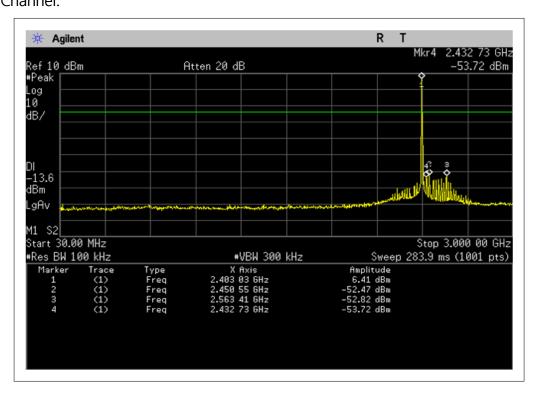

Report Number: STD-FCC-16007

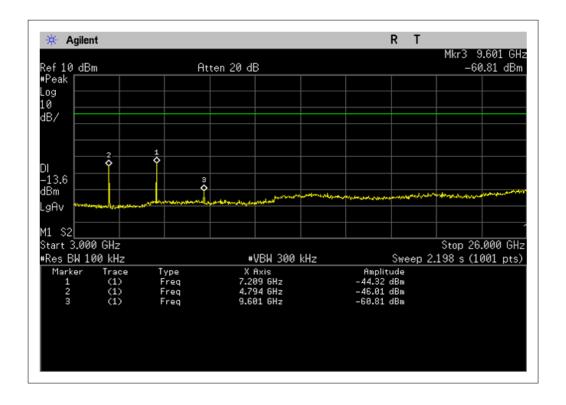
Result plot as follows:

Test mode: GFSK Lowest Channel:


Highest Channel:

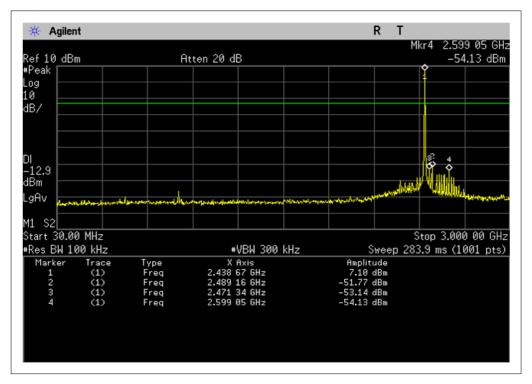
Report Number: STD-FCC-16007

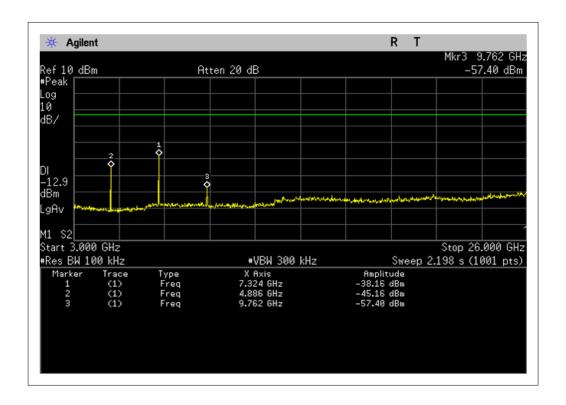

5.6. RF Conducted Spurious Emissions



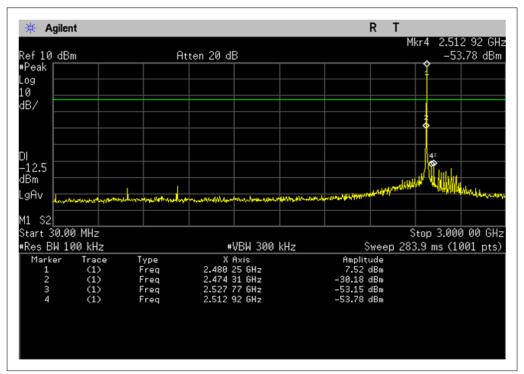
Report Number: STD-FCC-16007

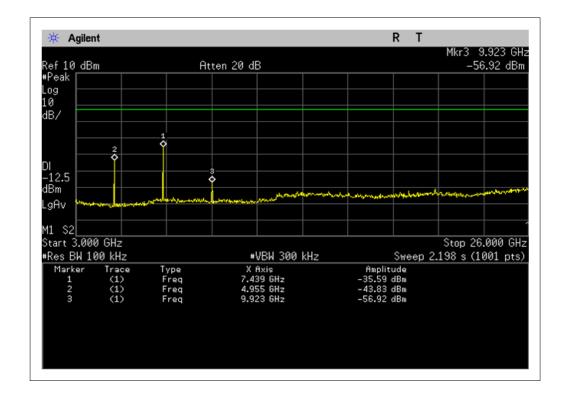
Result plot as follows:


Test mode: GFSK Lowest Channel:



Report Number: STD-FCC-16007

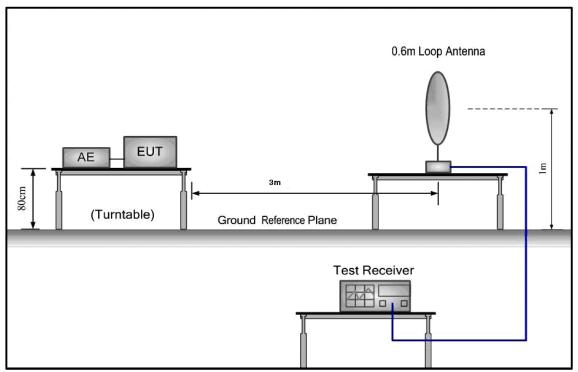

Middle Channel:



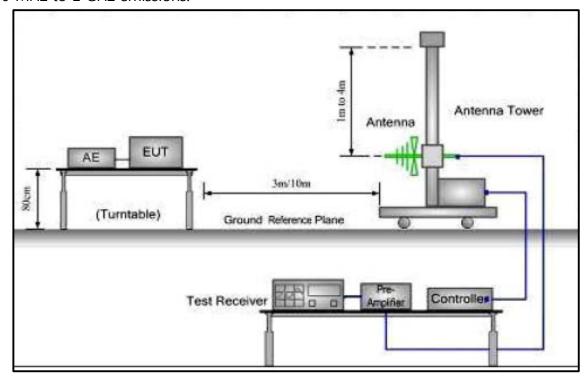
Report Number: STD-FCC-16007

Highest Channel:

Report Number: STD-FCC-16007

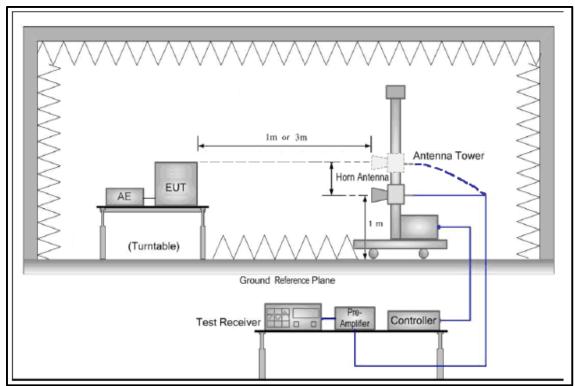

5.7. Radiated Spurious Emissions

Test equirement:	47 CFR Part 15C Section	on 15.209 and 15.20	5		
Test Method:	ANSI C63.10 2009				
Test Site:	Measurement Distance	e: 3m			
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
Receiver Setup:	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak
	Above 1CUz	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
	Fraguena	Field strength	Limit	Remark	Measurement
	Frequency	(microvolt/meter)	(dBuV/m)	Nemark	distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
Limit:	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Note:				
	15.35(b), Unless otherv	vise specified, the lir	mit on peak	radio frequen	cy emissions is
	20dB above the maxim	num permitted avera	age emissior	n limit applical	ole to the
	equipment under test.	•		• •	
	by the device.	1 - 1-1-1-1-1			
	by the device.				


Report Number: STD-FCC-16007

Test Configuration:

1) 9 kHz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

Report Number: STD-FCC-16007

3) 1 GHz to 25 GHz emissions:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter OATS. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- Test Procedure:
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Report Number : STD-FCC-16007

