

FCC SAR TEST REPORT

Report No: BZT-1705013H01

Issued for

Inspero Inc.

Yanqi Street No.31, Yanqi Economic Development Zone,
Huairou District, Beijing, China

Product Name:	Vinci Hearable
Brand Name:	N/A
Model Name:	Vinci Hearable 1.5
Series Model:	N/A
FCC ID:	2AHJ6VINCI015N
Test Standard:	ANSI/IEEE Std. C95.1 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013
Max. Report SAR (1g):	Head:0.577 W/kg

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from BZT, All Test Data Presented in this report is only applicable to presented Test sample.

BZT Testing Technology Co., Ltd

Add. : Buliding 17, Xinghua Road Xingwei industrial Park Fuyong,
Baoan District, Shenzhen, Guangdong, China
TEL: +86-755 3307 1680 FAX: +86-755 27341758 E-mail:bruce@bzt.cn

Test Report Certification

Applicant's name: Inspero Inc.

Address: Yanqi Street No.31, Yanqi Economic Development Zone, Huairou District, Beijing, China

Manufacture's Name: Inspero Inc.

Address: Yanqi Street No.31, Yanqi Economic Development Zone, Huairou District, Beijing, China

Product description

Product name: Vinci Hearable

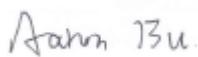
Trademark: N/A

Model and/or type reference : Vinci Hearable 1.5

Series Model.....: N/A

ANSI/IEEE Std. C95.1-1992

Standards: FCC 47 CFR Part 2 (2.1093)
IEEE 1528: 2013


The device was tested by Shenzhen BZT Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test:

Date (s) of performance of tests: 15 May 2017

Date of Issue: 17 May 2017

Test Result.....: **Pass**

Testing Engineer :

(Aaron Bu)

Technical Manager :

(John Zou)

Authorized Signatory :

(Vita Li)

Table of Contents

1. General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Factory	5
2. Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	12
5.1 Validation System	12
5.2 Validation Result	12
6. SAR Evaluation Procedures	13
7. EUT Antenna Location Sketch	14
8. EUT Test Position	15
8.1 Define Two Imaginary Lines On The Handset	15
9. Uncertainty	16
9.1 Measurement Uncertainty	16
9.2 System validation Uncertainty	18
10. Conducted Power Measurement	20
10.1 Output power	20
10.2 Tune-up Power	22
10.3 SAR Test Exclusions Applied	23
11. EUT And Test Setup Photo	24
11.1 EUT Photo	24
11.2 Setup Photo	27
12. SAR Result Summary	29
12.1 Head SAR	29
13. Equipment List	30
Appendix A. System Validation Plots	32
Appendix B. SAR Test Plots	38
Appendix C. Probe Calibration And Dipole Calibration Report	41

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Equipment	Vinci Hearable	
Brand Name	N/A	
Model No.	Vinci Hearable 1.5	
Series Model	N/A	
FCC ID	2AHJ6VINC1015N	
Model Difference	N/A	
Battery	Rated Voltage: 3.7V; Charge Limit: 4.2V; Capacity: 1500mAh	
Device Category	Portable	
Product stage	Production unit	
RF Exposure Environment	General Population / Uncontrolled	
Hardware Version	N/A	
Software Version	N/A	
Frequency Range	WCDMA Band II:1852.4~1907.6MHz WCDMA Band V:826.4~846.6MHz WLAN 802.11b/g/n(HT20/40):2412~2462MHz Bluetooth:2402~ 2480MHz	
Max. Reported SAR(1g): (Limit:1.6W/kg)	Mode	Head (W/kg)
	WCDMA Band II	0.577
	WCDMA Band V	0.121
	WIFI	0.026
	Bluetooth ^{Note}	0.133
FCC Equipment Class	Licensed Portable Transmitter Held to Ear (PCE)	
	Part 15 Spread Spectrum Transmitter (DXX)	
	Digital Transmission System (DTS)	
Operating Mode:	WCDMA:RMC,HSDPA,HSUPA Release 6; WLAN: 802.11 b/g/n(HT20/40); Bluetooth: V3.0 + EDR (GFSK, π/4DQPSK, 8DPSK) ; BT4.1-Dual mode	
Antenna Specification:	WCDMA, BT, WIFI: PIFA Antenna	
SIM Card	Support single card	
Hotspot Mode:	Not Support	
DTM Mode:	Not Support	
Note: 1.The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power 2.Bluetooth SAR was estimated		

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

1.3 Test Factory

BZT Testing Technology Co., Ltd

Add. : Building 17, Xinghua Road Xingwei industrial Park Fuyong, Baoan District, Shenzhen, Guangdong, China

FCC Registration No.: 701733

2. Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Vinci Hearable and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 941225 D01 v03r01	SAR Measurement Procedures for 3G Devices
8	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
9	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

<p style="text-align: center;">NOTE</p> <p style="text-align: center;">GENERAL POPULATION/UNCONTROLLED EXPOSURE</p> <p style="text-align: center;">PARTIAL BODY LIMIT</p> <p style="text-align: center;">1.6 W/kg</p>

3. SAR Measurement System

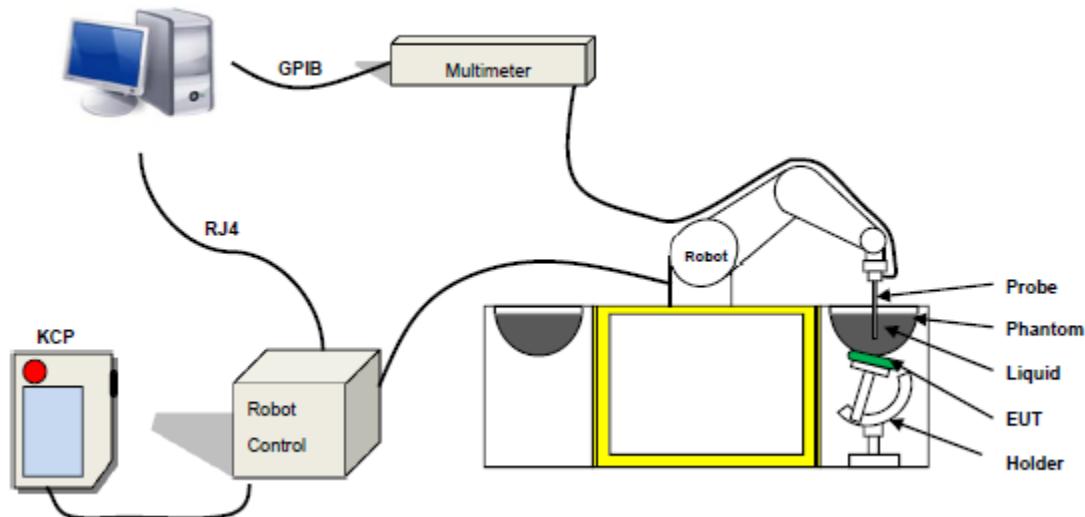
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$\text{SAR} = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

