

Product : Blood Pressure Monitor

Trade mark : N/A

Model/Type reference : 2006-2B

Serial Number : N/A

Report Number : EED32K00297601 **FCC ID** : 2AHLE-BPMB001

Date of Issue : May 20, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Bioland Technology Ltd.

A6b7 (Block G), Shangrong Ind. Zone Baolong 5th Rd, Longgang District 518116, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Compiled by:

proved b

Levin lan

Reviewed by:

Ware Xin

Kevin yang

Date:

May 20, 2019

Check No.: 3570126349

Page 2 of 46

2 Version

Version No.	Date	Description
00	May 20, 2019	Original
	/25	/02
(5)	(6.5)	(25)

Page 3 of 46

3 Test Summary

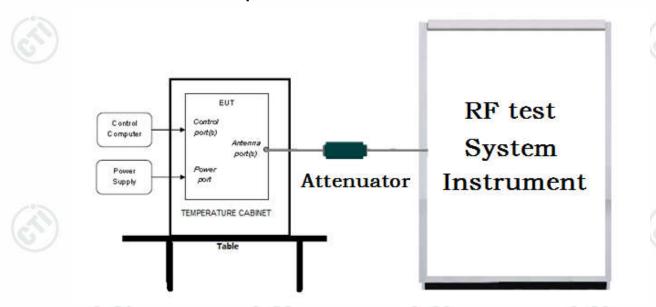
rest Gaillinary	() () () () () () () () () ()			
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Page 4 of 46

4 Content

1 COVER PAGE		•••••		•••••		1
2 VERSION				•••••		2
3 TEST SUMMARY			•••••	•••••	•••••	3
4 CONTENT			•••••		•••••	4
5 TEST REQUIREMEN	IT		•••••		•••••	5
5.1 TEST SETUP						5
	ted test setup					
	d Emissions test setup					
	ted Emissions test setup					
	NT					
	ATION					
6.1 CLIENT INFORMAT	TON					7
	PTION OF EUT					
	ICATION SUBJECTIVE TO TH					
	SUPPORT UNITS					
	STANDARDS					
	ROM STANDARD CONDITION					
	TION REQUESTED BY THE C					
	UNCERTAINTY (95% CONFIL					
	•		,			
•						
	REQUIREMENTS SPEC					
Appendix A): 6dB	Occupied Bandwidth					13
Appendix B): Con	ducted Peak Output Pow	er				15
	d-edge for RF Conducted					
Appendix D): RF	Conducted Spurious Emis	sions				18
	er Spectral Density					
	enna Requirement					
	tricted bands around fund					
Appendix H): Rad	liated Spurious Emissions					30
PHOTOGRAPHS OF T	EST SETUP	•••••	•••••	•••••	•••••	36
PHOTOGRAPHS OF E	EUT CONSTRUCTIONAL	DETAILS	•••••	•••••	•••••	38



Report No.: EED32K00297601 Page 5 of 46

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

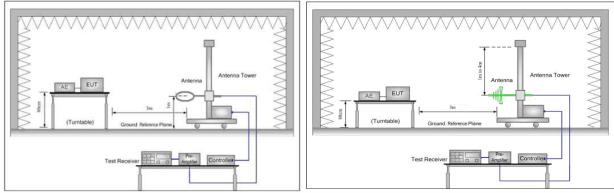
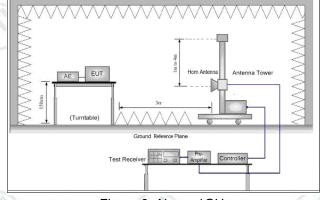
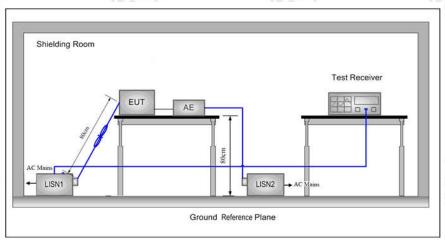


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	26 °C	
Humidity:	57 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
	TX/KX	Low(L)	Middle(M)	High(H)	
05014	2422441 2422441	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuo	us signal at the s	pecific channel(s	6).	
1.00	12.7	120		1.6	

Report No. : EED32K00297601 Page 7 of 46

6 General Information

6.1 Client Information

Applicant:	Bioland Technology Ltd.
Address of Applicant:	A6b7 (Block G), Shangrong Ind. Zone Baolong 5th Rd, Longgang District 518116, Shenzhen, Guangdong, China
Manufacturer:	Bioland Technology Ltd.
Address of Manufacturer:	A6b7 (Block G), Shangrong Ind. Zone Baolong 5th Rd, Longgang District 518116, Shenzhen, Guangdong, China
Factory:	Bioland Technology Ltd.
Address of Factory:	A6b7 (Block G), Shangrong Ind. Zone Baolong 5th Rd, Longgang District 518116, Shenzhen, Guangdong, China

6.2 General Description of EUT

Product Name:	Blood Pressure Monitor
Model No.(EUT):	2006-2B
Test Model No.:	2006-2B
Trade mark:	N/A
EUT Supports Radios application:	BT: 4.0 BT Single mode: 2402MHz to 2480MHz
Power Supply:	AA ALKALINE Battery 4X1.5V
Sample Received Date:	Nov. 02, 2018
Sample tested Date:	Nov. 21, 2018 to Feb. 27, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		1
Bluetooth Version:	4.0	(6,2)	(6)
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40		
Sample Type:	Portable production		(7)
Test Power Grade:	N/A		
Test software of EUT:	SmartRF_Studio_7(manufacturer de	eclare)	
Antenna Type:	PCB Antenna		
Antenna Gain:	1.43dBi		(2)
Test Voltage:	DC 6V		6
Firmware version:	1.0(manufacturer declare)		
Hardware version:	1.0(manufacturer declare)		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32K00297601 Page 8 of 46

