
# FCC RADIO TEST REPORT

**FCC ID** : 2AHL80025368507  
**Equipment** : Reverse parking sensors  
**Brand Name** : iBEAM  
**Model Name** : TE-2PSK  
**Applicant** : Metra Electronics  
460 Walker St Holly Hill, FL 32117  
**Manufacturer** : RoyalTek Company Ltd.  
5F, No.188, Wenhua 2nd Rd., Guishan, Taoyuan  
City 33383, Taiwan, R.O.C  
**Standard** : 47 CFR FCC Part 95M

The product was received on Jun. 22, 2020, and testing was started from Jun. 26, 2020 and completed on Jul. 06, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

  
Approved by: Cliff Chang

**SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory**  
No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)



## Table of Contents

|                                                         |           |
|---------------------------------------------------------|-----------|
| History of this test report.....                        | 3         |
| Summary of Test Result.....                             | 4         |
| <b>1 General Description .....</b>                      | <b>5</b>  |
| 1.1 Information.....                                    | 5         |
| 1.2 Applicable Standards .....                          | 6         |
| 1.3 Testing Location Information.....                   | 6         |
| 1.4 Measurement Uncertainty .....                       | 6         |
| <b>2 Test Configuration of EUT.....</b>                 | <b>7</b>  |
| 2.1 Test Channel Frequencies Configuration.....         | 7         |
| 2.2 Conformance Tests and Related Test Frequencies..... | 7         |
| 2.3 The Worst Case Measurement Configuration.....       | 8         |
| 2.4 EUT Operation during Test .....                     | 8         |
| 2.5 Accessories .....                                   | 9         |
| 2.6 Table for Assembly.....                             | 9         |
| 2.7 Support Equipment.....                              | 9         |
| 2.8 Far Field Boundary Calculations .....               | 10        |
| 2.9 Test Setup Diagram .....                            | 11        |
| <b>3 Transmitter Test Result .....</b>                  | <b>14</b> |
| 3.1 AC Power-line Conducted Emissions .....             | 14        |
| 3.2 Occupied Bandwidth .....                            | 17        |
| 3.3 Radiated E.I.R.P Power / E.I.R.P Power Density..... | 19        |
| 3.4 Transmitter Radiated Unwanted Emissions .....       | 21        |
| 3.5 Frequency Stability.....                            | 33        |
| <b>4 Test Equipment and Calibration Data .....</b>      | <b>35</b> |

### Appendix A. Test Photos

#### Photographs of EUT v01



## History of this test report



## Summary of Test Result

| Report Clause | Ref Std. Clause | Test Items                                     | Result (PASS/FAIL) | Remark |
|---------------|-----------------|------------------------------------------------|--------------------|--------|
| 3.1           | 15.107          | AC Power-line Conducted Emissions              | PASS               | -      |
| 3.2           | 95.303          | Occupied Bandwidth                             | PASS               | -      |
| 3.3           | 95.3367         | Radiated E.I.R.P Power / E.I.R.P Power Density | PASS               | -      |
| 3.4           | 95.3379         | Transmitter Radiated Unwanted Emissions        | PASS               | -      |
| 3.5           | 95.3379         | Frequency Stability                            | PASS               | -      |

Note: Reference to Sporton Project No.: 021730-01.

### Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

### Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen

Report Producer: Wendy Pan



## 1 General Description

### 1.1 Information

#### 1.1.1 RF General Information

| RF General Information |                                 |                      |            |
|------------------------|---------------------------------|----------------------|------------|
| Frequency Range (GHz)  | Operating Frequency Range (GHz) | Test Frequency (GHz) | Modulation |
| 76-81                  | 77 ~ 81                         | 79                   | FMCW       |

#### 1.1.2 Antenna Information

| Ant. | Brand    | Model Name | Antenna Type  | Connector | Gain (dBi) |
|------|----------|------------|---------------|-----------|------------|
| 1    | MEDIATEK | MT2706     | Array Antenna | N/A       | 11.6247    |

Note: The above information was declared by manufacturer.

#### 1.1.3 EUT Operational Condition

|                |                                     |    |                  |      |
|----------------|-------------------------------------|----|------------------|------|
| EUT Power Type | From DC power supply                |    |                  |      |
| Supply Voltage | <input type="checkbox"/>            | AC | State AC voltage | -    |
| Supply Voltage | <input checked="" type="checkbox"/> | DC | State DC voltage | 12 V |

#### 1.1.4 Test Signal Duty Cycle

| Test Signal Duty Cycle                                                |  |  |  |  |
|-----------------------------------------------------------------------|--|--|--|--|
| <input checked="" type="checkbox"/> Continuous transmission - 91%     |  |  |  |  |
| <input type="checkbox"/> Transmissions occur regularly in time - ...% |  |  |  |  |



## 1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ 47 CFR FCC Part 95M
- ♦ ANSI C63.10 - Testing Unlicensed Wireless Devices
- ♦ KDB653005 D01 76-81 GHz Radars v01r01

The following reference test guidance is not within the scope of accreditation of TAF.

- ♦ FCC KDB 414788 D01 v01r01

## 1.3 Testing Location Information

| Testing Location                    |        |                                                                                                                               |  |  |
|-------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| <input type="checkbox"/>            | HWA YA | ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)<br>TEL : 886-3-327-3456 FAX : 886-3-327-0973        |  |  |
| <input checked="" type="checkbox"/> | JHUBEI | ADD : No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.<br>TEL : 886-3-656-9065 FAX : 886-3-656-9085 |  |  |

| Test Condition | Test Site No. | Test Engineer | Test Environment      | Test Date                     |
|----------------|---------------|---------------|-----------------------|-------------------------------|
| RF Conducted   | TH03-CB       | Jay Luo       | 24.1-25.2°C / 43-46 % | Jun. 30, 2020 ~ Jul. 02, 2020 |
| Radiated<1GHz  | 03CH05-CB     | Stim Sung     | 24.8-25.9°C / 61-64%  | Jun. 26, 2020                 |
| Radiated>1GHz  | 03CH01-CB     | Eason Chen    | 24.5-25.3°C / 42-45%  | Jun. 30, 2020 ~ Jul. 01, 2020 |
| AC Conduction  | CO01-CB       | GN Hou        | 21~23°C / 61~63%      | Jul. 06, 2020                 |

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

## 1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| Test Items                           | Uncertainty | Remark                   |
|--------------------------------------|-------------|--------------------------|
| Conducted Emission (150kHz ~ 30MHz)  | 2.0 dB      | Confidence levels of 95% |
| Radiated Emission (30MHz ~ 1,000MHz) | 4.3 dB      | Confidence levels of 95% |
| Radiated Emission (1GHz ~ 18GHz)     | 4.9 dB      | Confidence levels of 95% |
| Radiated Emission (18GHz ~ 40GHz)    | 4.6 dB      | Confidence levels of 95% |
| Radiated Emission (40GHz ~ 60GHz)    | 3.9 dB      | Confidence levels of 95% |
| Radiated Emission (60GHz ~ 90GHz)    | 4.5 dB      | Confidence levels of 95% |
| Radiated Emission (90GHz ~ 200GHz)   | 5.3 dB      | Confidence levels of 95% |
| Radiated Emission (200GHz ~ 280GHz)  | 5.6 dB      | Confidence levels of 95% |
| Temperature                          | 0.9°C       | Confidence levels of 95% |



## 2 Test Configuration of EUT

### 2.1 Test Channel Frequencies Configuration

| Test Channel Frequencies Configuration |
|----------------------------------------|
| Test Channel Frequencies (GHz)         |
| 79                                     |

### 2.2 Conformance Tests and Related Test Frequencies

| Test Item                                      | Test Frequencies (GHz) |
|------------------------------------------------|------------------------|
| AC Power-line Conducted Emissions              | 79                     |
| Occupied Bandwidth                             | 79                     |
| Radiated E.I.R.P Power / E.I.R.P Power Density | 79                     |
| Transmitter Spurious Emissions (below 1 GHz)   | 79                     |
| Transmitter Spurious Emissions (1 GHz-40 GHz)  | 79                     |
| Transmitter Spurious Emissions (above 40 GHz)  | 79                     |
| Frequency Stability                            | 79                     |



## 2.3 The Worst Case Measurement Configuration

| The Worst Case Mode for Following Conformance Tests |                                                          |
|-----------------------------------------------------|----------------------------------------------------------|
| <b>Tests Item</b>                                   | AC power-line conducted emissions                        |
| <b>Condition</b>                                    | AC power-line conducted measurement for line and neutral |
| <b>Operating Mode</b>                               | Normal Link                                              |
| 1                                                   | EUT with Test Assembly 1                                 |

| The Worst Case Mode for Following Conformance Tests |                                                                                             |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Tests Item</b>                                   | Occupied Bandwidth<br>Radiated E.I.R.P Power / E.I.R.P Power Density<br>Frequency Stability |
| <b>Test Condition</b>                               | Radiated measurement                                                                        |
| <b>Operating Mode</b>                               | CTX                                                                                         |

| The Worst Case Mode for Following Conformance Tests                           |                                         |
|-------------------------------------------------------------------------------|-----------------------------------------|
| <b>Tests Item</b>                                                             | Transmitter Radiated Unwanted Emissions |
| <b>Test Condition</b>                                                         | Radiated measurement                    |
| <b>Operating Mode &lt; 1GHz</b>                                               | Normal Link                             |
| 1                                                                             | EUT with Test Assembly 1                |
| 2                                                                             | EUT with Test Assembly 2                |
| For operating mode 1 is the worst case and it was record in this test report. |                                         |
| <b>Operating Mode &gt; 1GHz</b>                                               | CTX                                     |
| 1                                                                             | EUT                                     |

## 2.4 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.



## 2.5 Accessories

Main cable for car front radar\*1 (Master: Non-shielded, 2.3m / Slave: Non-shielded, 3.7m)

Main cable for car rear radar\*1 (Master: Non-shielded, 2.3m / Slave: Non-shielded, 3.7m)

BGC button (Calibration) cable\*1: Non-shielded, 2.1m

Function on/off button cable\*1: Non-shielded, 1.4m

Buzzer\*1: Non-shielded, 1.2m

## 2.6 Table for Assembly

| Set | Main Cable      | BGC button<br>(Calibration) cable | Function on/off<br>button cable | Buzzer |
|-----|-----------------|-----------------------------------|---------------------------------|--------|
| 1   | car front radar | V                                 | V                               | V      |
| 2   | car rear radar  | V                                 | -                               | V      |

## 2.7 Support Equipment

| Support Equipment |              |            |            |        |
|-------------------|--------------|------------|------------|--------|
| No.               | Equipment    | Brand Name | Model Name | FCC ID |
| A                 | Power Supply | Advanced   | LPS-305    | N/A    |