SATIMO SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EP309 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Length of Individual Dipoles: 4.5 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 2.7mm)
- Probe linearity: 0 \pm 2.27% (\pm 0.10dB)
- Axial Isotropy: <0.10 dB
- Spherical Isotropy: <0.10 dB
- Calibration range: 400 MHz to 3 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

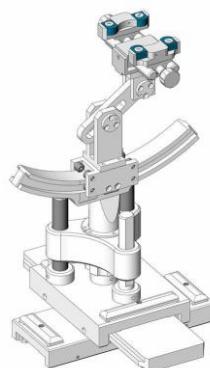


Figure-SN 32/14 SAM115

Figure-SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

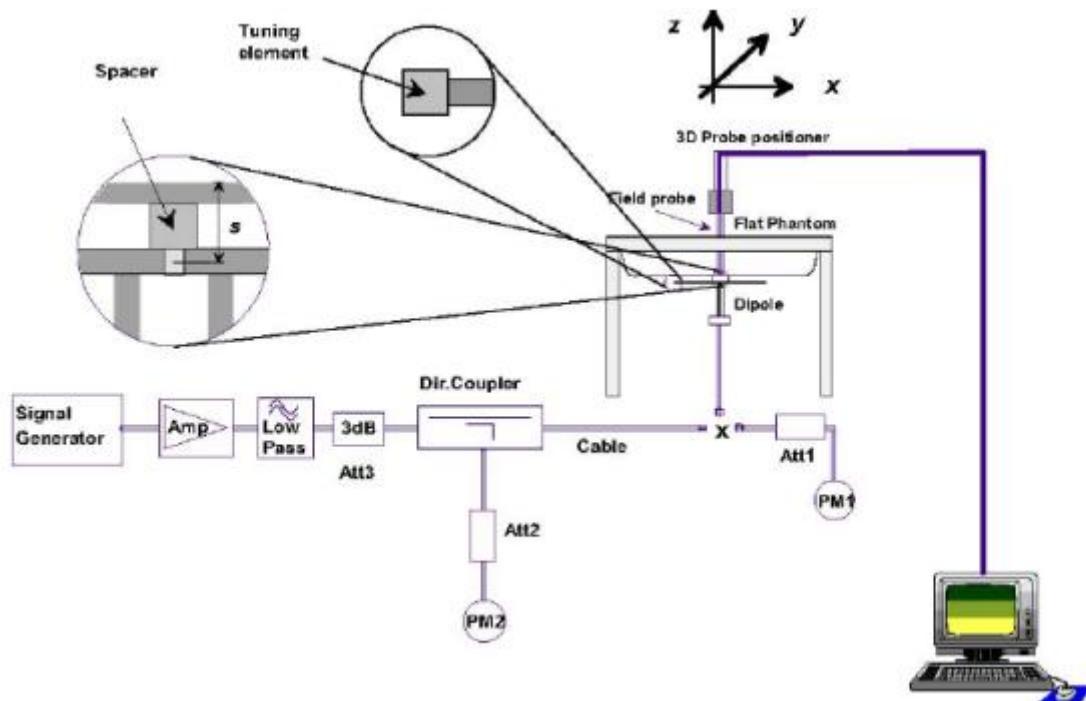
4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2-Propanediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	ϵ_r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

Tissue dielectric parameters for head and body phantoms				
Frequency	ϵ_r		σ S/m	
	Head	Body	Head	Body
300	45.3	58.2	0.87	0.92
450	43.5	58.7	0.87	0.94
900	41.5	55.0	0.97	1.05
1450	40.5	54.0	1.20	1.30
1800	40.0	53.3	1.40	1.52
2450	39.2	52.7	1.80	1.95
3000	38.5	52.0	2.40	2.73
5800	35.3	48.2	5.27	6.00

LIQUID MEASUREMENT RESULTS


Date	Ambient condition		Head Simulating Liquid		Parameters	Target	Measured	Deviation [%]	Limited [%]
	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]					
2017-05-15	23.5	51	835 MHz	23.1	Permitivity:	41.50	40.10	-3.38	±5
					Conductivity:	0.90	0.92	2.22	± 5
2017-05-15	23.5	51	1900 MHz	23.1	Permitivity:	40.00	40.07	0.19	± 5
					Conductivity:	1.40	1.46	4.50	± 5
2017-05-15	23.5	51	2450 MHz	23.1	Permitivity:	39.20	39.88	1.74	± 5
					Conductivity:	1.80	1.79	-0.61	± 5

5. SAR System Validation

5.1 Validation System

Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
835 Head	100	0.933	9.33	9.56	-2.41	2017-05-15
1900 Head	100	3.855	38.55	39.7	-2.90	2017-05-15
2450 Head	100	5.364	53.64	52.4	2.37	2017-05-15