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Test Facility

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32K00297601 Page 9 of 46

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32K00297601 Page 10 of 46

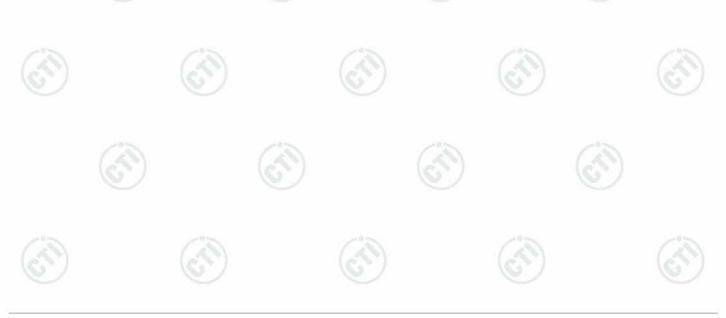
7 Equipment List

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Attenuator	HuaXiang	SHX370	15040701	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5181A	MY46240094	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	(4)	01-10-2018 01-09-2019	01-09-2019 01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
Communication test set	R&S	CMW500	107929	06-27-2018	06-26-2019	
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019	
PC-1	Lenovo	R4960d		03-29-2018	03-28-2019	
BT&WI-FI Automatic control	R&S	OSP120	101374	04-11-2018	04-10-2019	
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019	
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-13-2018	03-12-2019	
high-low temperature test chamber	DongGuangQinZ huo	LK-80GA	QZ20150611 879	03-16-2018	03-15-2019	

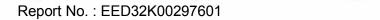
 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32K00297601 Page 11 of 46

7 - 2/1	3M S	emi/full-anechoic Ch	7 483			
			Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019	
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019	
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-17-2018 01-16-2019	01-16-2019 01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-04-2021	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
	D00	50017	100938-	11-24-2017	11-23-2018	
Receiver	R&S	ESCI7	003	11-23-2018	11-22-2019	
Multi davias Controllar	matura	NCD/070/107111		01-10-2018	01-09-2019	
Multi device Controller	maturo	12	₩ <i>,</i>	01-09-2019	01-08-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019	
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019	
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019	
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019	
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020	
(6.2.)	(63)	-		01-10-2018	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019	
				01-10-2018	01-09-2019	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line	Fulci(2M)	CE106	E017/6A	01-10-2018	01-09-2019	
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020	
Communication test set	R&S	CMW500	104466	01-19-2018 01-18-2019	01-18-2019 01-17-2020	
High-pass filter	Sinoscite	FL3CX03WG18N		01-10-2018	01-09-2019	
r light-pass filter		M12-0398-002		01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020	
1	/ ///	FL5CX01CA09CL	188	01-10-2018	01-08-2020	
band rejection filter	Sinoscite	12-0395-001	G 7-7	01-09-2019	01-08-2020	
hand rejection filter	Oin a:4-	FL5CX01CA08CL		01-10-2018	01-09-2019	
band rejection filter	Sinoscite	12-0393-001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA04CL		01-10-2018	01-09-2019	
Danu rejection ilitei	SHOSULE	12-0396-002		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA03CL		01-10-2018	01-09-2019	
zana rojeodom mor	Ciriodoito	12-0394-001		01-09-2019	01-08-2020	

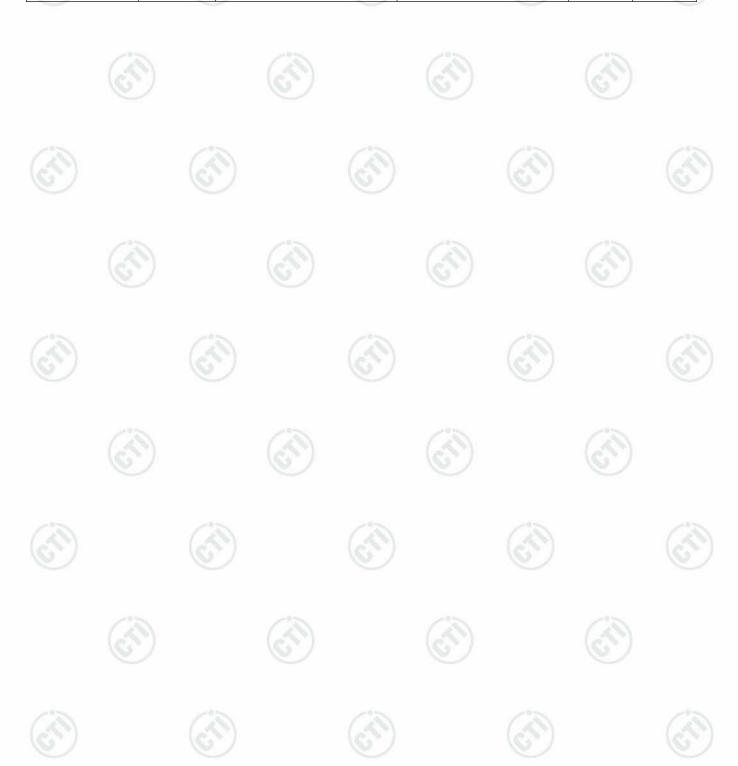

8 Radio Technical Requirements Specification

Reference documents for testing:


No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
ANSI C63.10 fundamental frequ		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)



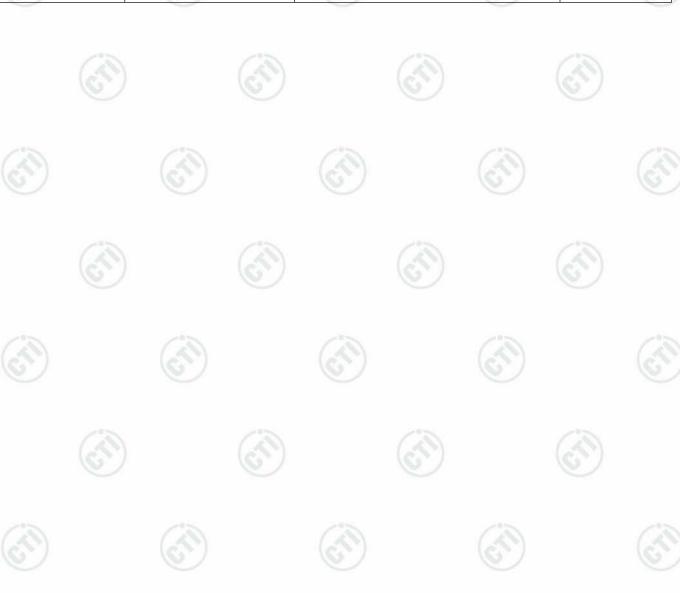
Page 13 of 46

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6919	1.1342	PASS	
BLE	MCH	0.6807	1.1094	PASS	Peak
BLE	HCH	0.6891	1.0899	PASS	detector