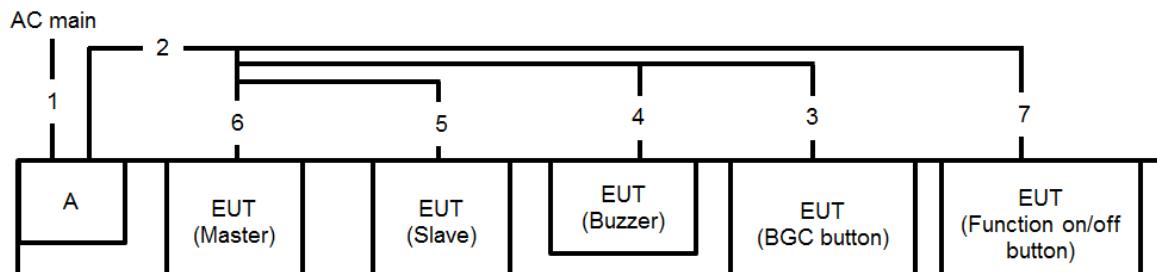
## 2.8 Far Field Boundary Calculations

The far-field boundary is given as:

$$\text{far field} = (2 * L^2) / \lambda$$

where:

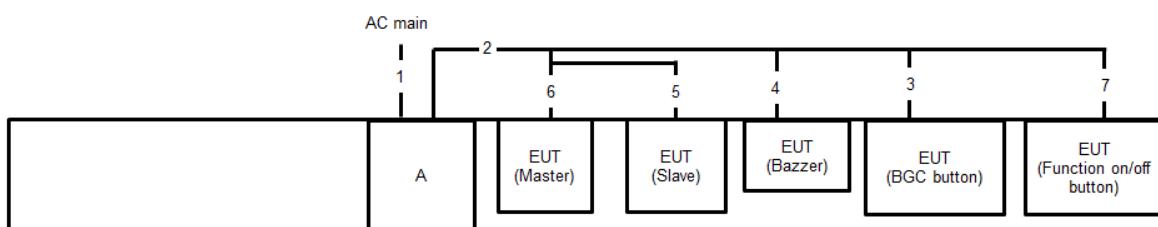
L = Largest Antenna Dimension, including the reflector, in meters


$\lambda$ = wavelength in meters

| Far Field (m)   |       |            |                  |                   |
|-----------------|-------|------------|------------------|-------------------|
| Frequency (GHz) | L (m) | Lambda (m) | d(Far Field) (m) | d(Far Field) (cm) |
| 79              | 0.02  | 0.0037975  | 0.211            | 21.07             |



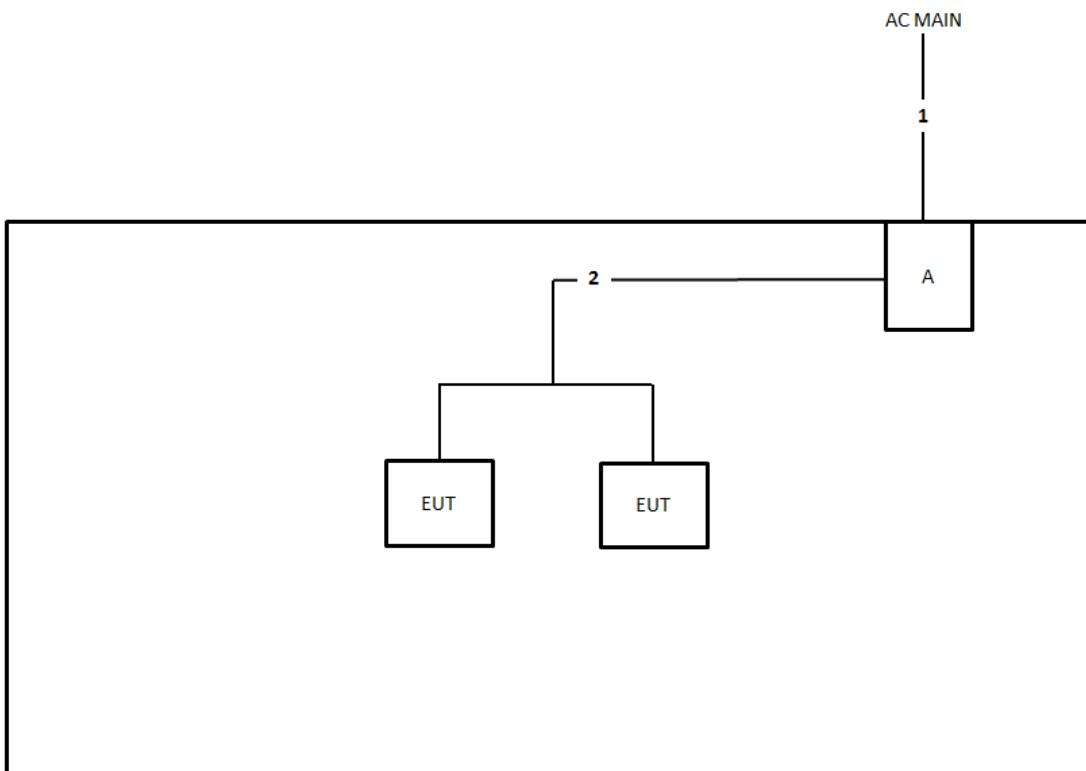
## 2.9 Test Setup Diagram


Test Setup Diagram – AC Line Conducted Emission Test



| Item | Connection     | Shielded | Length |
|------|----------------|----------|--------|
| 1    | Power cable    | No       | 1.8m   |
| 2    | DC Power cable | No       | 1m     |
| 3    | cable          | No       | 2.1m   |
| 4    | cable          | No       | 1.2m   |
| 5    | Main cable     | No       | 3.7m   |
| 6    | Main cable     | No       | 2.3m   |
| 7    | cable          | No       | 1.4m   |




## Test Setup Diagram - Radiated Test &lt; 1GHz



| Item | Connection     | Shielded | Length |
|------|----------------|----------|--------|
| 1    | Power cable    | No       | 1.8m   |
| 2    | DC Power cable | No       | 1m     |
| 3    | cable          | No       | 2.1m   |
| 4    | cable          | No       | 1.2m   |
| 5    | Main cable     | No       | 3.7m   |
| 6    | Main cable     | No       | 2.3m   |
| 7    | cable          | No       | 1.4m   |



## Test Setup Diagram - Radiated Test &gt; 1GHz



| Item | Connection  | Shielded | Length |
|------|-------------|----------|--------|
| 1    | Power cable | No       | 1.8m   |
| 2    | Power cable | No       | 5.7m   |

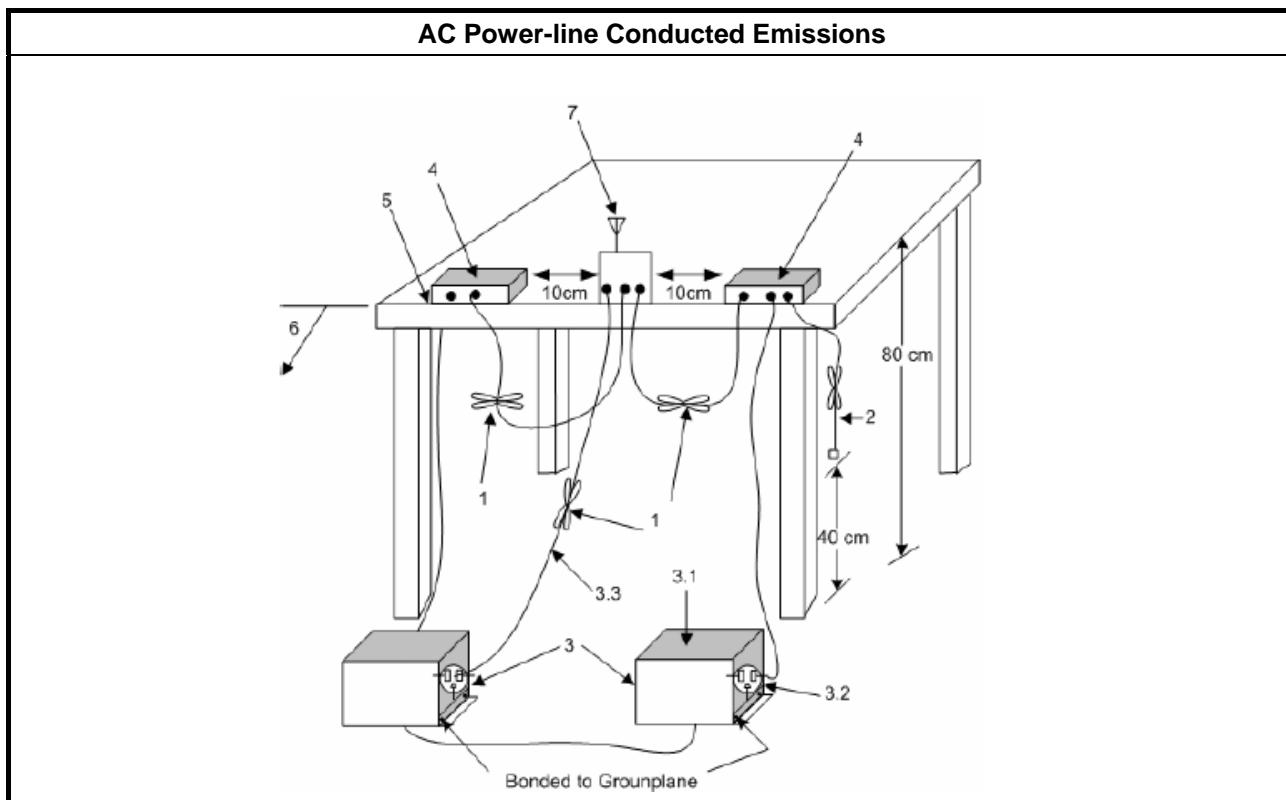
### 3 Transmitter Test Result

#### 3.1 AC Power-line Conducted Emissions

##### 3.1.1 Limit of AC Power-line Conducted Emissions

| AC Power-line Conducted Emissions Limit |            |           |
|-----------------------------------------|------------|-----------|
| Frequency Emission (MHz)                | Quasi-Peak | Average   |
| 0.15-0.5                                | 66 - 56 *  | 56 - 46 * |
| 0.5-5                                   | 56         | 46        |
| 5-30                                    | 60         | 50        |

Note: \* Decreases with the logarithm of the frequency.


##### 3.1.2 Measuring Instruments

Refer a measuring instruments list in this test report.

##### 3.1.3 Test Procedures

Method of measurement: Refer as ANSI C63.10, clause 6.2.