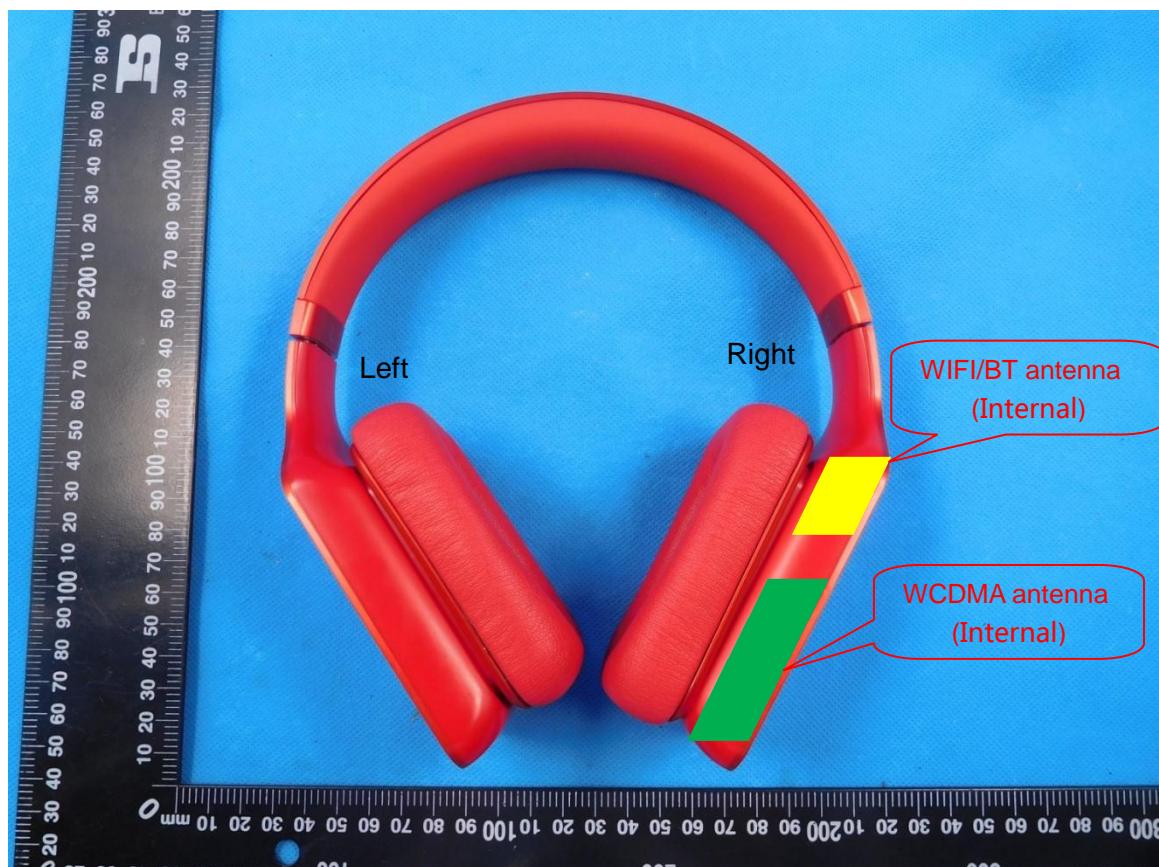
Note: The tolerance limit of System validation $\pm 10\%$.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.


Area Scan& Zoom Scan:

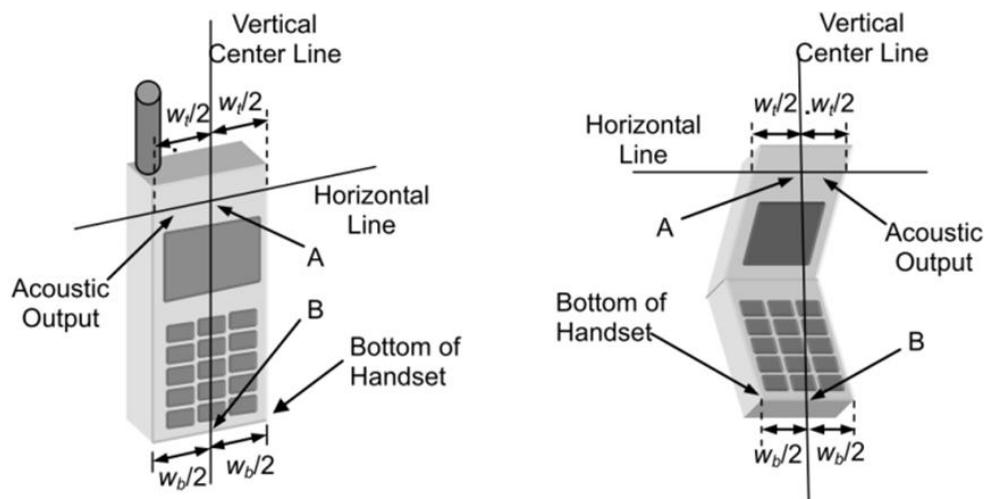
First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is a Vinci Hearable, support WCDMA/WIFI/BT mode.

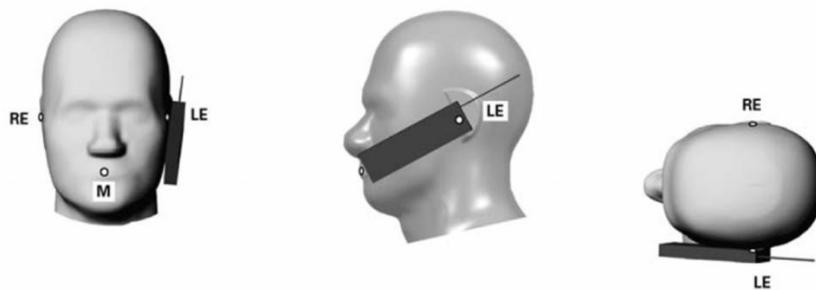
8. EUT Test Position


This EUT was tested in Right and Left

8.1 Define Two Imaginary Lines On The Handset

(1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the handset.

(2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.


(3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Cheek Position

1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.