Test Graphs



Report No.: EED32K00297601 Page 15 of 46

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-2.573	PASS
BLE	MCH	-3.368	PASS
BLE	НСН	-4.593	PASS

Page 16 of 46 Test Graphs Graphs LCH Ref Offset 19.02 dB Ref 19.02 dBm HCH

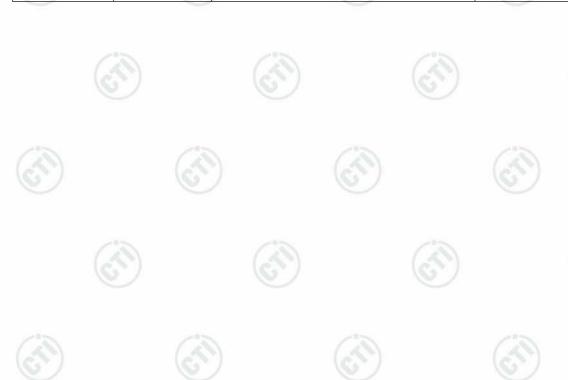

Report No. : EED32K00297601 Page 17 of 46

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-3.522	-52.728	-23.52	PASS
BLE	HCH	-5.623	-45.949	-25.62	PASS

Test Graphs

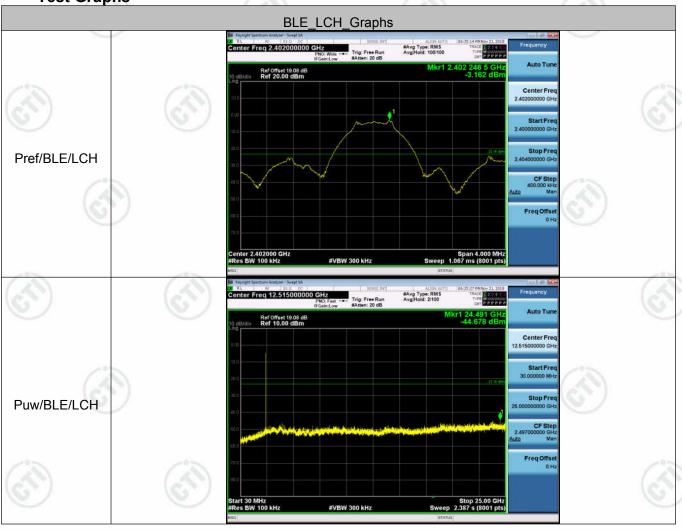


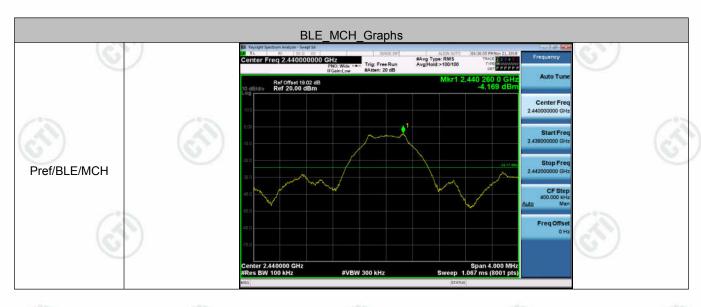
Report No.: EED32K00297601 Page 18 of 46

Appendix D): RF Conducted Spurious Emissions

Result Table

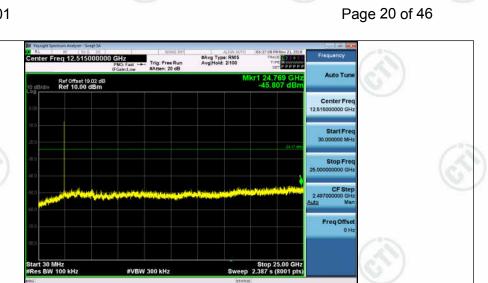
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.162	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.169	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-5.681	<limit< td=""><td>PASS</td></limit<>	PASS