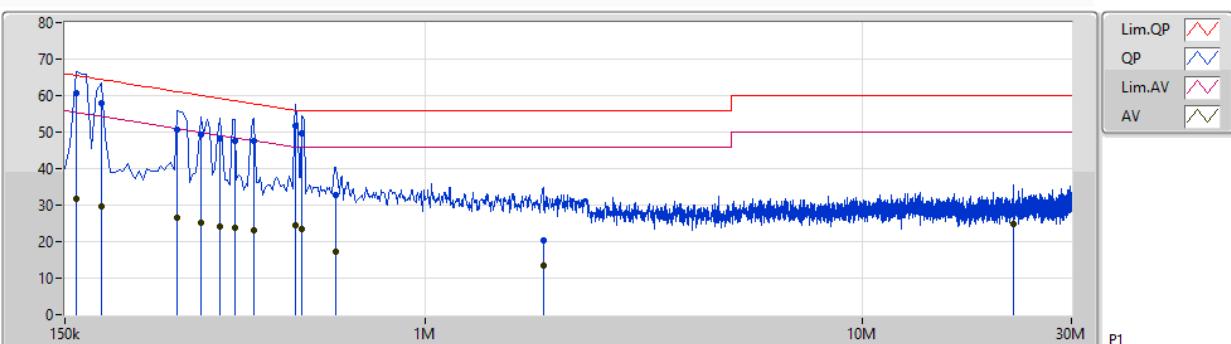
##### 3.1.4 Test Setup



##### 3.1.5 Measurement Results Calculation

The measured Level is calculated using:

- Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level
- Margin = - Limit + (Read Level + LISN Factor + Cable Loss)



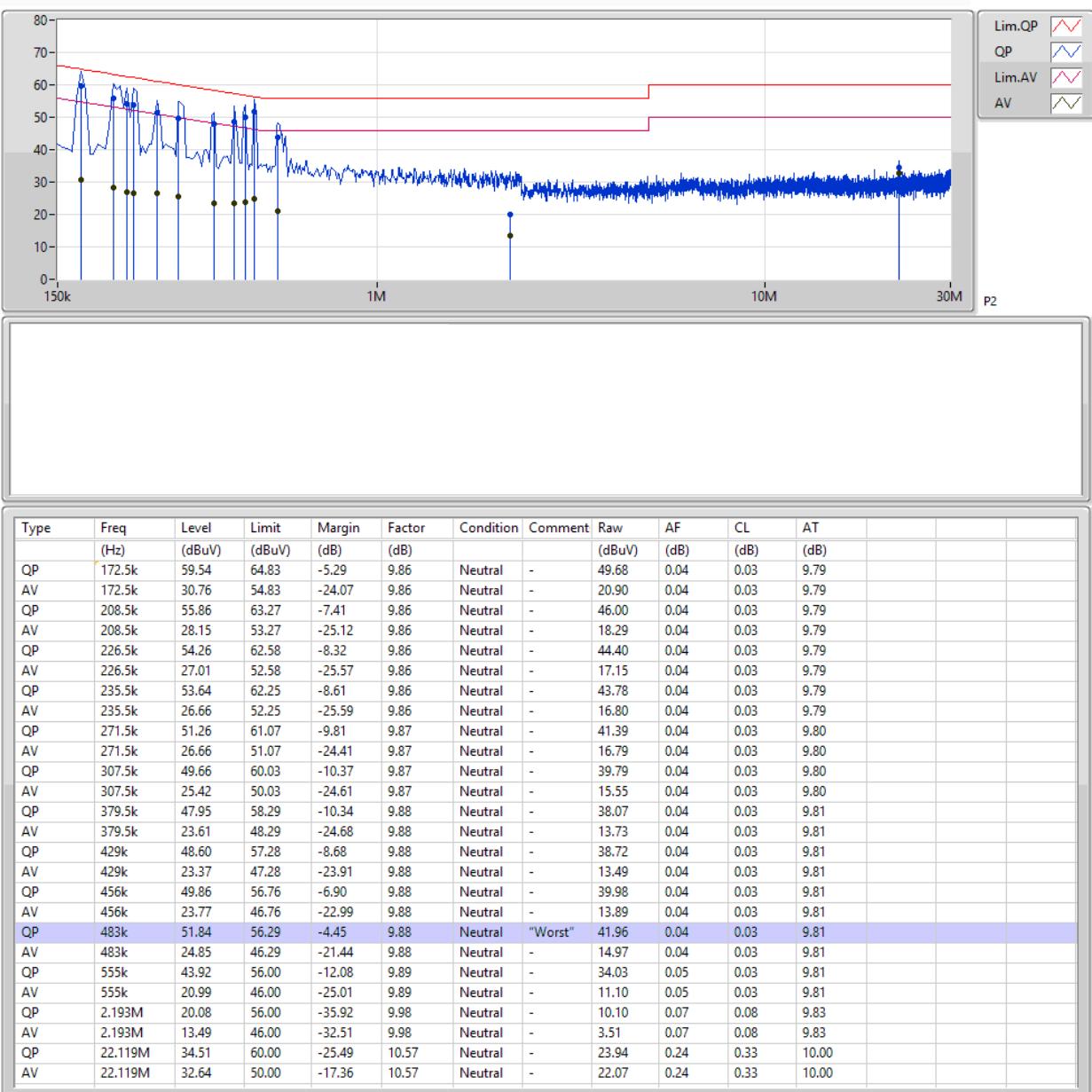

### 3.1.6 Test Result of AC Power-line Conducted Emissions

Phase: Line

#### Mode 1

06/07/2020




| Type | Freq (Hz) | Level (dBuV) | Limit (dBuV) | Margin (dB) | Factor | Condition | Comment | Raw (dBuV) | AF (dB) | CL (dB) | AT (dB) |  |  |  |  |
|------|-----------|--------------|--------------|-------------|--------|-----------|---------|------------|---------|---------|---------|--|--|--|--|
| QP   | 159k      | 60.59        | 65.52        | -4.93       | 9.87   | Line      | -       | 50.72      | 0.05    | 0.03    | 9.79    |  |  |  |  |
| AV   | 159k      | 31.60        | 55.52        | -23.92      | 9.87   | Line      | -       | 21.73      | 0.05    | 0.03    | 9.79    |  |  |  |  |
| QP   | 181.5k    | 58.02        | 64.41        | -6.39       | 9.86   | Line      | -       | 48.16      | 0.04    | 0.03    | 9.79    |  |  |  |  |
| AV   | 181.5k    | 29.68        | 54.41        | -24.73      | 9.86   | Line      | -       | 19.82      | 0.04    | 0.03    | 9.79    |  |  |  |  |
| QP   | 271.5k    | 50.86        | 61.07        | -10.21      | 9.87   | Line      | -       | 40.99      | 0.04    | 0.03    | 9.80    |  |  |  |  |
| AV   | 271.5k    | 26.51        | 51.07        | -24.56      | 9.87   | Line      | -       | 16.64      | 0.04    | 0.03    | 9.80    |  |  |  |  |
| QP   | 307.5k    | 49.15        | 60.03        | -10.88      | 9.87   | Line      | -       | 39.28      | 0.04    | 0.03    | 9.80    |  |  |  |  |
| AV   | 307.5k    | 25.26        | 50.03        | -24.77      | 9.87   | Line      | -       | 15.39      | 0.04    | 0.03    | 9.80    |  |  |  |  |
| QP   | 339k      | 48.13        | 59.23        | -11.10      | 9.88   | Line      | -       | 38.25      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| AV   | 339k      | 24.31        | 49.23        | -24.92      | 9.88   | Line      | -       | 14.43      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| QP   | 366k      | 47.67        | 58.60        | -10.93      | 9.88   | Line      | -       | 37.79      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| AV   | 366k      | 23.72        | 48.60        | -24.88      | 9.88   | Line      | -       | 13.84      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| QP   | 406.5k    | 47.54        | 57.72        | -10.18      | 9.88   | Line      | -       | 37.66      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| AV   | 406.5k    | 23.21        | 47.72        | -24.51      | 9.88   | Line      | -       | 13.33      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| QP   | 505.5k    | 51.68        | 56.00        | -4.32       | 9.88   | Line      | "Worst" | 41.80      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| AV   | 505.5k    | 24.59        | 46.00        | -21.41      | 9.88   | Line      | -       | 14.71      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| QP   | 523.5k    | 49.80        | 56.00        | -6.20       | 9.88   | Line      | -       | 39.92      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| AV   | 523.5k    | 23.53        | 46.00        | -22.47      | 9.88   | Line      | -       | 13.65      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| QP   | 622.5k    | 32.60        | 56.00        | -23.40      | 9.88   | Line      | -       | 22.72      | 0.04    | 0.03    | 9.81    |  |  |  |  |
| AV   | 622.5k    | 17.33        | 46.00        | -28.67      | 9.88   | Line      | -       | 7.45       | 0.04    | 0.03    | 9.81    |  |  |  |  |
| QP   | 1.86M     | 20.27        | 56.00        | -35.73      | 9.96   | Line      | -       | 10.31      | 0.06    | 0.07    | 9.83    |  |  |  |  |
| AV   | 1.86M     | 13.41        | 46.00        | -32.59      | 9.96   | Line      | -       | 3.45       | 0.06    | 0.07    | 9.83    |  |  |  |  |
| QP   | 22.124M   | 27.52        | 60.00        | -32.48      | 10.58  | Line      | -       | 16.94      | 0.25    | 0.33    | 10.00   |  |  |  |  |
| AV   | 22.124M   | 24.75        | 50.00        | -25.25      | 10.58  | Line      | -       | 14.17      | 0.25    | 0.33    | 10.00   |  |  |  |  |