2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

15	Device positioning	2.6	N	1	1	1	2.6	2.6	11
16	Device holder	3	N	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom and set-up									
18	Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
19	Liquid conductivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	∞
22	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	∞
Combined standard		RSS	$U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$				10.63%	10.54%	
Expanded uncertainty (P=95%)		$U = k U_c, k=2$					21.26%	21.08%	

9.2 System validation Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Measurement System									
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
2	Axial isotropy	3.5	R	$\sqrt{3}$	$(1-cp)^{1/2}$	$(1-cp)^{1/2}$	1.43	1.43	∞
3	Hemispherical isotropy	5.9	R	$\sqrt{3}$	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
4	Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
5	Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
6	System Detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
7	Modulation response	0	N	1	1	1	0	0	∞
8	Readout electronics	0.5	N	1	1	1	0.50	0.50	∞
9	Response time	0	R	$\sqrt{3}$	1	1	0	0	∞
10	Integration time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
11	Ambient noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
12	Ambient reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
13	Probe positioner mech. restrictions	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
14	Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
15	Max.SAR evaluation	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Dipole									
16	Deviation of experimental source from	4	N	1	1	1	4.00	4.00	∞

17	Input power and SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
18	Dipole Axis to liquid Distance	2	R	$\sqrt{3}$	1	1			∞
Phantom and set-up									
19	Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
20	Uncertainty in SAR correction for deviation(in target)	2.0	N	1	1	0.84	2	1.68	∞
21	Liquid conductivity (target)	2	N	1	1	0.84	2.00	1.68	∞
22	Liquid conductivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
23	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	∞
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	∞
Combined standard		RSS	$U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$				10.15%	10.05%	
Expanded uncertainty (P=95%)		$U = k U_c, k=2$				20.29%	20.10%		

10. Conducted Power Measurement

10.1 Output power

Band	WCDMA Band V			WCDMA Band II		
Channel	4132	4183	4233	9262	9400	9538
Frequency (MHz)	826.4	836.6	846.6	1852.4	1880.0	1907.6
RMC	22.62	22.88	22.84	24.77	24.85	24.72
HSDPA Subtest-1	22.64	22.49	22.27	24.26	24.38	24.48
HSDPA Subtest-2	22.17	22.54	22.46	24.55	24.54	24.35
HSDPA Subtest-3	22.24	22.72	22.48	24.31	24.62	24.39
HSDPA Subtest-4	22.31	22.67	22.77	24.65	24.57	24.44
HSUPA Subtest-1	22.66	22.43	22.52	24.48	24.49	24.67
HSUPA Subtest-2	22.13	22.55	22.46	24.54	24.68	24.35
HSUPA Subtest-3	22.85	22.18	22.09	24.39	24.50	24.82
HSUPA Subtest-4	22.60	22.51	22.34	24.27	24.63	24.47

According to 3GPP 25.101 sub-clause 6.2.2 , the maximum output power is allowed to be reduced by following the table.

Table 6.1A: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	$0 \leq CM \leq 3.5$	MAX(CM-1,0)
Note: CM=1 for $\beta c / \beta d = 12/15$, $\beta hs / \beta c = 24/15$.For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.		

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

WIFI

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
802.11b	1	2412	9.72
	6	2437	9.69
	11	2462	9.83
802.11g	1	2412	8.72
	6	2437	8.97
	11	2462	8.83
802.11n(HT 20)	1	2412	8.42
	6	2437	8.35
	11	2462	8.38
802.11n(HT 40)	3	2422	7.92
	6	2437	7.97
	9	2452	7.84

Bluetooth

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
GFSK(1Mbps)	0	2402	3.61
	39	2441	3.58
	78	2480	3.72
$\pi/4$ -DQPSK(2Mbps)	0	2402	3.26
	39	2441	3.34
	78	2480	3.57
8DPSK(3Mbps)	0	2402	2.87
	39	2441	2.68
	78	2480	2.74

BT 4.1

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
GFSK(1Mbps)	0	2402	4.26
	19	2440	4.13
	39	2480	4.28

10.2 Tune-up Power

Mode	WCDMA Band V(AVG)	WCDMA Band II(AVG)
RMC	22±1dBm	24±1dBm
HSDPA Subtest-1	22±1dBm	24±1dBm
HSDPA Subtest-2	22±1dBm	24±1dBm
HSDPA Subtest-3	22±1dBm	24±1dBm
HSDPA Subtest-4	22±1dBm	24±1dBm
HSUPA Subtest-1	22±1dBm	24±1dBm
HSUPA Subtest-2	22±1dBm	24±1dBm
HSUPA Subtest-3	22±1dBm	24±1dBm
HSUPA Subtest-4	22±1dBm	24±1dBm
HSUPA Subtest-5	22±1dBm	24±1dBm

Mode	WIFI(AVG)
IEEE 802.11b	9±1dBm
IEEE 802.11g	8±1dBm
IEEE 802.11n(HT 20)	8±1dBm
IEEE 802.11n (HT40)	7±1dBm

Mode	BT(AVG)
GFSK	3±1dBm
$\pi/4$ -DQPSK	3±1dBm
8DPSK	2±1dBm

Mode	BT4.1(AVG)
GFSK	4±1dBm

10.3 SAR Test Exclusions Applied

Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Dist (mm)}} \cdot \sqrt{\text{Frequency(GHz)}} \leq 3.0$$

Based on the maximum conducted power of **Bluetooth Head** (rounded to the nearest mW) and the antenna to user separation distance,

Bluetooth Head SAR was not required; $[(3.126/5) \cdot \sqrt{2.480}] = 1 < 3.0$.

Based on the maximum conducted power of **2.4 GHz WIFI Head** (rounded to the nearest mW) and the antenna to user separation distance,