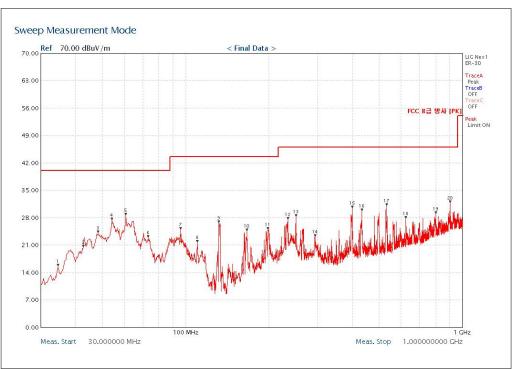
	e. The test-receiver system was set to Peak Detect Function and
	Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower
	than the limit specified, then testing could be stopped and the
	peak values of the EUT would be reported. Otherwise the
	emissions that did not have 10dB margin would be re-tested one
	by one using peak, quasi-peak or average method as specified
Test Procedure:	and then reported in a data sheet.
	g. Test the EUT in the lowest channel ,the middle channel ,the
	Highest channel
	h. The radiation measurements are performed in X, Y, Z axis
	positioning. And found the X axis positioning which it is worse
	case, Only the test worst case mode is recorded in the report.
	i. Repeat above procedures until all frequencies measured was
	complete.
Exploratory Test Mode:	Transmitting mode.
Final Test Mode:	Non-hopping transmitting with GFSK modulation
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass

FCC ID: 2AHMGANIFIT Report Number: STD-FCC-16007

5.7.1. Harmonic and other spurious emissions

5.7.1.1. Test at Lowest Channel in transmitting status

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

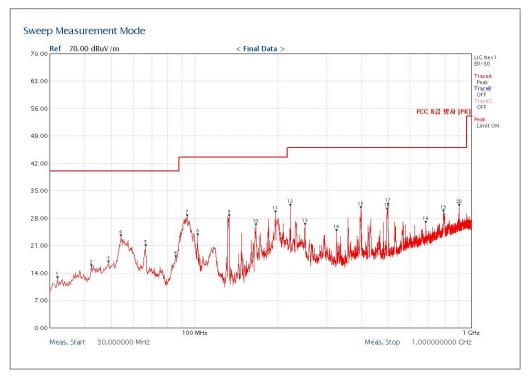

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Test Mode: GFSK

Vertical:

Test channel: Lowest

Level (dBµV/m)



Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
60.71	QP	V	28.49	13.88	14.61	40.0
533.17	QP	V	30.98	20.32	10.66	46.0

Report Number: STD-FCC-16007

Horizontal: Level (dBµV/m)

Quasi-peak measurement

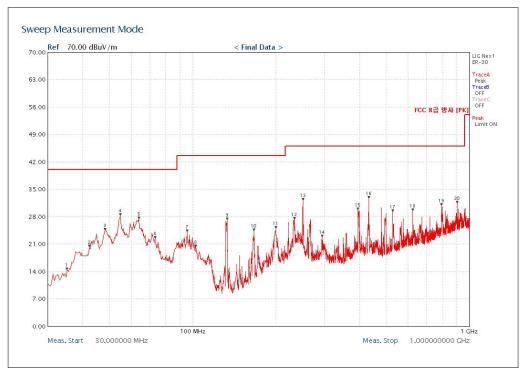
Frequency (MHz)	Detect Mode	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
94.06	QP	Н	28.29	12.48	15.81	43.5
133.26	QP	Н	28.33	9.97	18.36	43.5
221.37	QP	Н	31.02	13.01	18.01	46.0
399.00	QP	Н	30.40	17.94	12.46	46.0
500.01	QP	Н	31.21	19.57	11.64	46.0

Report Number: STD-FCC-16007

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement Peak / Average Measurement:

Frequency (MHz)	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Amplifier Gain (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)			
The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.									

FCC ID: 2AHMGANIFIT Report Number: STD-FCC-16007

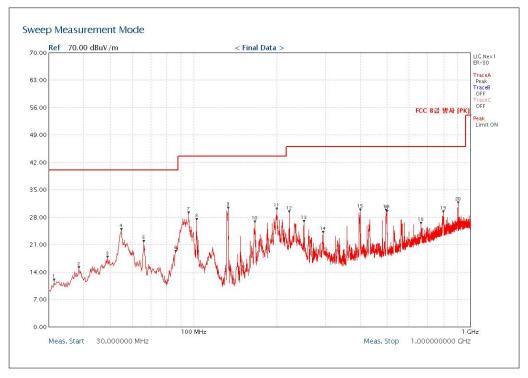

5.7.1.2. Test at middle Channel in transmitting status

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Test Mode: GFSK Test channel: Middle