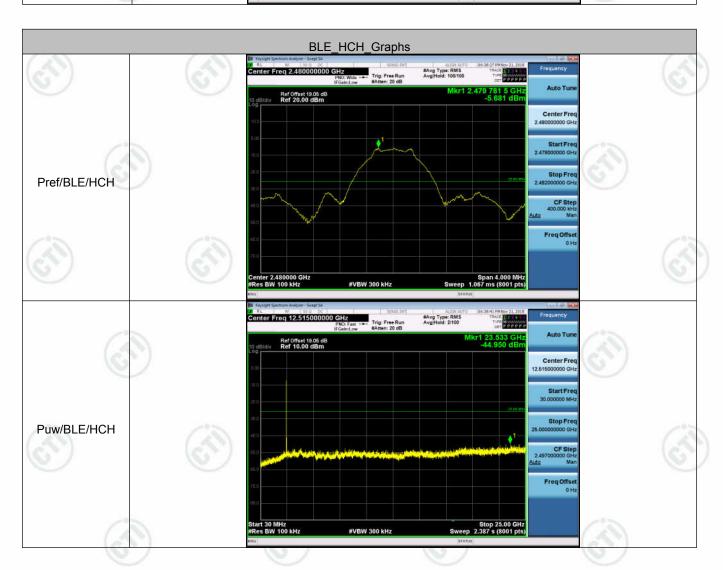




Report No.: EED32K00297601 Page 19 of 46

Test Graphs



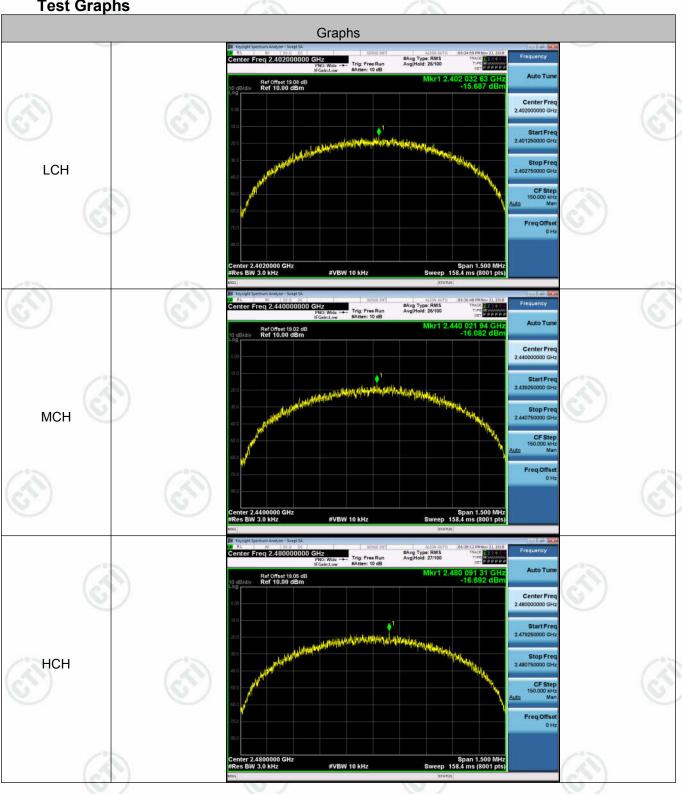


Puw/BLE/MCH

Appendix E): Power Spectral Density

Result Table

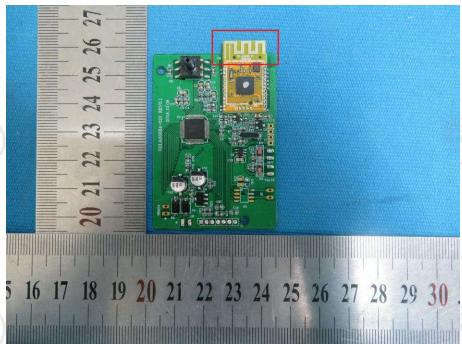
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.687	8	PASS
BLE	MCH	-16.082	8	PASS
BLE	HCH	-16.692	8	PASS



Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

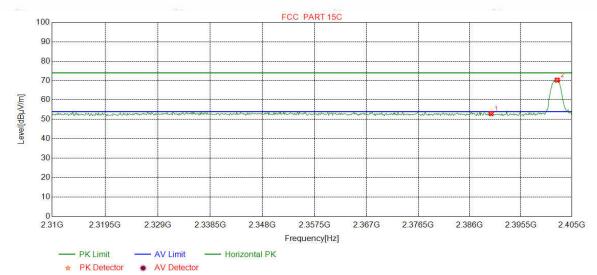
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.43dBi.

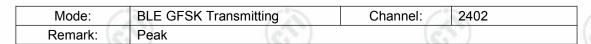
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

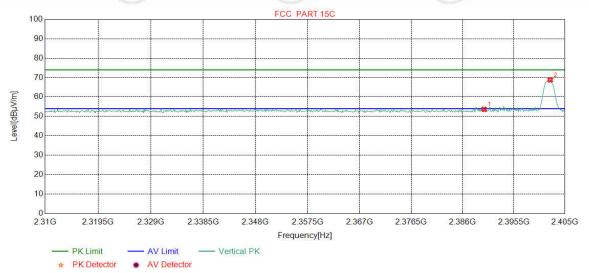
Report No. : EED32K00297601 Page 24 of 46

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 1CHz	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average				
Test Procedure:	Below 1GHz test procedure as below: a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel								
			ot. Repeat t	for each po	ower and modu	ulatior			
		t channel dure as below: ove is the test site mber change form s 1 meter and table lowest channel, ements are perform nd found the X ax	e, change for table 0.8 le is 1.5 me the Highes remed in X, kis position	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Above cositioning for t is worse case	mber ⁄e			
imit:	for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a	t channel dure as below: ove is the test site mber change form s 1 meter and table lowest channel, ements are perform nd found the X ax	e, change fin table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Above cositioning for t is worse case	mber ⁄e			
imit:	for lowest and highes Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proced	t channel dure as below: ove is the test site mber change forr s 1 meter and tab lowest channel, ements are perfo nd found the X ax lures until all freq	e, change fin table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me/m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cha .5 meter(Above consitioning for tis worse case as complete.	mber ⁄e			
Limit:	for lowest and highes Above 1GHz test proces g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proces	t channel dure as below: ove is the test site mber change forr s 1 meter and tab lowest channel , ements are perfo nd found the X ax lures until all freq Limit (dBµV	e, change for table 0.8 le is 1.5 me the Highest remed in X, kis position uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cha .5 meter(Above cositioning for t is worse case as complete.	mber ⁄e			
imit:	for lowest and highes Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proced Frequency 30MHz-88MHz	t channel dure as below: ove is the test site mber change form s 1 meter and table lowest channel , ements are performed found the X ax lures until all freq Limit (dBµV 40.6	e, change for table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Cha .5 meter(Above positioning for t is worse case as complete. mark eak Value	mber ⁄e			
imit:	for lowest and highes Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	t channel dure as below: ove is the test site mber change forr s 1 meter and tab lowest channel , ements are perfo nd found the X ax lures until all freq Limit (dBµV 40.6	e, change for table 0.8 le is 1.5 me the Highest red in X, kis position uencies me me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Above consitioning for this worse case as complete. mark eak Value eak Value	mber ⁄e			
Limit:	for lowest and highes Above 1GHz test proces g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proces Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	t channel dure as below: ove is the test site mber change forr s 1 meter and tab lowest channel , ements are perfo nd found the X ax lures until all freq Limit (dBµV 40.6 43.9	e, change for table 0.8 le is 1.5 me the Highest red in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Above cositioning for t is worse case as complete. mark eak Value eak Value eak Value	mber ⁄e			