## Phase: Neutral

## Mode 1

06/07/2020

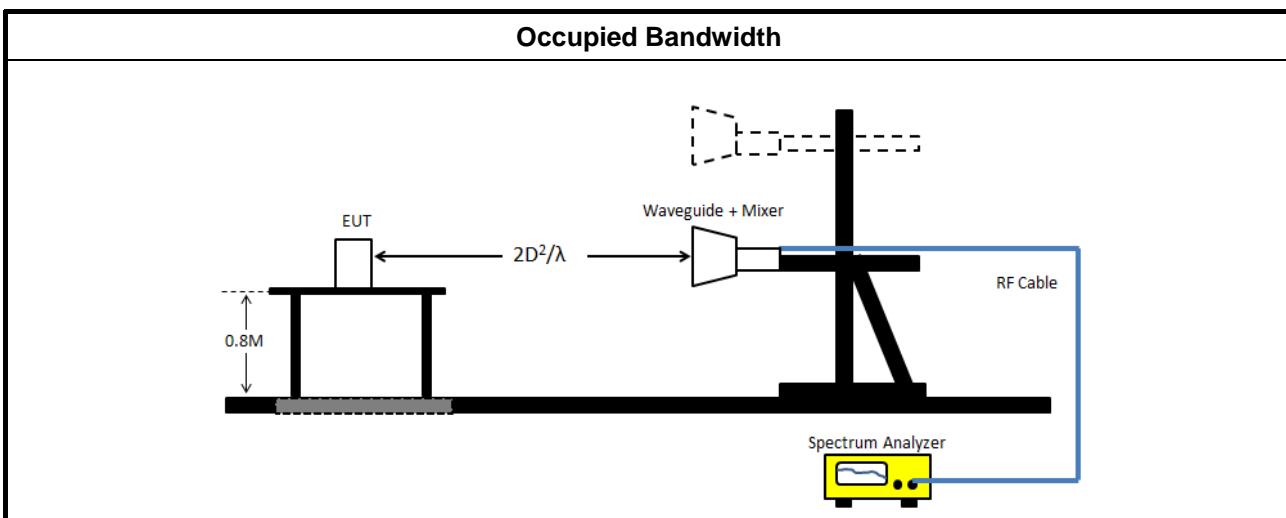




## 3.2 Occupied Bandwidth

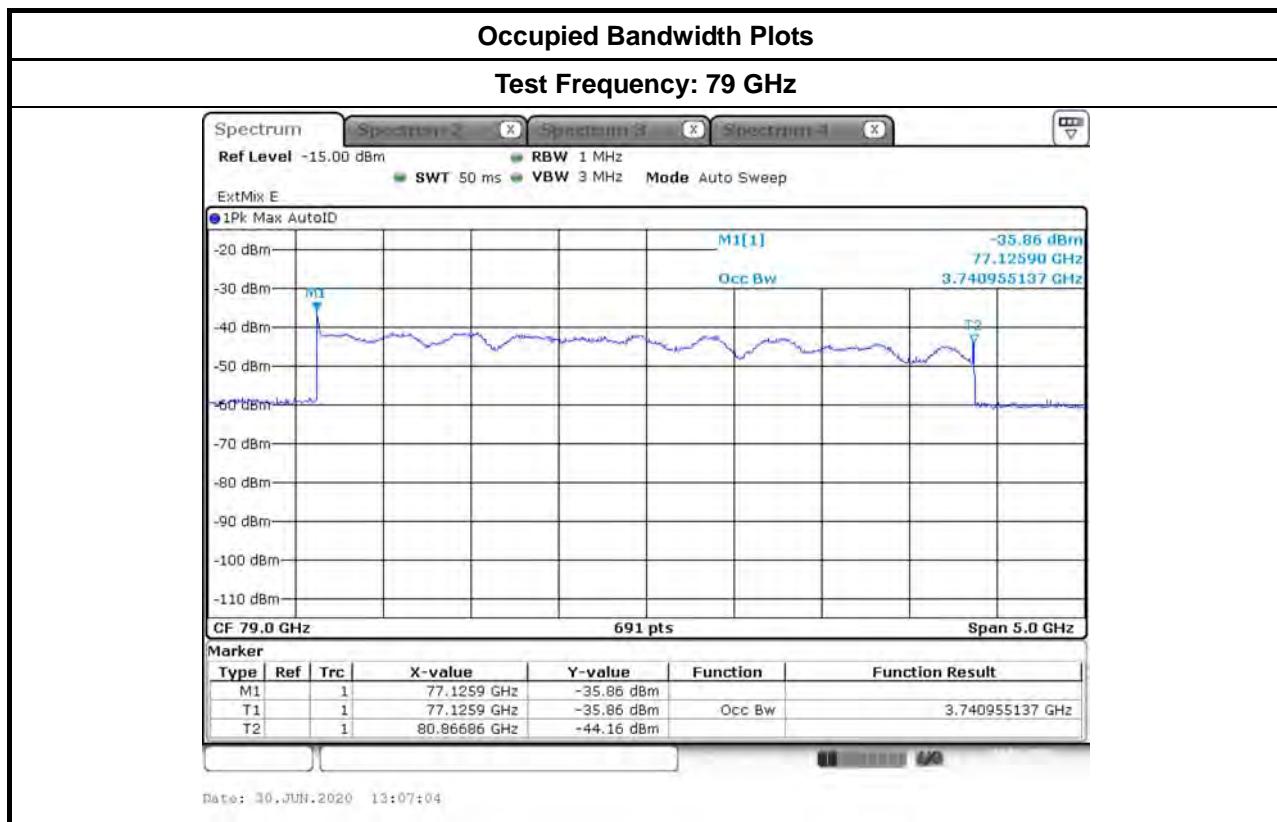
### 3.2.1 Occupied Bandwidth (OBW) Limit

| Occupied Bandwidth (EBW) Limit |
|--------------------------------|
| Information only               |


### 3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

### 3.2.3 Test Procedures


| Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> For the Occupied bandwidth shall be measured using one of the options below:                                                                                                                                                                                                                                                                                                                                                                                             |
| <input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 7.8.7 for EBW measurement.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <input type="checkbox"/> Refer as ANSI C63.10, clause 6.9.2 for occupied bandwidth testing.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 9 for radiated measurement.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <input checked="" type="checkbox"/> Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from $[r \geq 2D^2/\lambda]$<br>$r$ is the distance from the radiating element of the EUT to the edge of the far field, in m<br>$D$ is the largest dimension of both the radiating element and the test antenna (horn), in m<br>$\lambda$ is the wavelength of the emission under investigation [300/f (MHz)], in m |

### 3.2.4 Test Setup



### 3.2.5 Test Result of Occupied Bandwidth

| Test Results     |                              |             |
|------------------|------------------------------|-------------|
| Test Freq. (GHz) | 99% Occupied Bandwidth (MHz) | Limit (MHz) |
| 79               | 3740.955                     | N/A         |



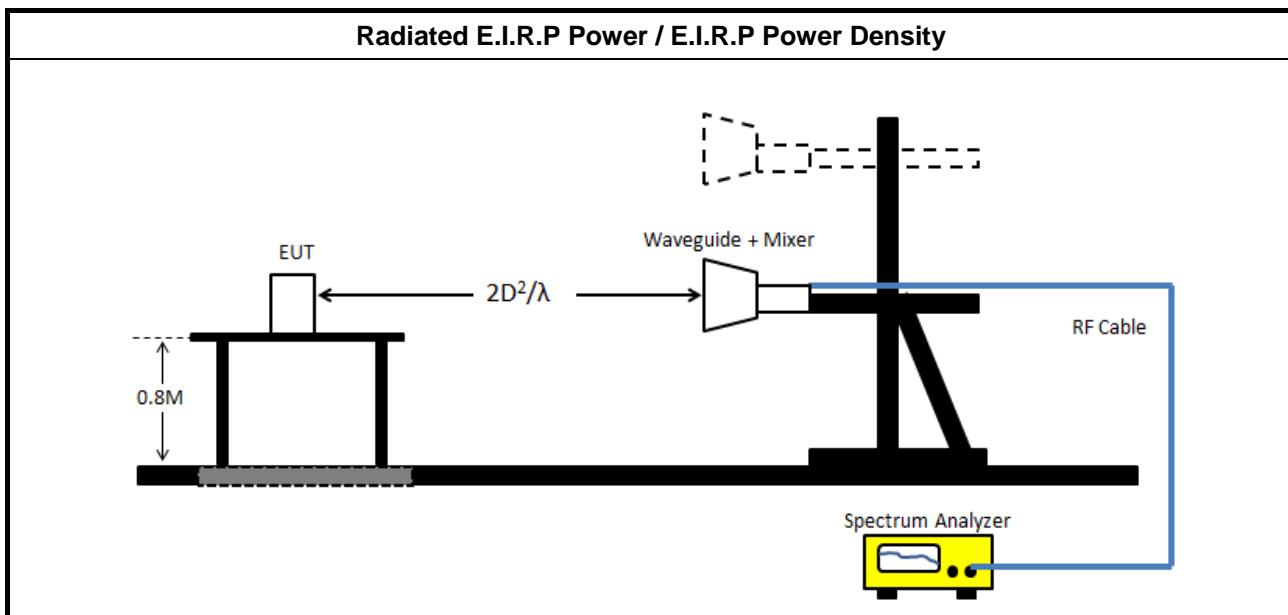


### 3.3 Radiated E.I.R.P Power / E.I.R.P Power Density

#### 3.3.1 Radiated E.I.R.P Power / E.I.R.P Power Density Limit

| Radiated E.I.R.P Power / E.I.R.P Power Density      |                                                                                                                                          |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> 76-81 GHz Band: |                                                                                                                                          |
|                                                     | <input checked="" type="checkbox"/> Peak: EIRP 55 dBm [279uW/cm <sup>2</sup> at 3m]<br>Average: EIRP 50 dBm [88uW/cm <sup>2</sup> at 3m] |

#### 3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

#### 3.3.3 Test Procedures

| Test Method                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> For the Occupied bandwidth shall be measured using one of the options below: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 9 for radiated measurement.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                  | <input checked="" type="checkbox"/> Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from $[r \geq 2D^2/\lambda]$<br>$r$ is the distance from the radiating element of the EUT to the edge of the far field, in m<br>$D$ is the largest dimension of both the radiating element and the test antenna (horn), in m<br>$\lambda$ is the wavelength of the emission under investigation [300/f (MHz)], in m                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                  | <input checked="" type="checkbox"/> The measured power level is converted to EIRP using the Friis equation:<br>$E_{\text{Meas}} = 126.8 - 20\log(\lambda) + P - G$ where<br>$E$ is the field strength of the emission at the measurement distance, in $\text{dB}\mu\text{V}/\text{m}$<br>$P$ is the power measured at the output of the test antenna, in $\text{dBm}$<br>$\lambda$ is the wavelength of the emission under investigation [300/fMHz], in m<br>$G$ is the gain of the test antenna, in $\text{dBi}$<br><br>$\text{EIRP} = E_{\text{Meas}} + 20 \log(d_{\text{Meas}}) - 104.7$ where<br>$E_{\text{IRP}}$ is the equivalent isotropically radiated power, in $\text{dBm}$ .<br>$E_{\text{Meas}}$ is the field strength of the emission at the measurement distance, in $\text{dB}\mu\text{V}/\text{m}$ .<br>$d_{\text{Meas}}$ is the measurement distance, in m. |



### 3.3.4 Test Setup



### 3.3.5 Measurement Results Calculation

The measured Level is calculated using:

$$\text{EIRP} = \text{Read Level} - \text{Rx Gain} + 20 * \text{LOG}(4 * 3.14159 * \text{Distance} / (300 / (\text{Test Freq.} * 1000)))$$

$$\text{Power Density} = ((10^{(\text{EIRP}/10)/1000}) / (4 * 3.14159 * (\text{Specification Distance} * 100)^2)) * 1000000000000000$$