2.4 GHz WIFI Head SAR was required; $[(10.000/5) \cdot \sqrt{2.462}] = 3.14 > 3.0$.

11. EUT And Test Setup Photo

11.1 EUT Photo

Photo 1

Photo 2

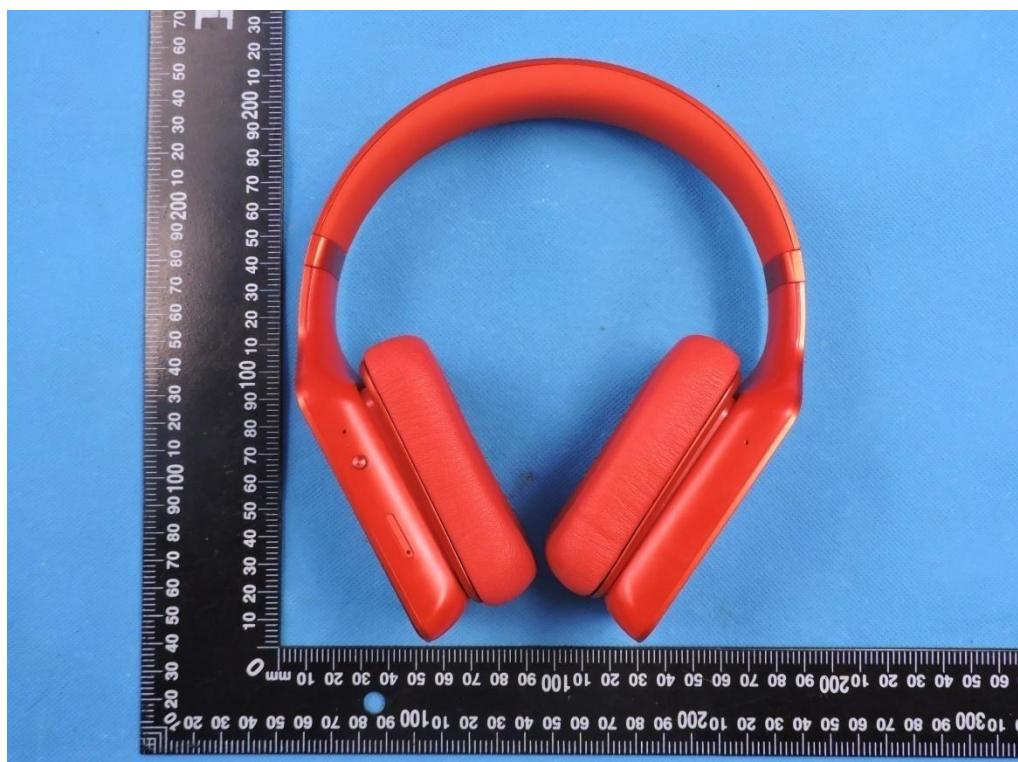


Photo 3

Photo 4

Photo 5

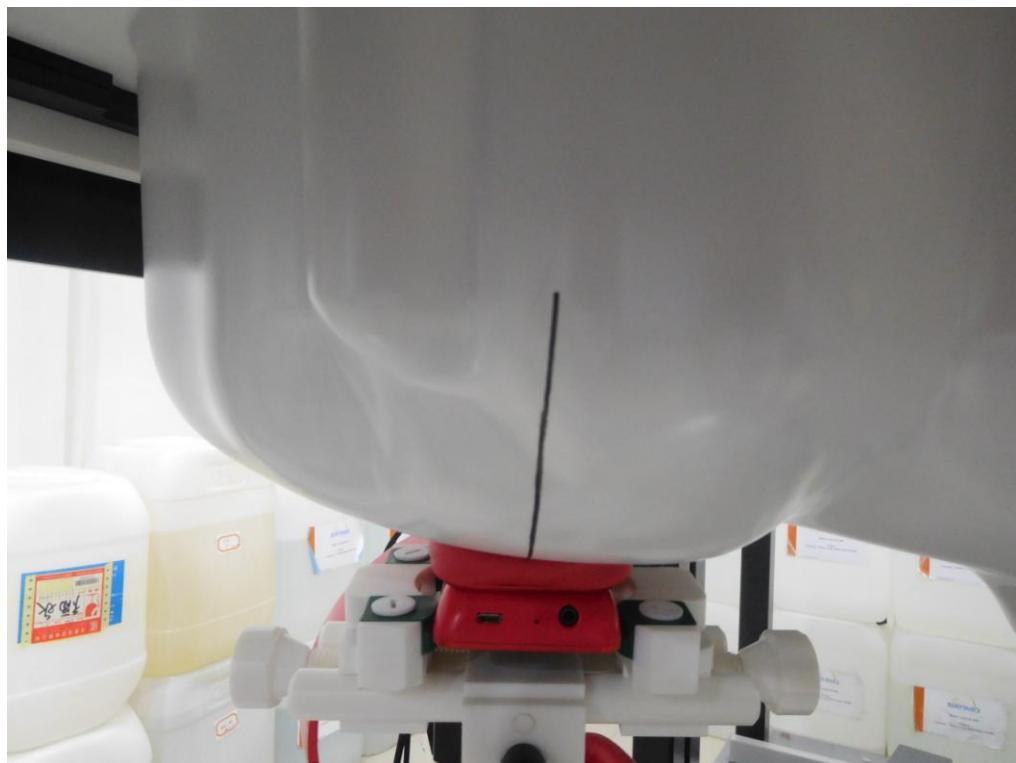
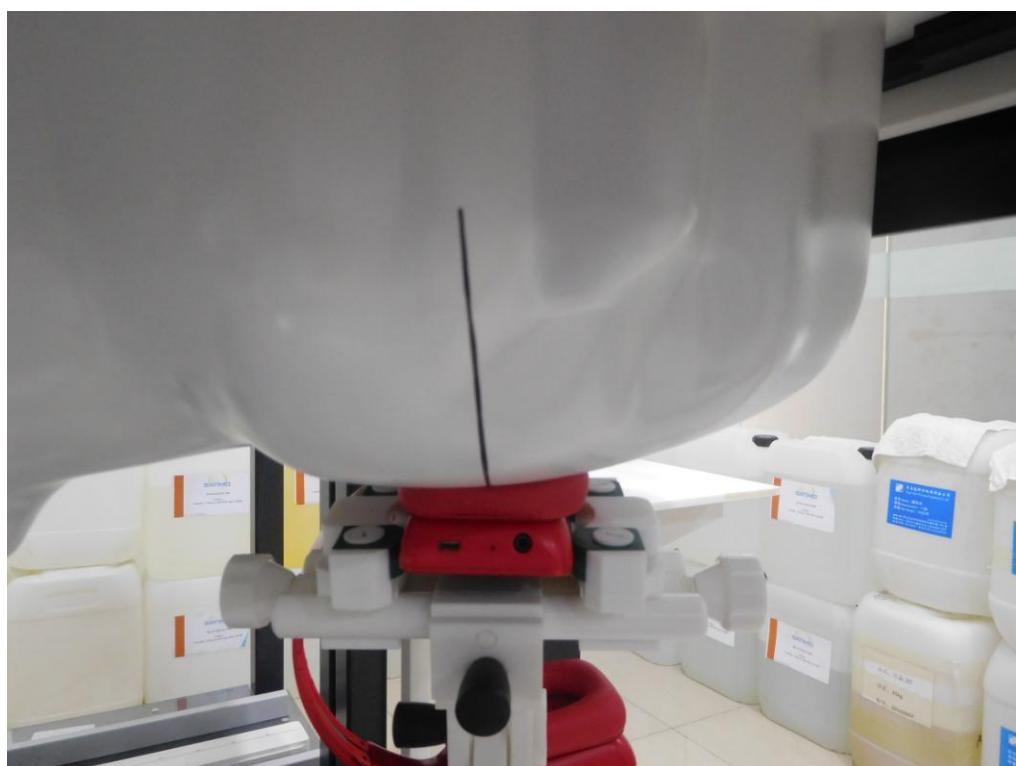