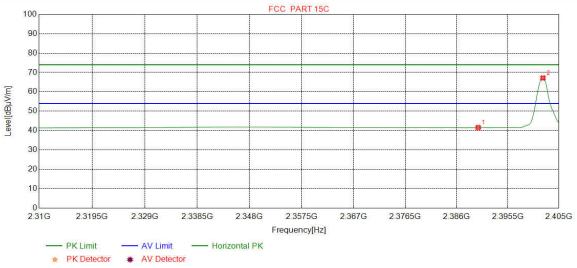




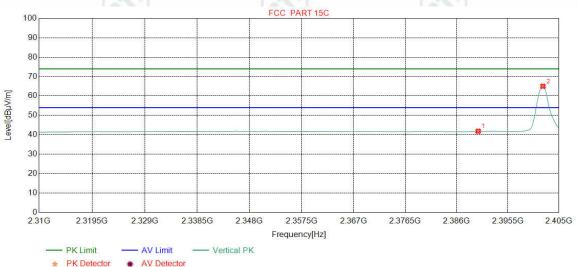

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.82	53.00	74.00	21.00	Pass	Horizontal
2	2402.2653	32.26	13.31	-42.43	67.10	70.24	74.00	3.76	Pass	Horizontal


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.45	53.63	74.00	20.37	Pass	Vertical
2	2402.2653	32.26	13.31	-42.43	65.64	68.78	74.00	5.22	Pass	Vertical

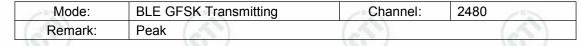
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

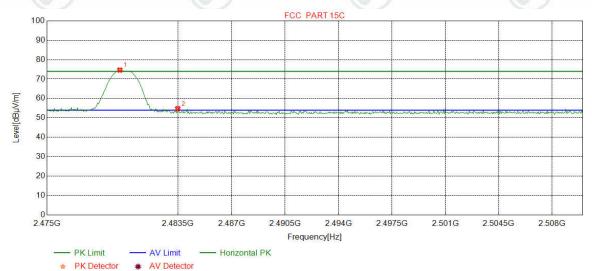

Report No.: EED32K00297601 Page 26 of 46

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

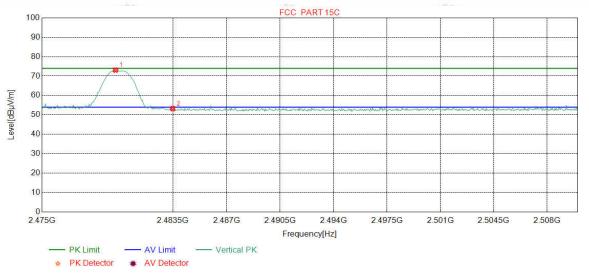
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.37	41.55	54.00	12.45	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	64.01	67.15	54.00	-13.15	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV	/*	
7.7	(N) \ (N)	/ 4	70.1




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.63	41.81	54.00	12.19	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	61.87	65.01	54.00	-11.01	Pass	Vertical

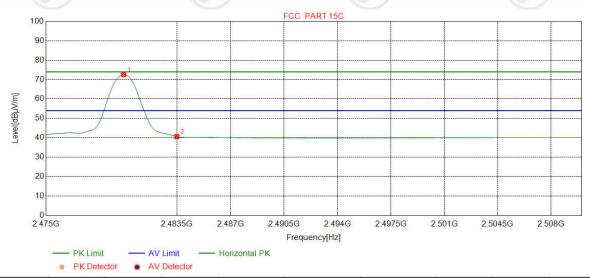
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

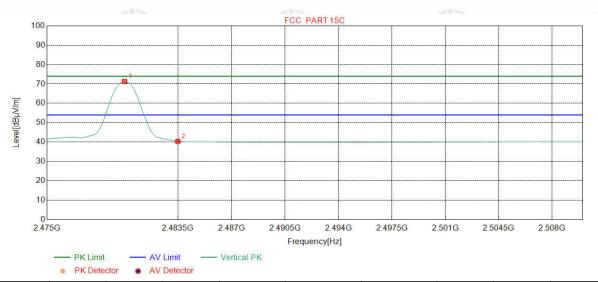

Page 27 of 46

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	71.29	74.66	74.00	-0.66	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	51.38	54.74	74.00	19.26	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7747	32.37	13.39	-42.39	69.73	73.10	74.00	0.90	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.87	53.23	74.00	20.77	Pass	Vertical




Page 28 of 46

0	Mode:	BLE GFSK Transmitting	Channel:	2480
6.9	Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	69.20	72.57	54.00	-18.57	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.23	40.59	54.00	13.41	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	67.96	71.33	54.00	-17.33	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.97	40.33	54.00	13.67	Pass	Vertical

Page 29 of 46

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32K00297601 Page 30 of 46

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	E)
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
9	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Abaua 4011-	Peak	1MHz	3MHz	Peak	\
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	/

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-/05	30
1.705MHz-30MHz	30	-	- (e.5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

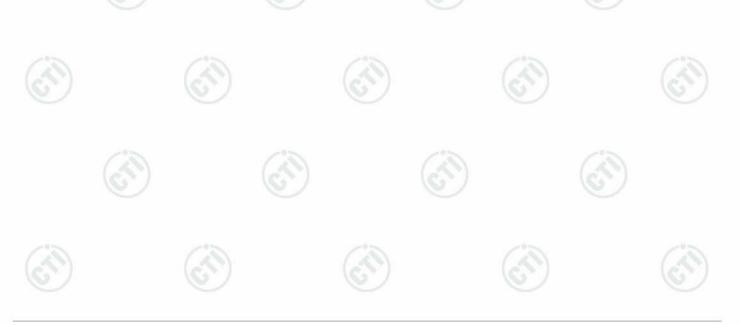
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00297601 Page 31 of 46