### 3.3.6 Test Result of Radiated E.I.R.P Power / E.I.R.P Power Density

| Freq.<br>(GHz) | Rx Gain<br>(dBi) | P-Peak<br>(dBm) | P-Average<br>(dBm) | E-Meas-<br>Peak<br>(dBuV/m) | E-Meas-<br>Average<br>(dBuV/m) | Distance<br>(m) | EIRP-<br>Peak<br>(dBm) | EIRP-<br>Average<br>(dBm) |
|----------------|------------------|-----------------|--------------------|-----------------------------|--------------------------------|-----------------|------------------------|---------------------------|
| 79             | 23.0             | -8.70           | -26.64             | 143.51                      | 125.57                         | 0.50            | 32.69                  | 25.15                     |
| EIRP Limit     |                  |                 |                    |                             |                                |                 | 55                     | 50                        |



### 3.4 Transmitter Radiated Unwanted Emissions

#### 3.4.1 Transmitter Radiated Unwanted Emissions Limit

| Transmitter Radiated Unwanted Emissions Limit (Below 40 GHz) |                       |                         |                      |
|--------------------------------------------------------------|-----------------------|-------------------------|----------------------|
| Frequency Range (MHz)                                        | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) |
| 0.009~0.490                                                  | 2400/F(kHz)           | 48.5 - 13.8             | 300                  |
| 0.490~1.705                                                  | 24000/F(kHz)          | 33.8 - 23               | 30                   |
| 1.705~30.0                                                   | 30                    | 29                      | 30                   |
| 30~88                                                        | 100                   | 40                      | 3                    |
| 88~216                                                       | 150                   | 43.5                    | 3                    |
| 216~960                                                      | 200                   | 46                      | 3                    |
| Above 960 - 40000                                            | 500                   | 54                      | 3                    |

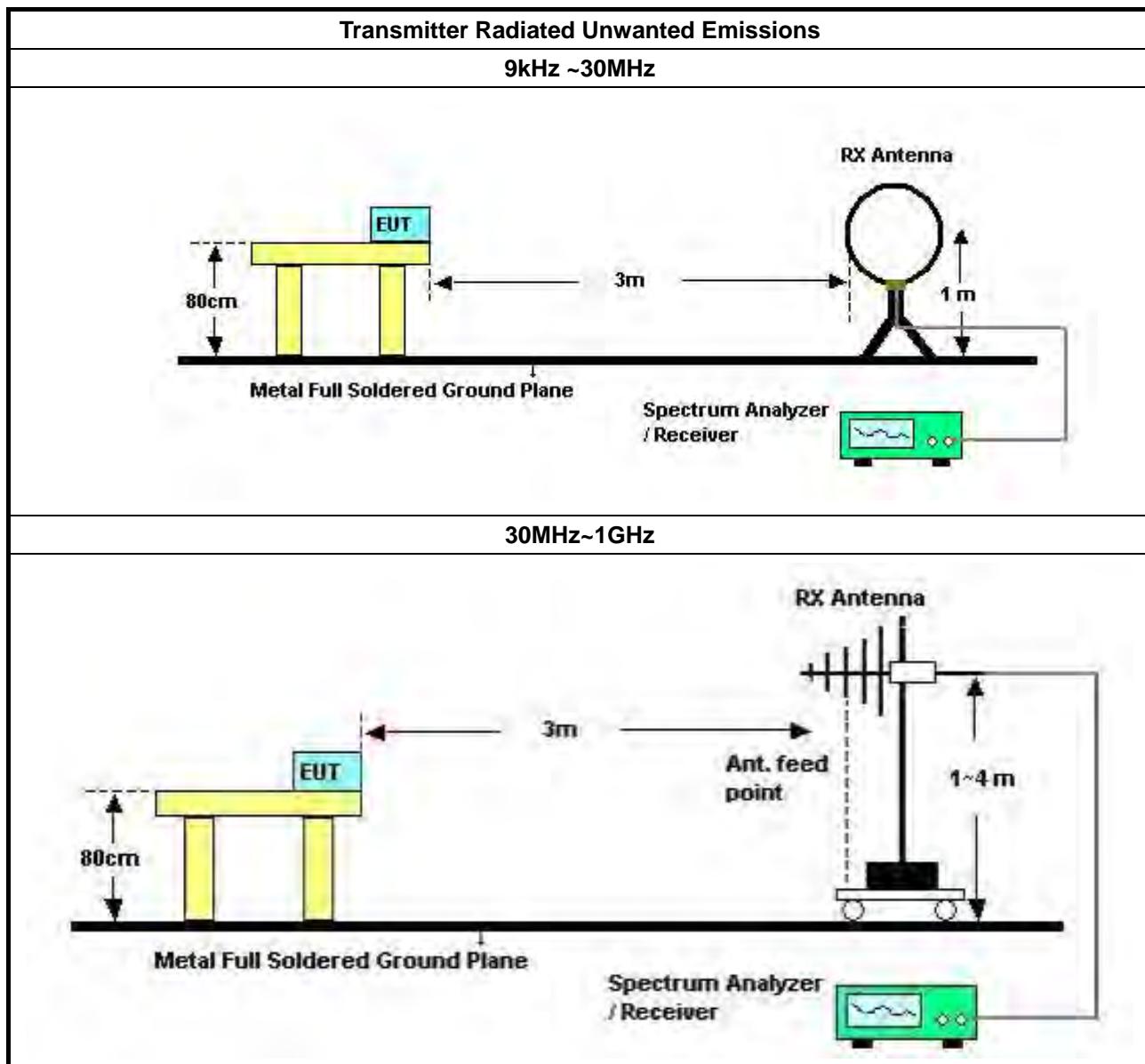
| Frequency Range (GHz) | EIRP (dBm) | Power Density (pW/cm <sup>2</sup> @ 3m) |
|-----------------------|------------|-----------------------------------------|
| 40 - 200              | -1.7       | 600                                     |
| 200 - 231             | 0.5        | 1000                                    |

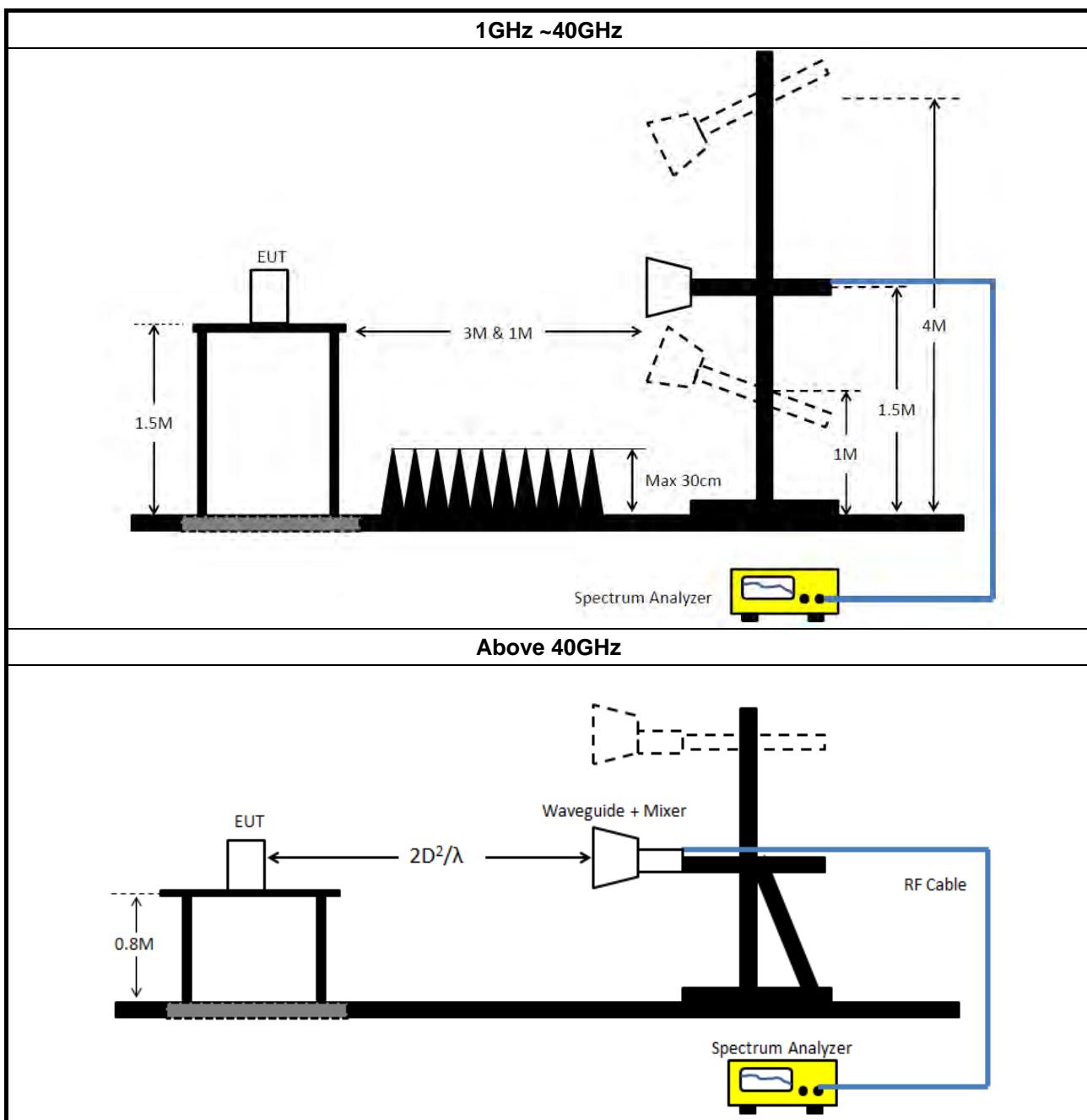
#### 3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