Vertical: Level (dBµV/m)



Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
54.86	QP	V	28.13	14.69	13.44	40.0
250.62	QP	V	32.11	14.33	17.78	46.0
432.28	QP	V	32.55	18.49	14.06	46.0

Report Number: STD-FCC-16007

Horizontal: Level (dBµV/m)

Quasi-peak measurement

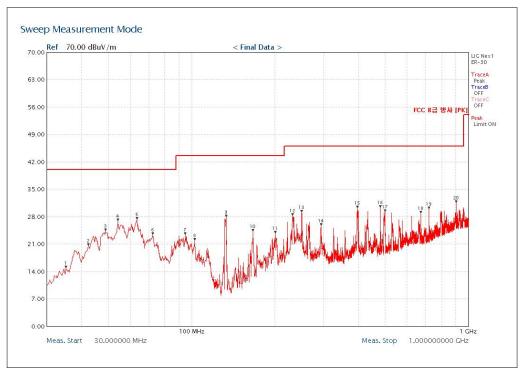
Frequency (MHz)	Detect Mode	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
96.07	QP	Н	28.75	12.73	16.02	40.0
133.26	QP	Н	29.95	9.97	19.98	43.5
199.93	QP	Н	29.72	12.04	17.68	43.5

Report Number: STD-FCC-16007

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement Peak / Average Measurement:

Frequency (MHz)	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Amplifier Gain (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)		
The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.								

FCC ID: 2AHMGANIFIT Report Number: STD-FCC-16007

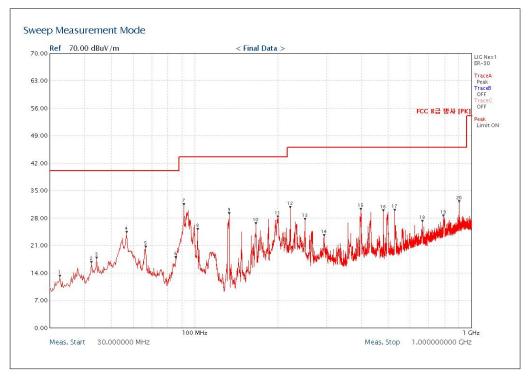

5.7.1.3. Test at Highest Channel in transmitting status

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Test Mode: GFSK Test channel: Highest

Vertical: Level (dBµV/m)



Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
63.39	QP	V	27.17	13.13	14.04	40.0
133.26	QP	V	27.82	9.97	17.85	43.5
249.91	QP	V	29.06	14.32	14.74	46.0
396.39	QP	V	30.19	17.88	12.31	46.0
480.47	QP	V	30.31	19.26	11.05	46.0
900.52	QP	V	31.53	25.68	5.85	46.0

Report Number: STD-FCC-16007

Horizontal: Level (dBµV/m)

Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
91.46	QP	Н	31.09	12.16	18.93	40.0
133.26	QP	Н	28.85	9.97	18.88	43.5
221.37	QP	Н	30.33	13.01	17.32	46.0
399.05	QP	Н	29.86	17.94	11.92	46.0

Report Number: STD-FCC-16007

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement Peak / Average Measurement:

Frequency (MHz)	Polarization (V/H)	Measured Value (dBµV)	Antenna Factor + Cable Loss (dB/m)	Amplifier Gain (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)			
The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.									

Remark:

1). The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Emission = Measured Value + Antenna Factor + Cable Loss - Amplifier Gain.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

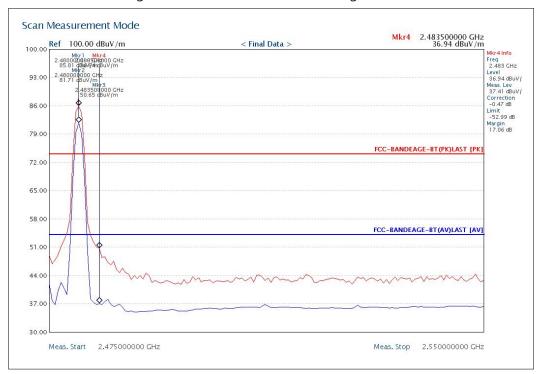
Report Number: STD-FCC-16007

5.8. Band Edge (Radiated Emission)

Test Requirement:	FCC Part15 C Section 15.247 (d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	ANSI C63.10: 2009
Measurement	3m
Limit:	Section 15.209(a) 40.0 dBµV/m between 30MHz & 88MHz; Quasi-peak Value 43.5 dBµV/m between 88MHz & 216MHz; Quasi-peak Value 46.0 dBµV/m between 216MHz & 960MHz; Quasi-peak Value 54.0 dBµV/m between 960MHz.& 1GHz; Quasi-peak Value 54.0 dBµV/m Above 1GHz; Average Value 74.0 dBµV/m Above 1GHz; Peak Value
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. i. Repeat above procedures until all frequencies measured was complete.