Radiated Spurious Emissions test Data:

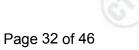
Product : Blood Pressure Monitor Model/Type reference : 2006-2B


Temperature : 21° **Humidity** : 60%

Radiated Emission below 1GHz

Mode:	BLE GFSK Trasmitting	Channel:	2402	
Remark:	QP			

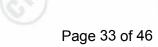
Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	63.6624	10.65	0.91	-32.04	44.86	24.38	40.00	15.62	Pass	Horizontal
2	143.8894	7.34	1.41	-32.00	49.08	25.83	43.50	17.67	Pass	Horizontal
3	217.5198	11.36	1.76	-31.96	49.31	30.47	46.00	15.53	Pass	Horizontal
4	516.0186	17.32	2.71	-31.93	40.83	28.93	46.00	17.07	Pass	Horizontal
5	742.4392	20.27	3.26	-32.11	43.14	34.56	46.00	11.44	Pass	Horizontal
6	879.7080	21.86	3.55	-31.66	36.28	30.03	46.00	15.97	Pass	Horizontal


Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	64.7295	10.37	0.92	-32.05	47.30	26.54	40.00	13.46	Pass	Vertical
2	152.0382	7.62	1.45	-32.00	45.00	22.07	43.50	21.43	Pass	Vertical
3	208.8859	11.13	1.71	-31.94	42.92	23.82	43.50	19.68	Pass	Vertical
4	399.2189	15.38	2.38	-31.76	32.27	18.27	46.00	27.73	Pass	Vertical
5	742.5363	20.27	3.26	-32.11	43.13	34.55	46.00	11.45	Pass	Vertical
6	890.9611	21.99	3.58	-31.61	35.73	29.69	46.00	16.31	Pass	Vertical
	000.0011	21.00	0.00	-01.01 00.70 20.00 40.00 10.01 1 doc						VOITIOUI

Mode:	BLE GFSK Trasmitting	Channel:	2440
Remark:	QP		

Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	69.2889	9.18	0.95	-32.05	45.74	23.82	40.00	16.18	Pass	Horizontal
2	207.5278	11.10	1.71	-31.95	49.59	30.45	43.50	13.05	Pass	Horizontal
3	381.4661	14.99	2.32	-31.87	39.04	24.48	46.00	21.52	Pass	Horizontal
4	540.0770	17.80	2.79	-31.95	39.94	28.58	46.00	17.42	Pass	Horizontal
5	742.4392	20.27	3.26	-32.11	42.55	33.97	46.00	12.03	Pass	Horizontal
6	890.9611	21.99	3.58	-31.61	35.19	29.15	46.00	16.85	Pass	Horizontal

Susp	pected List									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	62.0132	11.08	0.91	-32.05	47.49	27.43	40.00	12.57	Pass	Vertical
2	152.0382	7.62	1.45	-32.00	44.82	21.89	43.50	21.61	Pass	Vertical
3	208.8859	11.13	1.71	-31.94	42.16	23.06	43.50	20.44	Pass	Vertical
4	398.8309	15.37	2.38	-31.77	32.80	18.78	46.00	27.22	Pass	Vertical
5	742.4392	20.27	3.26	-32.11	42.71	34.13	46.00	11.87	Pass	Vertical
6	890.9611	21.99	3.58	-31.61	36.00	29.96	46.00	16.04	Pass	Vertical



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	QP		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	63.7594	10.62	0.92	-32.05	44.68	24.17	40.00	15.83	Pass	Horizontal
2	214.8035	11.28	1.74	-31.94	49.77	30.85	43.50	12.65	Pass	Horizontal
3	382.0482	15.01	2.33	-31.88	39.03	24.49	46.00	21.51	Pass	Horizontal
4	536.0996	17.72	2.78	-31.93	36.26	24.83	46.00	21.17	Pass	Horizontal
5	742.4392	20.27	3.26	-32.11	43.82	35.24	46.00	10.76	Pass	Horizontal
6	875.1485	21.80	3.55	-31.70	33.63	27.28	46.00	18.72	Pass	Horizontal

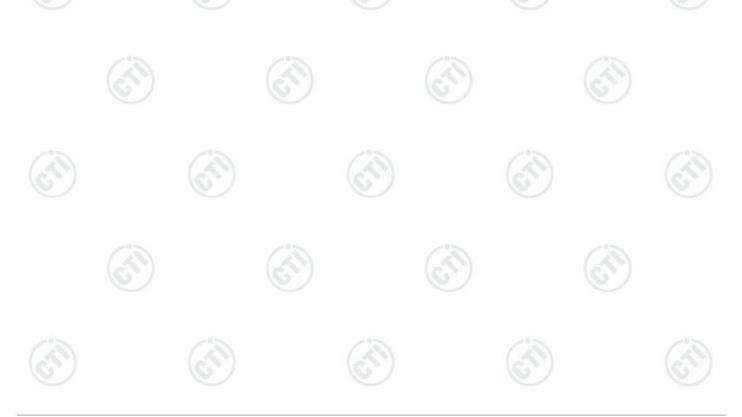
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	63.7594	10.62	0.92	-32.05	46.36	25.85	40.00	14.15	Pass	Vertical
2	152.0382	7.62	1.45	-32.00	44.80	21.87	43.50	21.63	Pass	Vertical
3	208.8859	11.13	1.71	-31.94	42.08	22.98	43.50	20.52	Pass	Vertical
4	334.8045	13.97	2.18	-31.80	34.07	18.42	46.00	27.58	Pass	Vertical
5	600.0290	19.00	2.96	-31.99	37.40	27.37	46.00	18.63	Pass	Vertical
6	742.4392	20.27	3.26	-32.11	44.13	35.55	46.00	10.45	Pass	Vertical