#### 3.4.3 Test Procedures

| Test Method – General Information                                                                                           |                                     |                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> For the transmitter unwanted emissions shall be measured using following options below: |                                     |                                                                                                                                                                                            |
|                                                                                                                             | <input checked="" type="checkbox"/> | Refer as ANSI C63.10, clause 6.3 for unwanted emissions into non-restricted bands.                                                                                                         |
|                                                                                                                             | <input checked="" type="checkbox"/> | For unwanted emissions below 40GHz bands.                                                                                                                                                  |
|                                                                                                                             | <input checked="" type="checkbox"/> | Radiated emissions below 40 GHz shall not exceed the general limits in LP0002 Section 2.8                                                                                                  |
|                                                                                                                             | <input checked="" type="checkbox"/> | Refer as ANSI C63.10, clause 4.1.4.2.3 (Video Averaging) average measurements using spectrum reduced video bandwidth (VBW $\geq$ 10Hz) - [duty cycle $\geq$ 98 or external power trigger]. |
|                                                                                                                             | <input type="checkbox"/>            | Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.                                                                                                                  |
|                                                                                                                             | <input type="checkbox"/>            | Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.                                                                                                                   |


| Test Method |                                     |                                                                                                   |
|-------------|-------------------------------------|---------------------------------------------------------------------------------------------------|
|             | <input checked="" type="checkbox"/> | For radiated measurement below 40GHz.                                                             |
|             | <input checked="" type="checkbox"/> | Refer as ANSI C63.10, clause 6.3 through 6.6 for radiated emissions from below 40 GHz.            |
|             | <input checked="" type="checkbox"/> | For radiated measurement above 40GHz. Refer as ANSI C63.10, clause 9.12 for radiated measurement. |




| Test Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <p><input checked="" type="checkbox"/> Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from <math>[r \geq 2D^2/\lambda]</math><br/>r is the distance from the radiating element of the EUT to the edge of the far field, in m<br/>D is the largest dimension of both the radiating element and the test antenna (horn), in m<br/><math>\lambda</math> is the wavelength of the emission under investigation [300/f (MHz)], in m</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | <p><input checked="" type="checkbox"/> The measured power level is converted to EIRP using the Friis equation:<br/><math>E_{Meas} = 126.8 - 20\log(\lambda) + P - G</math><br/>where<br/>E is the field strength of the emission at the measurement distance, in dB<math>\mu</math>V/m<br/>P is the power measured at the output of the test antenna, in dBm<br/><math>\lambda</math> is the wavelength of the emission under investigation [300/fMHz], in m<br/>G is the gain of the test antenna, in dBi</p> <p><math>EIRP = E_{Meas} + 20 \log(d_{Meas}) - 104.7</math></p> <p>where<br/>EIRP : is the equivalent isotropically radiated power, in dBm.<br/>E Meas : is the field strength of the emission at the measurement distance, in dB<math>\mu</math>V/m.<br/>d Meas : is the measurement distance, in m.</p> <p>Equations to calculate power density<br/>Calculate the power density at the distance specified by the limit from the EIRP in watts using Equation:</p> $PD = \frac{EIRP_{Linear}}{4\pi d^2}$ <p>where<br/>PD is the power density at the distance specified by the limit, in W/m<sup>2</sup><br/>EIRPLinear is the equivalent isotropically radiated power, in watts<br/>d is the distance at which the power density limit is specified, in m.</p> |



### 3.4.4 Test Setup





### 3.4.5 Measurement Results Calculation

The measured Level is calculated using:

For below 40GHz

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor (if applicable) = Level.

For above 40GHz

EIRP = Read Level - Rx Gain +20\*LOG(4\*3.14159\* Distance / (300/(Test Freq.\*1000))).

Power Density = ((10^(EIRP/10)/1000)/(4\*3.14159\*(Specification Distance \*100)^2)\*1000000000000.



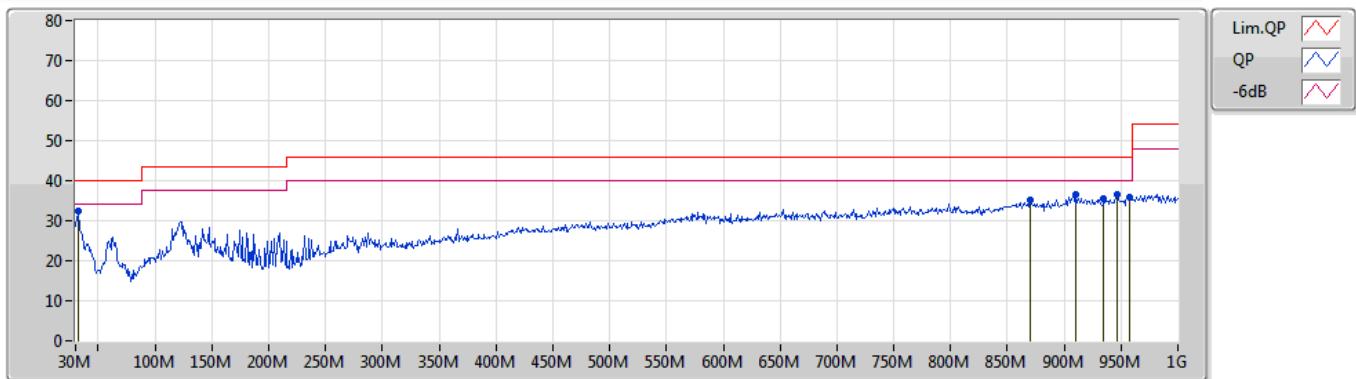
### **3.4.6 Test Result of Transmitter Radiated Unwanted Emissions (Below 30MHz)**

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.




### 3.4.7 Test Result of Transmitter Radiated Unwanted Emissions (30MHz ~ 1GHz)

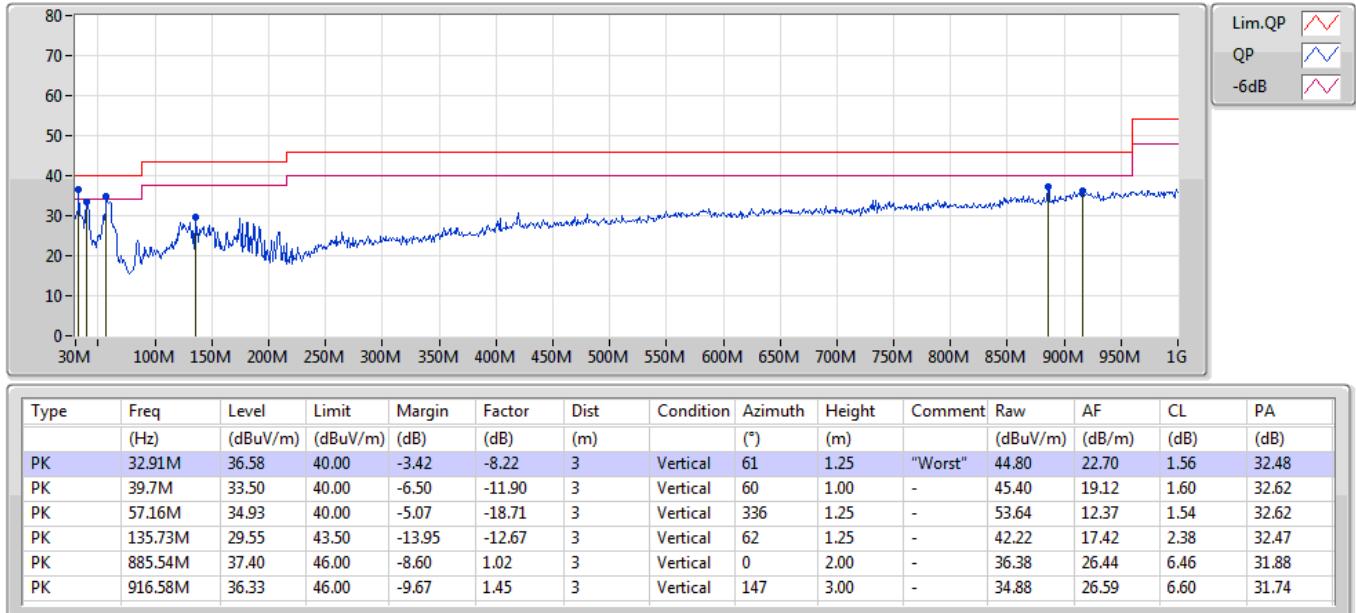
|               |                   |                  |    |
|---------------|-------------------|------------------|----|
| Test Range    | 30 MHz – 1000 MHz | Test Freq. (GHz) | 79 |
| Test Distance | 3 m               |                  |    |

Horizontal

#### Mode 1

26/06/2020




| Type | Freq (Hz) | Level (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Factor (dB) | Dist (m) | Condition  | Azimuth (°) | Height (m) | Comment | Raw (dBuV/m) | AF (dB/m) | CL (dB) | PA (dB) |
|------|-----------|----------------|----------------|-------------|-------------|----------|------------|-------------|------------|---------|--------------|-----------|---------|---------|
| PK   | 32.91M    | 32.33          | 40.00          | -7.67       | -8.22       | 3        | Horizontal | 5           | 1.25       | "Worst" | 40.55        | 22.70     | 1.56    | 32.48   |
| PK   | 870.02M   | 35.33          | 46.00          | -10.67      | 0.75        | 3        | Horizontal | 280         | 1.00       | -       | 34.58        | 26.34     | 6.30    | 31.89   |
| PK   | 910.76M   | 36.68          | 46.00          | -9.32       | 1.51        | 3        | Horizontal | 343         | 1.25       | -       | 35.17        | 26.69     | 6.60    | 31.78   |
| PK   | 935.01M   | 35.57          | 46.00          | -10.43      | 1.61        | 3        | Horizontal | 207         | 2.00       | -       | 33.96        | 26.59     | 6.60    | 31.58   |
| PK   | 946.65M   | 36.49          | 46.00          | -9.51       | 1.85        | 3        | Horizontal | 207         | 1.00       | -       | 34.64        | 26.73     | 6.60    | 31.48   |
| PK   | 957.32M   | 35.83          | 46.00          | -10.17      | 2.11        | 3        | Horizontal | 207         | 1.00       | -       | 33.72        | 26.89     | 6.60    | 31.38   |