Photo 6



11.2 Setup Photo

Right head

Left head

Liquid depth (15 cm)

12. SAR Result Summary

12.1 Head SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
WCDMA II	RMC	Right head	9400	0.557	-1.77	25	24.85	0.577	1
		Left head	9400	0.314	1.12	25	24.85	0.325	-
WCDMA V	RMC	Right head	4183	0.118	-1.10	23	22.88	0.121	2
		Left head	4183	0.098	-0.82	23	22.88	0.101	-

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WIFI	DATA	Right head	11	0.021	-2.53	10	9.83	100	0.022	-
		Left head	11	0.025	-2.46	10	9.83	100	0.026	3

Note:

1. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.021** W/Kg for Head)
2. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information

1. Bluetooth and WIFI can't simultaneous transmission at the same time.
2. Bluetooth and WCDMA can't simultaneous transmission at the same time.
3. WIFI and WCDMA can't simultaneous transmission at the same time.
4. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
 - a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f \text{ (GHz)}} / x$] W/kg for test separation distances \leq 50 mm;
Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is $>$ 50mm.

Estimated SAR		Maximum Power		Antenna to user(mm)	Frequency(GHz)	Stand alone SAR(1g) [W/kg]
		dBm	mW			
BT	Head	5	0.631	5	2.480	0.133

13. Equipment List

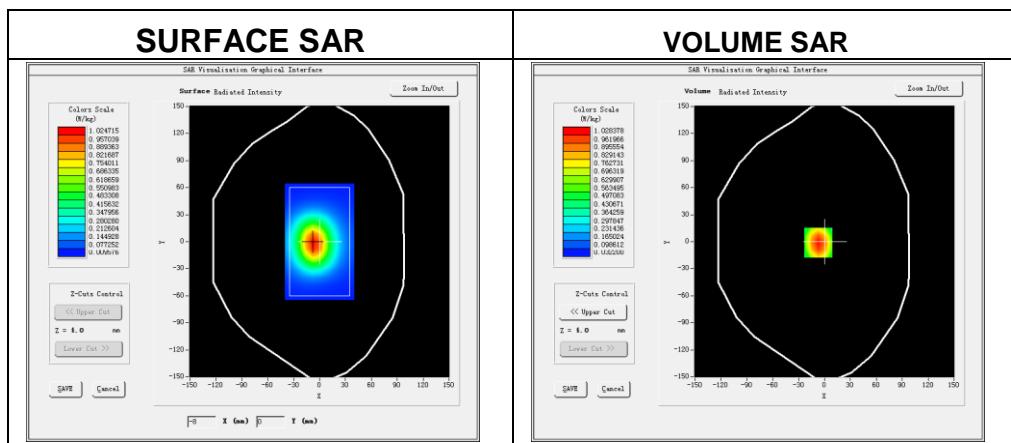
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
835MHz Dipole	SATIMO	SID835	SN 30/14 DIP0G835-332	2014.09.01	2017.08.31
1900MHz Dipole	SATIMO	SID1900	SN 30/14 DIP1G900-333	2014.09.01	2017.08.31
2450MHz Dipole	SATIMO	SID2450	SN 30/14 DIP2G450-335	2014.09.01	2017.08.31
Antenna	SATIMO	ANTA3	SN 07/13 ZNTA52	2014.09.01	2017.08.31
Waveguide	SATIMO	SWG5500	SN 13/14 WGA32	2014.09.01	2017.08.31
E-Field Probe	MVG	SSE5	SN 14/16 EP309	2016.12.05	2017.12.04
Phantom1	SATIMO	SAM	SN 32/14 SAM115	N/A	N/A
Phantom2	SATIMO	SAM	SN 32/14 SAM116	N/A	N/A
SAR TEST BENCH	SATIMO	MOBILE PHONE POSITIONNING SYSTEM	SN 32/14 MSH97	N/A	N/A
SAR TEST BENCH	SATIMO	LAPTOP POSITIONNING SYSTEM	SN 32/14 LSH29	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 32/14 OCPG52	2016.08.30	2017.08.29
Multi Meter	Keithley	Multi Meter 2000	4050073	2016.10.23	2017.10.22
Signal Generator	Agilent	N5182A	MY50140530	2016.10.23	2017.10.22
Power Meter	R&S	NRP	100510	2016.10.23	2017.10.22
Power Meter	HP	EPM-442A	GB37170267	2016.10.23	2017.10.22
Power Sensor	R&S	NRP-Z11	101919	2016.10.23	2017.10.22
Power Sensor	HP	8481A	2702A65976	2016.10.23	2017.10.22
Power Sensor	R&S	NRP-Z21	103971	2016.10.23	2017.10.22
Network Analyzer	Agilent	8753ES	US38432810	2017.03.16	2018.03.15
Attenuator 1	PE	PE7005-10	N/A	2016.10.23	2017.10.22
Attenuator 2	PE	PE7005-3	N/A	2016.10.23	2017.10.22
Attenuator 3	Woken	WK0602-XX	N/A	2016.10.23	2017.10.22
Dual Directional Coupler	Agilent	778D	50422	2016.10.23	2017.10.22