Transmitter Emission above 1GHz

Mode	e:	BLE GF	SK Tran	smitting	Channel:				2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1809.2809	30.44	3.33	-42.70	51.04	42.11	74.00	31.89	Pass	Н	Peak
2	3425.7784	33.37	4.49	-41.86	50.04	46.04	74.00	27.96	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	51.21	49.60	74.00	24.40	Pass	Н	Peak
4	6499.8333	35.90	5.47	-41.19	48.21	48.39	74.00	25.61	Pass	Н	Peak
5	7206.0000	36.31	5.81	-41.02	45.55	46.65	74.00	27.35	Pass	Н	Peak
6	9608.0000	37.64	6.63	-40.76	45.22	48.73	74.00	25.27	Pass	Н	Peak
7	1597.8598	29.05	3.07	-42.90	57.54	46.76	74.00	27.24	Pass	V	Peak
8	2556.9557	32.49	4.09	-42.36	50.66	44.88	74.00	29.12	Pass	V	Peak
9	3429.6786	33.37	4.48	-41.86	49.26	45.25	74.00	28.75	Pass	V	Peak
10	4804.0000	34.50	4.55	-40.66	52.48	50.87	74.00	23.13	Pass	V	Peak
11	7206.0000	36.31	5.81	-41.02	45.08	46.18	74.00	27.82	Pass	V	Peak
12	9608.0000	37.64	6.63	-40.76	45.27	48.78	74.00	25.22	Pass	V	Peak

Mode	э:	BLE GF	SK Tran	smitting	Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1600.0600	29.06	3.07	-42.90	52.61	41.84	74.00	32.16	Pass	Н	Peak
2	2175.7176	31.95	3.65	-42.54	51.32	44.38	74.00	29.62	Pass	Н	Peak
3	3182.6622	33.27	4.62	-42.01	50.17	46.05	74.00	27.95	Pass	Н	Peak
4	4880.0000	34.50	4.80	-40.60	50.66	49.36	74.00	24.64	Pass	Н	Peak
5	7320.0000	36.42	5.85	-40.92	44.92	46.27	74.00	27.73	Pass	Н	Peak
6	9760.0000	37.70	6.73	-40.62	44.58	48.39	74.00	25.61	Pass	Н	Peak
7	1871.8872	30.85	3.40	-42.67	53.84	45.42	74.00	28.58	Pass	V	Peak
8	2773.3773	32.84	4.19	-42.24	49.93	44.72	74.00	29.28	Pass	V	Peak
9	3164.4610	33.27	4.59	-42.02	50.20	46.04	74.00	27.96	Pass	V	Peak
10	4880.0000	34.50	4.80	-40.60	52.24	50.94	74.00	23.06	Pass	V	Peak
11	7320.0000	36.42	5.85	-40.92	44.75	46.10	74.00	27.90	Pass	V	Peak
12	9760.0000	37.70	6.73	-40.62	44.58	48.39	74.00	25.61	Pass	V	Peak

						5470			20%		
Mode:		BLE GFSK Transmitting			Channel:			2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2035.9036	31.75	3.53	-42.59	52.36	45.05	74.00	28.95	Pass	Н	Peak
2	2557.1557	32.49	4.09	-42.36	50.01	44.23	74.00	29.77	Pass	Н	Peak
3	3804.1036	33.64	4.37	-41.19	47.70	44.52	74.00	29.48	Pass	Н	Peak
4	4960.0000	34.50	4.82	-40.53	52.09	50.88	74.00	23.12	Pass	Н	Peak
5	7440.0000	36.54	5.85	-40.82	44.21	45.78	74.00	28.22	Pass	Н	Peak
6	9920.0000	37.77	6.79	-40.48	43.29	47.37	74.00	26.63	Pass	Н	Peak
7	1697.8698	29.71	3.20	-42.67	51.15	41.39	74.00	32.61	Pass	V	Peak
8	2339.7340	32.18	3.85	-42.47	51.51	45.07	74.00	28.93	Pass	V	Peak
9	3596.0897	33.48	4.35	-41.63	49.43	45.63	74.00	28.37	Pass	V	Peak
10	4960.0000	34.50	4.82	-40.53	51.97	50.76	74.00	23.24	Pass	V	Peak
11	7440.0000	36.54	5.85	-40.82	45.13	46.70	74.00	27.30	Pass	V	Peak
12	9920.0000	37.77	6.79	-40.48	44.74	48.82	74.00	25.18	Pass	V	Peak

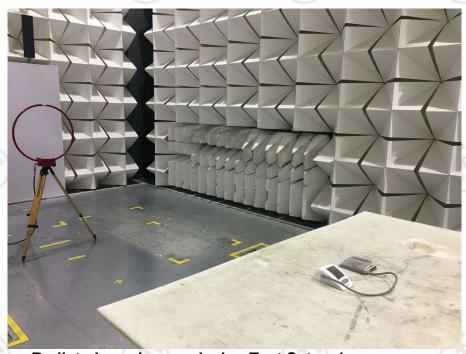

Note:

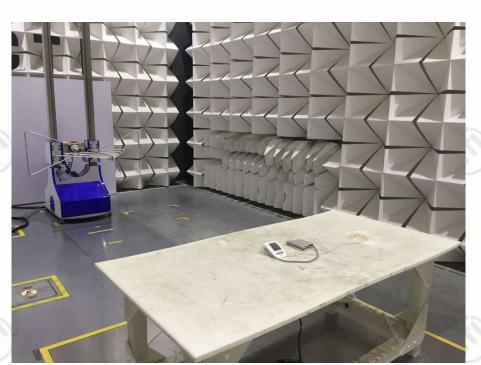
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



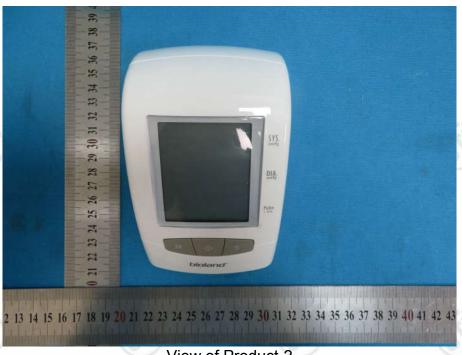


PHOTOGRAPHS OF TEST SETUP

Test model No.: 2006-2B

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-1(Below 1GHz)