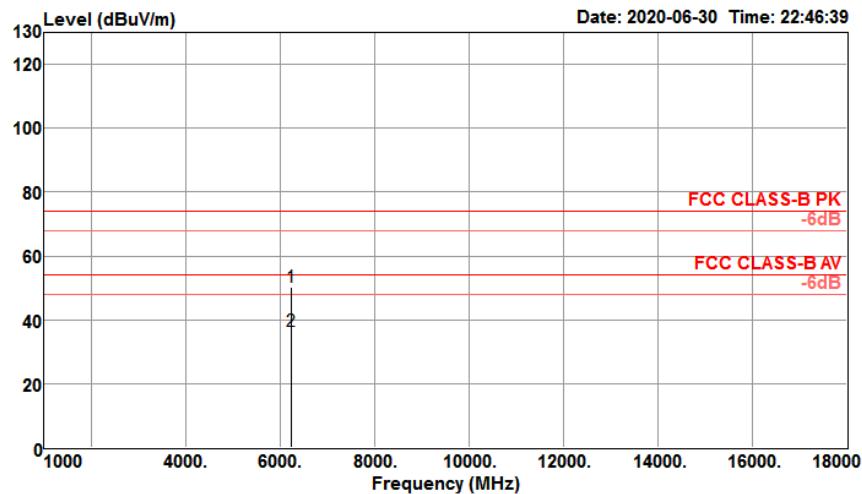
## Vertical

26/06/2020

## Mode 1



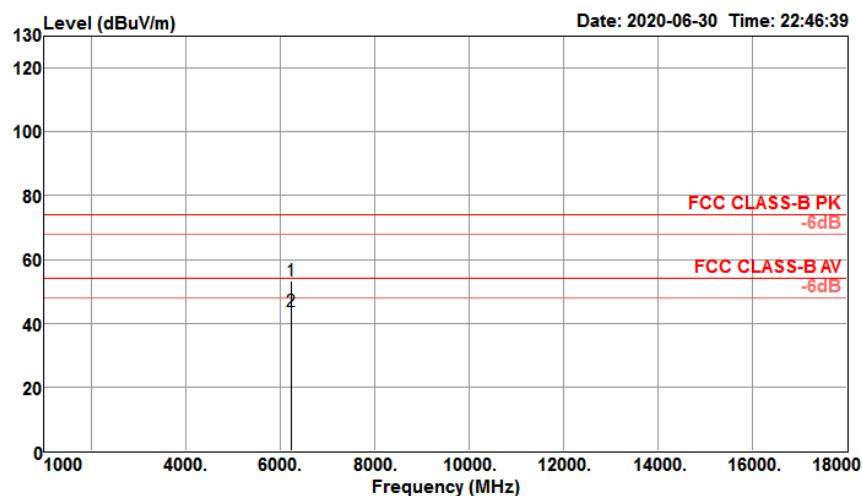
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)



### 3.4.8 Test Result of Transmitter Radiated Unwanted Emissions (1GHz – 40GHz)

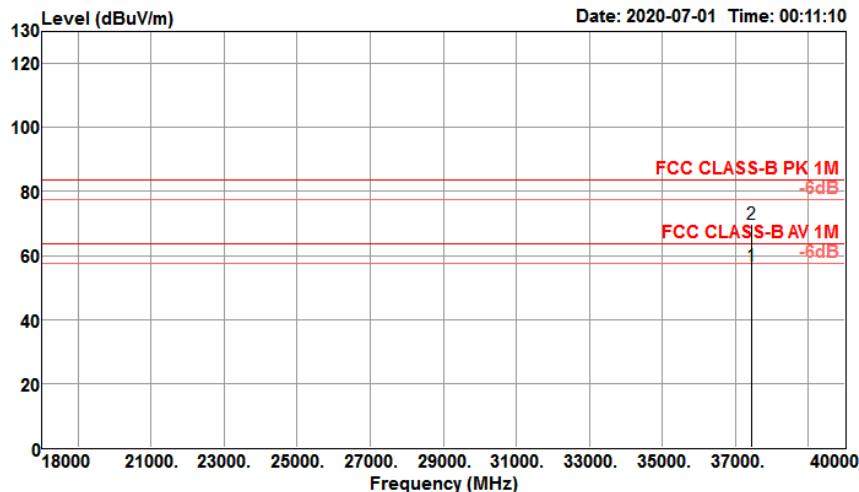
|               |              |                  |    |
|---------------|--------------|------------------|----|
| Test Range    | 1GHz – 18GHz | Test Freq. (GHz) | 79 |
| Test Distance | 3 m          |                  |    |


#### Horizontal



| Freq | Level   | Limit  | Over  | Read   | Cable | Antenna | Preamp | A/Pos | T/Pos | Remark     | Pol/Phase  |
|------|---------|--------|-------|--------|-------|---------|--------|-------|-------|------------|------------|
|      |         | Line   | Limit | Level  | Loss  | Factor  | Factor | dB    | cm    |            |            |
| MHz  | dBuV/m  | dBuV/m | dB    | dBuV   | dB    | dB/m    | dB     | cm    | deg   |            |            |
| 1    | 6239.12 | 50.36  | 74.00 | -23.64 | 43.15 | 6.54    | 35.27  | 34.60 | 220   | 15 Peak    | HORIZONTAL |
| 2    | 6241.82 | 36.27  | 54.00 | -17.73 | 29.12 | 6.55    | 35.20  | 34.60 | 220   | 15 Average | HORIZONTAL |

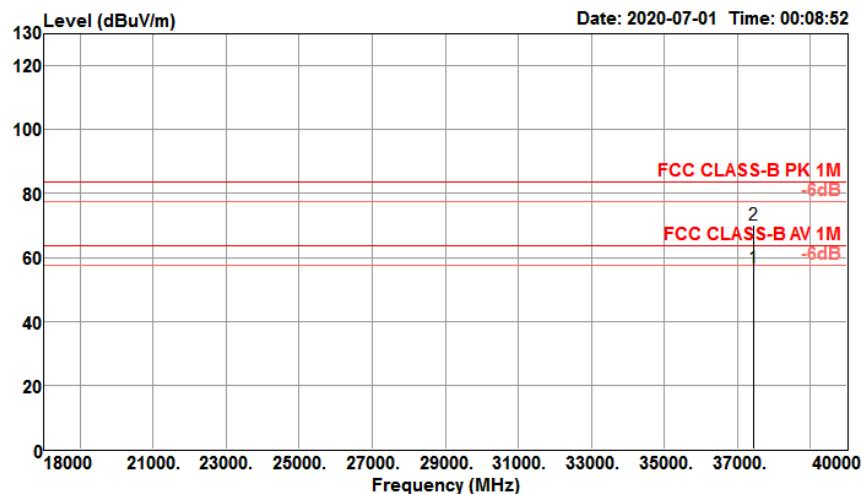



## Vertical



| Freq | Level   | Limit  | Over   | Read   | Cable | Antenna | Preamp | A/Pos | T/Pos | Remark    | Pol/Phase |
|------|---------|--------|--------|--------|-------|---------|--------|-------|-------|-----------|-----------|
|      |         | Line   | Limit  | Level  | Loss  | Factor  | Factor | dB    | cm    |           |           |
|      | MHz     | dBuV/m | dBuV/m | dB     | dBuV  | dB      | dB/m   | dB    | cm    | deg       |           |
| 1    | 6239.94 | 53.17  | 74.00  | -20.83 | 45.96 | 6.54    | 35.27  | 34.60 | 227   | 4 Peak    | VERTICAL  |
| 2    | 6240.03 | 43.57  | 54.00  | -10.43 | 36.36 | 6.54    | 35.27  | 34.60 | 227   | 4 Average | VERTICAL  |




|               |               |                  |    |
|---------------|---------------|------------------|----|
| Test Range    | 18GHz – 40GHz | Test Freq. (GHz) | 79 |
| Test Distance | 1 m           |                  |    |

**Horizontal**

| Freq | Level    | Limit  | Over  | Read   | Cable | Antenna | Preamp | A/Pos | T/Pos | Remark | Pol/Phase |
|------|----------|--------|-------|--------|-------|---------|--------|-------|-------|--------|-----------|
|      |          | Line   | Limit | Level  | Loss  | Factor  | Factor | cm    | deg   |        |           |
| MHz  | dBuV/m   | dBuV/m | dB    | dBuV   | dB    | dB/m    | dB     |       |       |        |           |
| 1    | 37438.00 | 56.77  | 63.54 | -6.77  | 44.27 | 20.00   | 42.76  | 50.26 | 150   | 360    | Average   |
| 2    | 37443.42 | 69.67  | 83.54 | -13.87 | 57.17 | 20.00   | 42.76  | 50.26 | 150   | 360    | Peak      |
|      |          |        |       |        |       |         |        |       |       |        |           |



## Vertical



| Freq | Level    | Limit |        | Over Limit | Read Level | Cable Loss | Antenna Factor | Preamp Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|------|----------|-------|--------|------------|------------|------------|----------------|---------------|-------|-------|---------|-----------|
|      |          | MHz   | dBuV/m | dBuV/m     | dB         | dBuV       | dB             | dB/m          | dB    | cm    | deg     |           |
| 1    | 37439.48 | 56.77 | 63.54  | -6.77      | 44.27      | 20.00      | 42.76          | 50.26         | 150   | 0     | Average | VERTICAL  |
| 2    | 37443.44 | 70.08 | 83.54  | -13.46     | 57.58      | 20.00      | 42.76          | 50.26         | 150   | 0     | Peak    | VERTICAL  |



### 3.4.9 Test Result of Transmitter Radiated Unwanted Emissions (40GHz – 200GHz)

| Test Freq.<br>(GHz) | Rx Gain<br>(dBi) | Distance<br>(m) | Read Worse<br>Frequency<br>(GHz) | Read Level<br>(dBm) | EIRP<br>(dBm) | Specification<br>Distance (m) | Power Density<br>(pW/cm^2) | Test<br>Result |
|---------------------|------------------|-----------------|----------------------------------|---------------------|---------------|-------------------------------|----------------------------|----------------|
| 79                  | 23.0             | 0.50            | 59.41                            | -63.40              | -24.50        | 3                             | 3.1357                     | PASS           |
| Limit               |                  |                 |                                  |                     |               |                               | 600                        | -              |

### 3.4.10 Test Result of Transmitter Radiated Unwanted Emissions (200GHz – 231GHz)

| Test Freq.<br>(GHz) | Rx Gain<br>(dBi) | Distance<br>(m) | Read Worse<br>Frequency<br>(GHz) | Read Level<br>(dBm) | EIRP<br>(dBm) | Specification<br>Distance (m) | Power Density<br>(pW/cm^2) | Test<br>Result |
|---------------------|------------------|-----------------|----------------------------------|---------------------|---------------|-------------------------------|----------------------------|----------------|
| 79                  | 23.0             | 0.50            | 219.48                           | -70.69              | -20.44        | 3                             | 7.9883                     | PASS           |
| Limit               |                  |                 |                                  |                     |               |                               | 1000                       | -              |



## 3.5 Frequency Stability

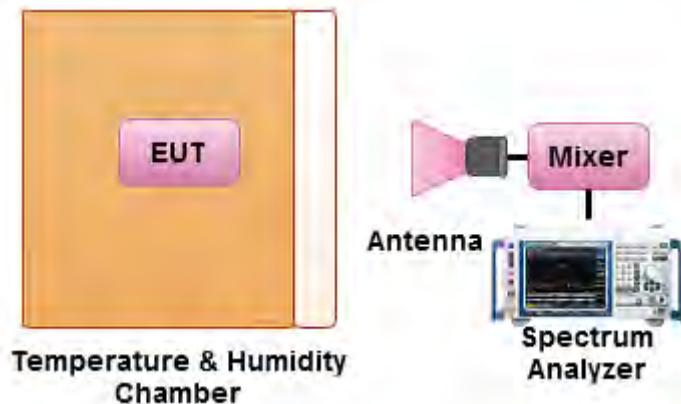
### 3.5.1 Frequency Stability Limit

#### Frequency Stability Limit

Fundamental emissions must be contained within the frequency bands specified in this 76-81GHz band during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage.