Appendix A. System Validation Plots

System Performance Check Data (835MHz Head)

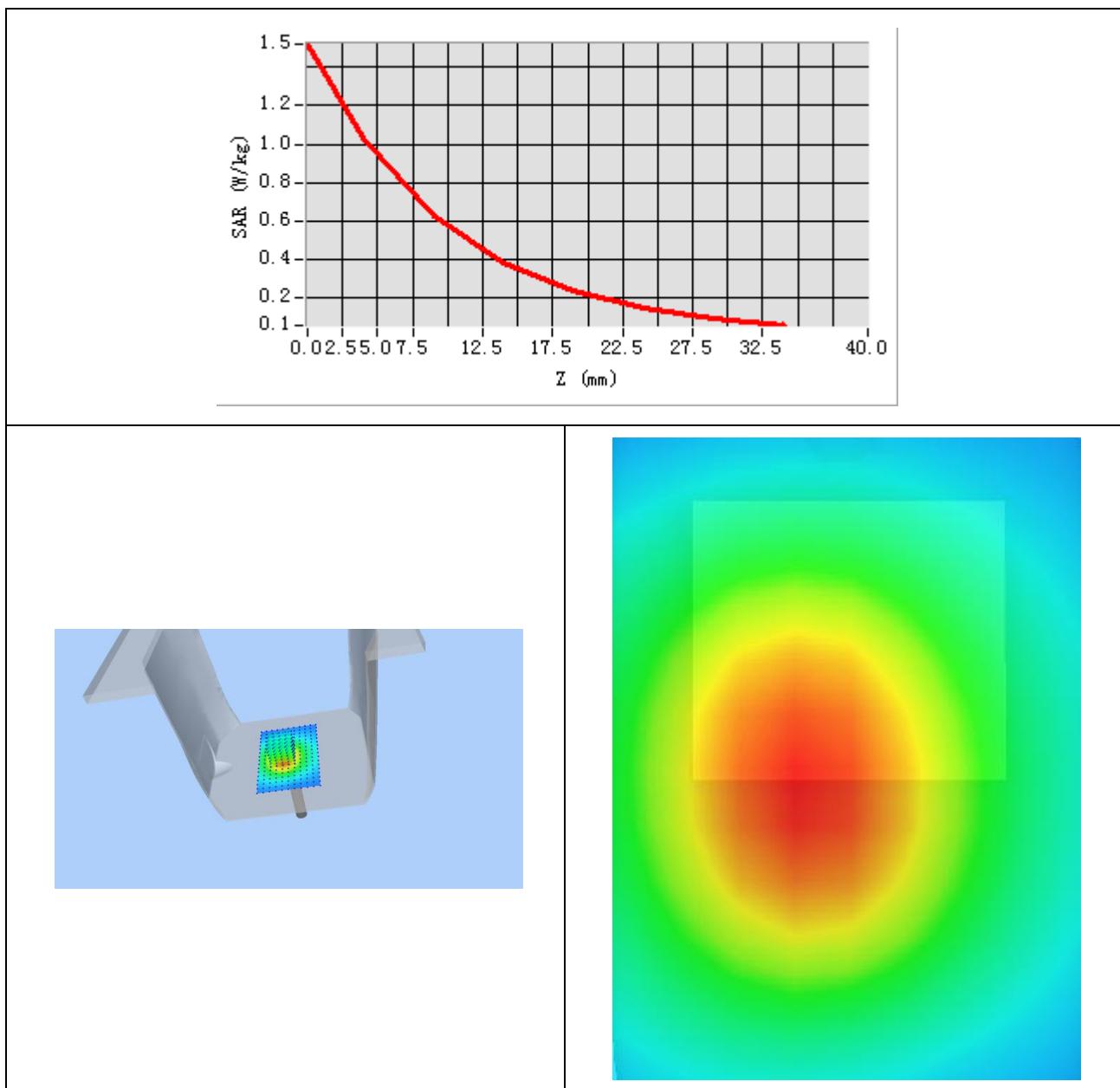
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm


Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017-05-15

Measurement duration: 13 minutes 27 seconds


Experimental conditions

Phantom	Validation plane
Device Position	-
Band	835MHz
Channels	-
Signal	CW
Frequency (MHz)	835MHz
Relative permittivity	40.10
Conductivity (S/m)	0.92
Power drift (%)	-0.37
Probe	SN 14/16 EP309
ConvF:	5.74
Crest factor:	1:1

Maximum location: X=-7.00, Y=-1.00

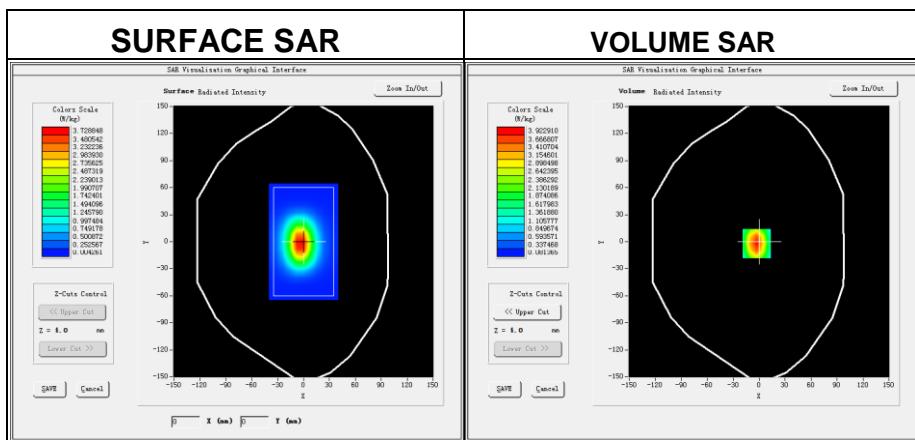
SAR 10g (W/Kg)	0.645865
SAR 1g (W/Kg)	0.933254

Z Axis Scan

System Performance Check Data (1900MHz Head)