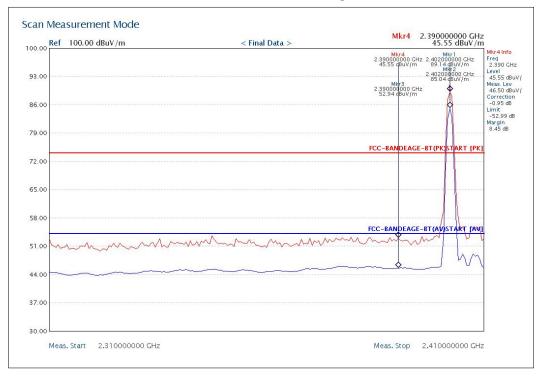
Report Number: STD-FCC-16007

Exploratory Test	Transmitting mode
Mode:	
Final Test Mode:	Non-hopping transmitting with GFSK modulation
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass

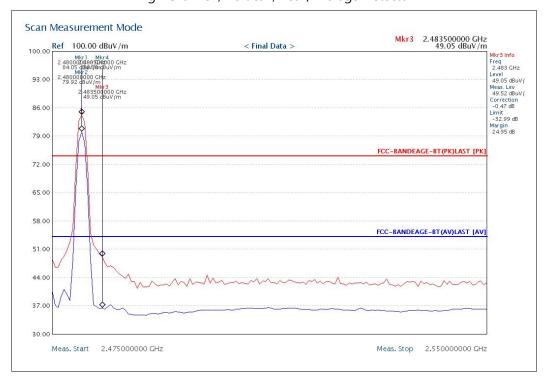

Report Number: STD-FCC-16007

Measurement Result:

Lowest Channel , Horizontal , Peak/Average Detector



High Channel, Horizontal, Peak/Average Detector



Report Number: STD-FCC-16007

Low Channel , Vertical , Peak/Average Detector

High Channel, Vertical, Peak/Average Detector

ENGINEERING Report Number : STD-FCC-16007

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz		GHz	
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	322 - 335.4	3600 - 4400		
13.36 - 13.41				

Report Number: STD-FCC-16007

5.9. Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement: FCC Part 15 C section 15.207

Test Method: ANSI C63.10: ANSI C63.10: 2009 Frequency Range: 150 kHz to 30 MHz

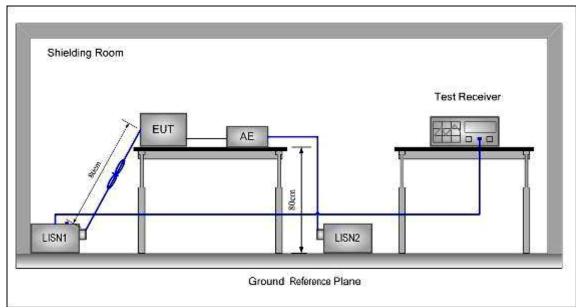
Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B

Frequency Range	Class B Limit dB(μV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

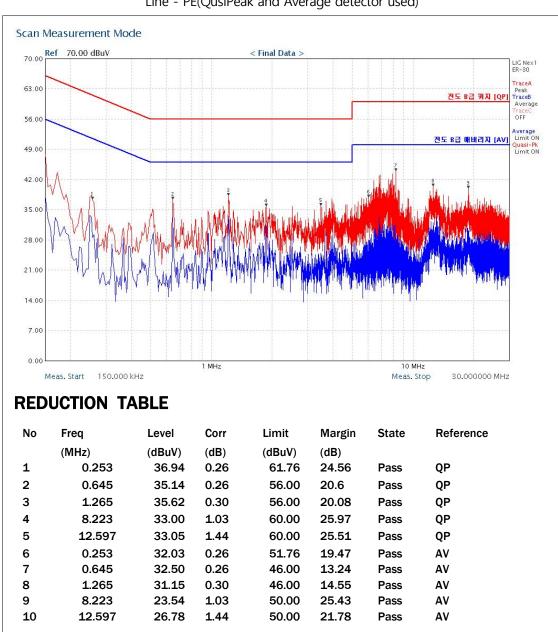
NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.


EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Report Number: STD-FCC-16007

Test Configuration:


Test procedure:

- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50/50\mu\text{H}$ + 5linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement.

Report Number: STD-FCC-16007

5.9.1. Measurement Data

Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Please see the attached Quasi-peak and Average test results.

Line - PE(QusiPeak and Average detector used)

Report Number: STD-FCC-16007

Scan Measurement Mode Ref 70.00 dBuV < Final Data > 63.00 OFF 56.00 Average Limit ON Quasi-Pk Limit ON 49.00 28.00 1 MHz 10 MHz Meas, Start 150,000 kHz 30.000000 MHz Meas, Stop REDUCTION TABLE No Freq Level Corr Limit Margin State Reference (dBuV) (dB) (dBuV) (dB) (MHz) 1 0.285 39.38 0.37 60.82 21.07 QΡ **Pass** 2 1.774 34.59 0.46 56.00 20.95 **Pass** QP 24.53 3 6.067 34.51 0.96 60.00 QΡ **Pass** 4 7.332 37.49 1.09 60.00 21.42 **Pass** QP 5 23.97 12.736 34.46 1.57 60.00 **Pass** QP 6 0.285 27.85 0.37 50.82 22.6 **Pass** A۷ 7 1.774 27.74 0.46 46.00 17.8 **Pass** A۷ 8 6.067 23.25 0.96 50.00 25.79 Pass ΑV 9 7.332 25.27 1.09 50.00 23.64 **Pass** A۷ 10 12.736 28.38 1.57 50.00 20.05 **Pass** A۷

Neutral – PE(QusiPeak and Average detector used)

Measurement data:

- * Detector function was set into Quasi-peak & Average mode.
- * Corr = LISN Factor + Cable loss + Pulse Limiter

Report Number: STD-FCC-16007

5.10. Radio Frequency Exposure Procedures

Regulation

According to §2.1091, §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission''s guidelines.

Table 1-Limits for Maximum Permissible Exposure (MPE)

Frequency range(MHz)	Electric field	Magnetic field	Power density	Averaging time
. , 5 , ,	strength(V/m)	strength(A/m)	(mW/cm²)	(minutes)
(A) Limits for Occupational/Controlled	f			
Exposures				
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General				
Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note 1 to Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

The S = PG / $(4\pi R^2)$

Where $S = power density in mW/cm^2$

P = transmit power in mW

G = numeric gain of transmit antenna (numeric gain=Log-1(dB antenna gain/10))

R = distance (cm)

The calculations in the table below use the highest gain of antenna for client EUT. These calculations represent worst case in terms of the exposure levels.

^{* =} Plane-wave equivalent power density

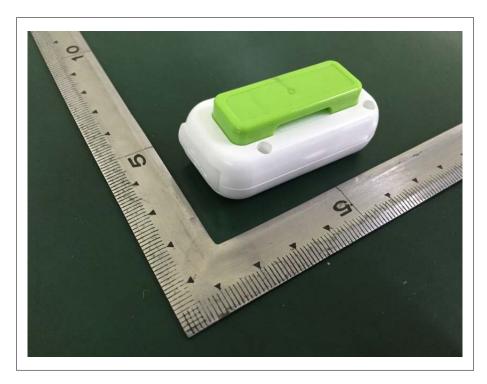
Report Number: STD-FCC-16007

Measurement Data

Channel Frequency	Power		Antenna Gain	Numeric antenna gain	R	S	Limits
(MHz)	(dBm)	(mW)	(dBi)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
2402	6.80	4.786	0.5	1.122	20	0.0010	1
2440	7.41	5.508	0.5	1.122	20	0.0012	1
2480	7.99	6.295	0.5	1.122	20	0.0015	1

Note: 1 mW/cm² from 1.310 §Table 1

The worst MPE = $0.0015 \text{ mW/cm}^2 < 1 \text{ mW/cm}^2$.


Conclusion: The SAR measurement is exempt.

Report Number: STD-FCC-16007

APPENDIX

1. EUT photo