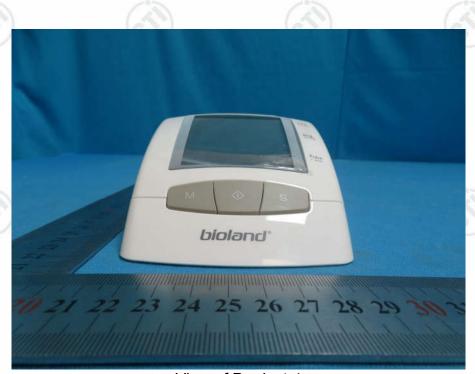

Report No.: EED32K00297601 Page 38 of 46

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: 2006-2B

View of Product-1

View of Product-2



View of Product-3

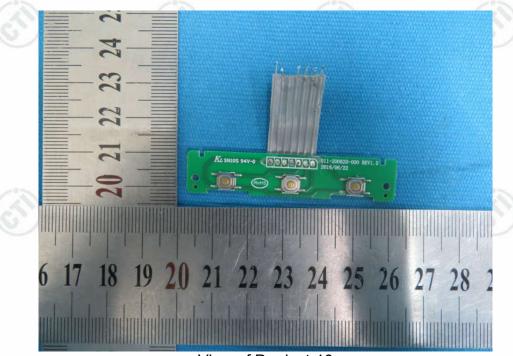
View of Product-4

View of Product-5

View of Product-6

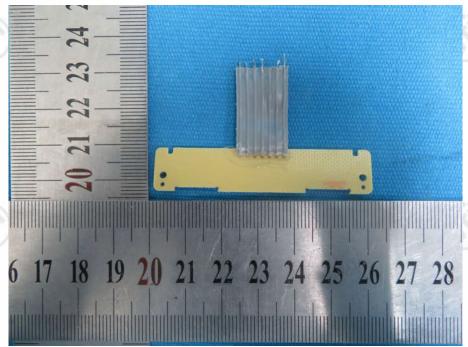
View of Product-7

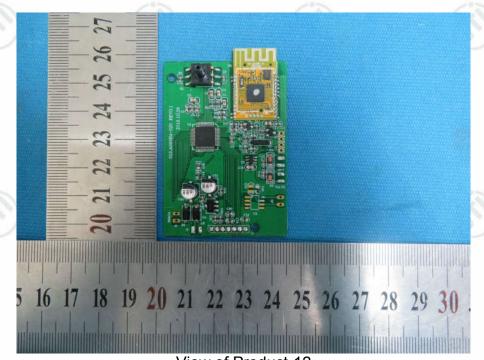
View of Product-8



View of Product-9

View of Product-10

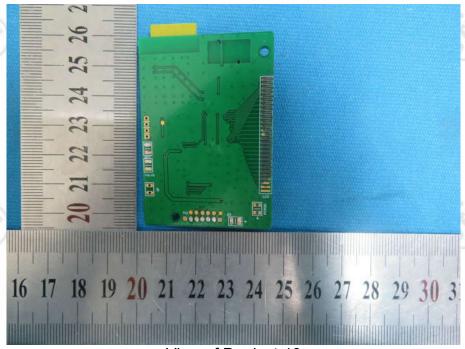


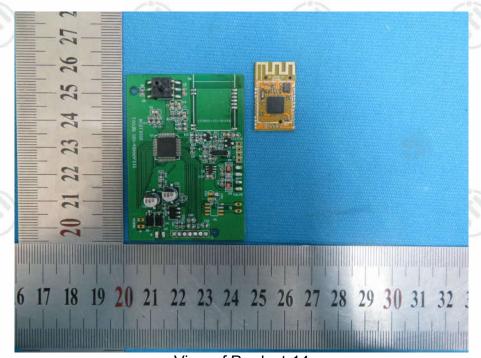


Report No. : EED32K00297601 Page 43 of 46

View of Product-11

View of Product-12

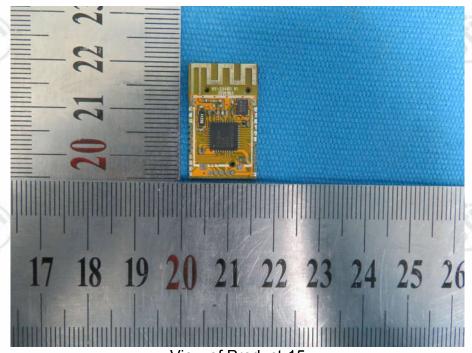


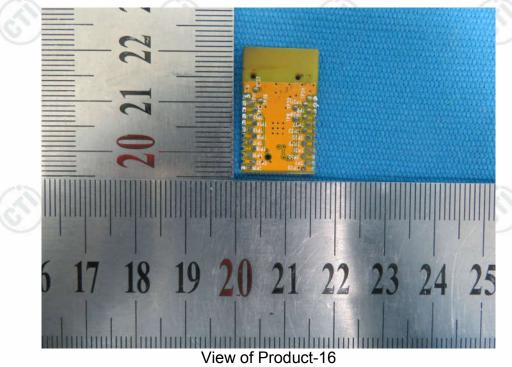


Report No.: EED32K00297601 Page 44 of 46

View of Product-13

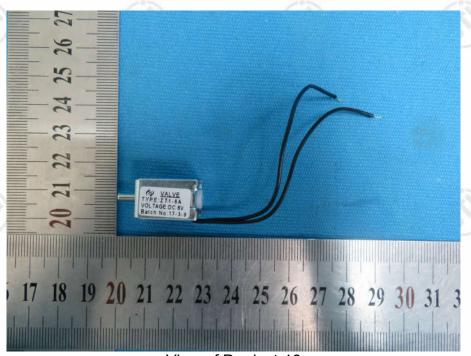
View of Product-14





Report No.: EED32K00297601 Page 45 of 46

View of Product-15



Report No. : EED32K00297601 Page 46 of 46

View of Product-17

View of Product-18
*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