### 3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


### 3.5.3 Test Procedures

#### Test Method

- For the frequency stability shall be measured using one of the options below:
  - Refer as ANSI C63.10, clause 9.14 for frequency stability measurement.
  - Refer as ANSI C63.10, clause 9 for radiated measurement.
- Radiated test was conducted at far-field distance. the distance from the radiating element of the EUT to the edge of the far field may be calculated from  $[r \geq 2D^2/\lambda]$   
 $r$  is the distance from the radiating element of the EUT to the edge of the far field, in m  
 $D$  is the largest dimension of both the radiating element and the test antenna (horn), in m  
 $\lambda$  is the wavelength of the emission under investigation  $[300/f \text{ (MHz)}]$ , in m
- The mixer may be placed outside the chamber in front of the temperature chamber door, and the chamber door opened for each reading.

### 3.5.4 Test Setup

#### Frequency Stability





### 3.5.5 Test Result of Frequency Stability

Test Freq. (GHz): 79

| Test Temperature:<br>(°C) | Measured Frequency<br>(GHz) | Delta Frequency<br>(kHz) | Limit<br>(±kHz) |
|---------------------------|-----------------------------|--------------------------|-----------------|
| -40                       | 79.1013                     | 104.92                   | within band     |
| -30                       | 79.0964                     | 100.02                   | within band     |
| -20                       | 79.0825                     | 86.12                    | within band     |
| -10                       | 79.0669                     | 70.52                    | within band     |
| 0                         | 79.0254                     | 29.02                    | within band     |
| 10                        | 79.0132                     | 16.82                    | within band     |
| 20                        | 78.9964                     | Reference                | within band     |
| 30                        | 78.9969                     | 0.52                     | within band     |
| 40                        | 78.9924                     | -3.98                    | within band     |
| 50                        | 78.9964                     | 0.02                     | within band     |
| 60                        | 78.9954                     | -0.98                    | within band     |
| 70                        | 78.9917                     | -4.68                    | within band     |
| 80                        | 78.9902                     | -6.18                    | within band     |
| 85                        | 78.9891                     | -7.24                    | within band     |
| Test Voltage:<br>(Vdc)    | Measured Frequency<br>(GHz) | Delta Frequency<br>(kHz) | Limit<br>(±kHz) |
| 10.2                      | 78.9964                     | 0                        | within band     |
| 12                        | 78.9964                     | Reference                | within band     |
| 13.8                      | 78.9928                     | -3.62                    | within band     |



## 4 Test Equipment and Calibration Data

| Instrument                        | Manufacturer  | Model No.          | Serial No.       | Characteristics | Calibration Date | Calibration Due Date | Remark                |
|-----------------------------------|---------------|--------------------|------------------|-----------------|------------------|----------------------|-----------------------|
| EMI Receiver                      | Agilent       | N9038A             | My52260123       | 9kHz ~ 8.45GHz  | Feb. 26, 2020    | Feb. 25, 2021        | Conduction (CO01-CB)  |
| LISN                              | F.C.C.        | FCC-LISN-50-16-2   | 04083            | 150kHz ~ 100MHz | Dec. 25, 2019    | Dec. 24, 2020        | Conduction (CO01-CB)  |
| LISN                              | Schwarzbeck   | NSLK 8127          | 8127647          | 9kHz ~ 30MHz    | Feb. 25, 2020    | Feb. 24, 2021        | Conduction (CO01-CB)  |
| Pulse Limiter                     | Rohde&Schwarz | ESH3-Z2            | 100430           | 9kHz ~ 30MHz    | Jan. 31, 2020    | Jan. 30, 2021        | Conduction (CO01-CB)  |
| COND Cable                        | Woken         | Cable              | Low cable-CO01   | 9kHz ~ 30MHz    | May 20, 2020     | May 19, 2021         | Conduction (CO01-CB)  |
| Software                          | Audix         | E3                 | 6.120210n        | -               | N.C.R.           | N.C.R.               | Conduction (CO01-CB)  |
| Loop Antenna                      | Teseq         | HLA 6120           | 24155            | 9kHz - 30 MHz   | Apr. 13, 2020    | Apr. 12, 2021        | Radiation (03CH05-CB) |
| Bilog Antenna with 6dB Attenuator | TESEQ & EMCI  | CBL 6112D & N-6-06 | 35236 & AT-N0610 | 30MHz ~ 2GHz    | Mar. 27, 2020    | Mar. 26, 2021        | Radiation (03CH05-CB) |
| Pre-Amplifier                     | EMCI          | EMC330N            | 980331           | 20MHz ~ 3GHz    | Apr. 28, 2020    | Apr. 27, 2021        | Radiation (03CH05-CB) |
| Spectrum Analyzer                 | R&S           | FSP40              | 100304           | 9kHz ~ 40GHz    | Aug. 15, 2019    | Aug. 14, 2020        | Radiation (03CH05-CB) |
| EMI Test Receiver                 | R&S           | ESCS               | 826547/017       | 9kHz ~ 2.75GHz  | May 13, 2020     | May 12, 2021         | Radiation (03CH05-CB) |
| RF Cable-low                      | Woken         | RG402              | LOW Cable-04+23  | 30MHz~1GHz      | Oct. 07, 2019    | Oct. 06, 2020        | Radiation (03CH05-CB) |
| Horn Antenna                      | ETS-LINDGREN  | 3115               | 00075790         | 750MHz ~ 18GHz  | Nov. 04, 2019    | Nov. 03, 2020        | Radiation (03CH01-CB) |
| Horn Antenna                      | Schwarzbeck   | BBHA 9170          | BBHA9170252      | 15GHz ~ 40GHz   | Jun. 27, 2019    | Jun. 26, 2020        | Radiation (03CH01-CB) |
| Horn Antenna                      | SCHWARZBECK   | BBHA 9170          | BBHA9170507      | 15GHz ~ 40GHz   | Jun. 11, 2020    | Jun. 10, 2021        | Radiation (03CH01-CB) |
| Pre-Amplifier                     | Agilent       | 8449B              | 3008A02310       | 1GHz ~ 26.5GHz  | Jan. 08, 2020    | Jan. 07, 2021        | Radiation (03CH01-CB) |
| Pre-Amplifier                     | MITEQ         | TTA1840-35-HG      | 1864479          | 18GHz ~ 40GHz   | Jul. 03, 2019    | Jul. 02, 2020        | Radiation (03CH01-CB) |
| Amplifier                         | -             | -                  | TF-130N-R1       | 18GHz ~ 40GHz   | Jun. 19, 2020    | Jun. 18, 2021        | Radiation (03CH01-CB) |
| Spectrum Analyzer                 | R&S           | FSP40              | 100056           | 9kHz ~ 40GHz    | Apr. 16, 2020    | Apr. 15, 2021        | Radiation (03CH01-CB) |
| RF Cable-high                     | Woken         | RG402              | High Cable-16    | 1 GHz ~ 18 GHz  | Oct. 07, 2019    | Oct. 06, 2020        | Radiation (03CH01-CB) |
| RF Cable-high                     | Woken         | RG402              | High Cable-16+17 | 1 GHz ~ 18 GHz  | Oct. 07, 2019    | Oct. 06, 2020        | Radiation (03CH01-CB) |
| RF Cable-high                     | Woken         | RG402              | High Cable-40G#1 | 18GHz ~ 40 GHz  | Jul. 24, 2019    | Jul. 23, 2020        | Radiation (03CH01-CB) |



| Instrument                 | Manufacturer     | Model No.         | Serial No.       | Characteristics | Calibration Date | Calibration Due Date | Remark                |
|----------------------------|------------------|-------------------|------------------|-----------------|------------------|----------------------|-----------------------|
| RF Cable-high              | Woken            | RG402             | High Cable-40G#2 | 18GHz ~ 40 GHz  | Jul. 24, 2019    | Jul. 23, 2020        | Radiation (03CH01-CB) |
| Mixer                      | OML              | M19HWA            | U91113-1         | 40 ~ 60 GHz     | Oct. 01 2019     | Sep. 30, 2020        | Radiation (03CH01-CB) |
| Mixer                      | OML              | M15HWA            | V91113-1         | 50 ~ 75 GHz     | Oct. 25 2019     | Oct. 24, 2020        | Radiation (03CH01-CB) |
| Mixer                      | OML              | M12HWA            | E91113-1         | 60 ~ 90 GHz     | Oct. 25 2019     | Oct. 24, 2020        | Radiation (03CH01-CB) |
| Mixer                      | OML              | M08HWA            | F91113-1         | 90 ~ 140 GHz    | Oct. 25 2019     | Oct. 24, 2020        | Radiation (03CH01-CB) |
| Mixer                      | OML              | M05HW/A           | G91113-1         | 140 ~ 220 GHz   | Oct. 25 2019     | Oct. 24, 2020        | Radiation (03CH01-CB) |
| Mixer                      | OML              | M03HWD            | 120320-1         | 220 ~ 325 GHz   | Oct. 25 2019     | Oct. 24, 2020        | Radiation (03CH01-CB) |
| Standard Horn Antenna      | Custom Microwave | M19RH             | U91113-A         | 40 ~ 60 GHz     | N.C.R            | N.C.R                | Radiation (03CH01-CB) |
| Standard Horn Antenna      | Custom Microwave | M15RH             | V91113-A         | 50 ~ 75 GHz     | N.C.R            | N.C.R                | Radiation (03CH01-CB) |
| Standard Horn Antenna      | Custom Microwave | M12RH             | E91113-A         | 60 ~ 90 GHz     | N.C.R            | N.C.R                | Radiation (03CH01-CB) |
| Standard Horn Antenna      | Custom Microwave | M08RH             | F91113-A         | 90 ~ 140 GHz    | N.C.R            | N.C.R                | Radiation (03CH01-CB) |
| Standard Horn Antenna      | Custom Microwave | M05RH             | G91113-A         | 140 ~ 220 GHz   | N.C.R            | N.C.R                | Radiation (03CH01-CB) |
| Standard Horn Antenna      | Custom Microwave | M03RH             | 120320-A         | 220 ~ 325 GHz   | N.C.R            | N.C.R                | Radiation (03CH01-CB) |
| Temp. and Humidity Chamber | Gaint Force      | GTH-408-40-C P-AR | MAA1410-011      | -40~100 degree  | Sep. 12, 2019    | Sep. 11, 2020        | Conducted (TH03-CB)   |

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.