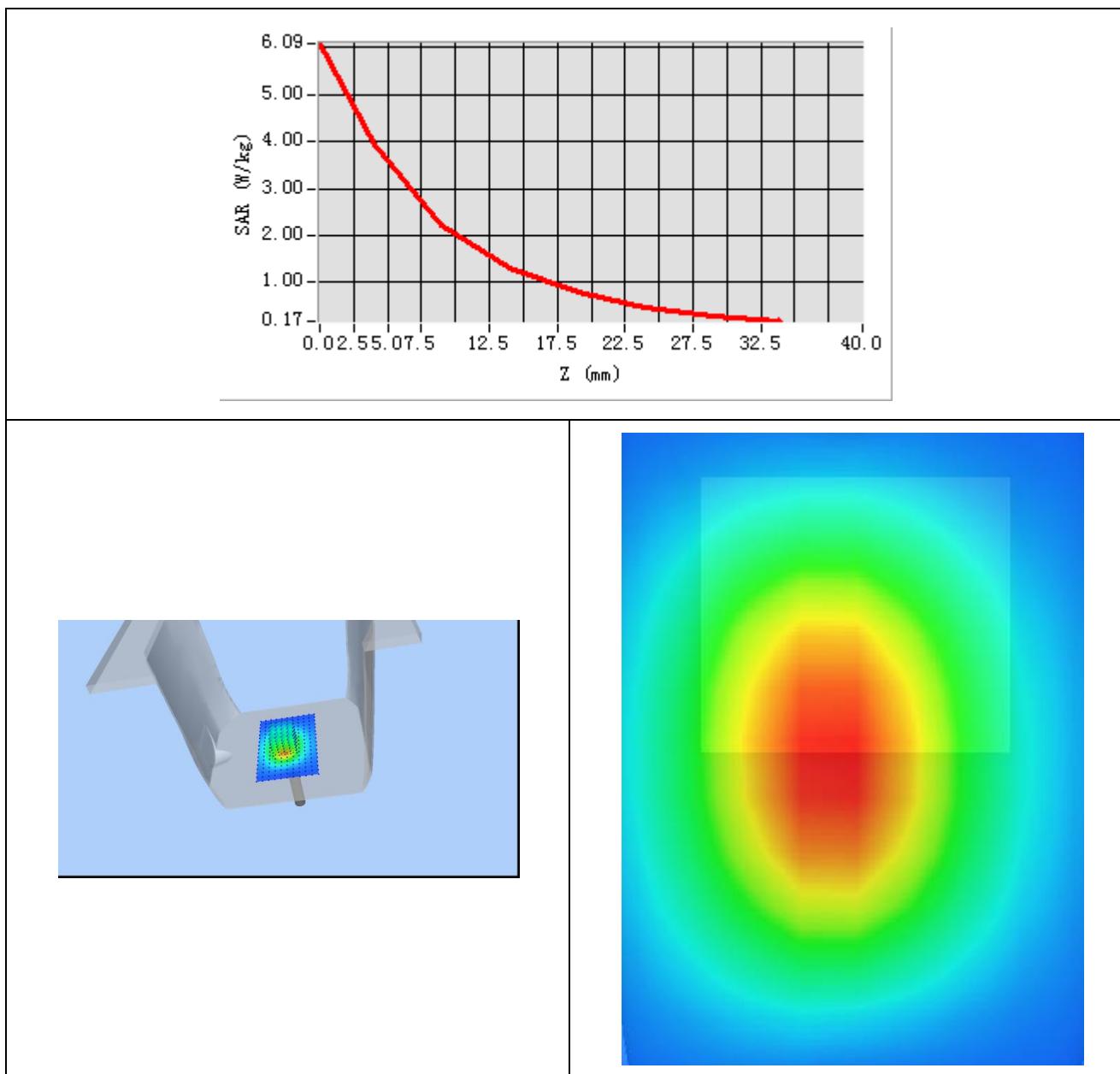
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm


Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017-05-15

Measurement duration: 14 minutes 12 seconds


Experimental conditions.

Phantom	Validation plane
Device Position	-
Band	1900MHz
Channels	-
Signal	CW
Frequency (MHz)	1900MHz
Relative permittivity	41.07
Conductivity (S/m)	1.46
Power drift (%)	0.79
Probe	SN 14/16 EP309
ConvF:	5.46
Crest factor:	1:1

Maximum location: X=-3.00, Y=-2.00

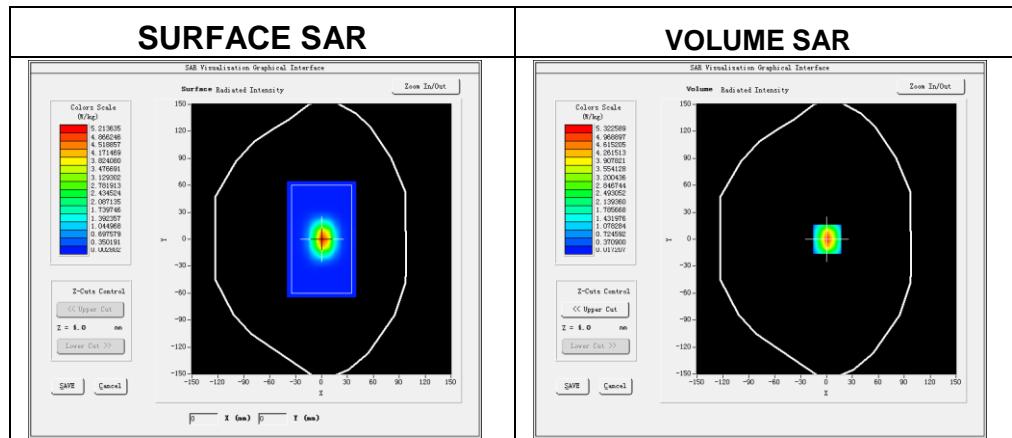
SAR 10g (W/Kg)	2.182459
SAR 1g (W/Kg)	3.855148

Z Axis Scan

System Performance Check Data (2450MHz Head)

Type: Phone measurement (Complete)

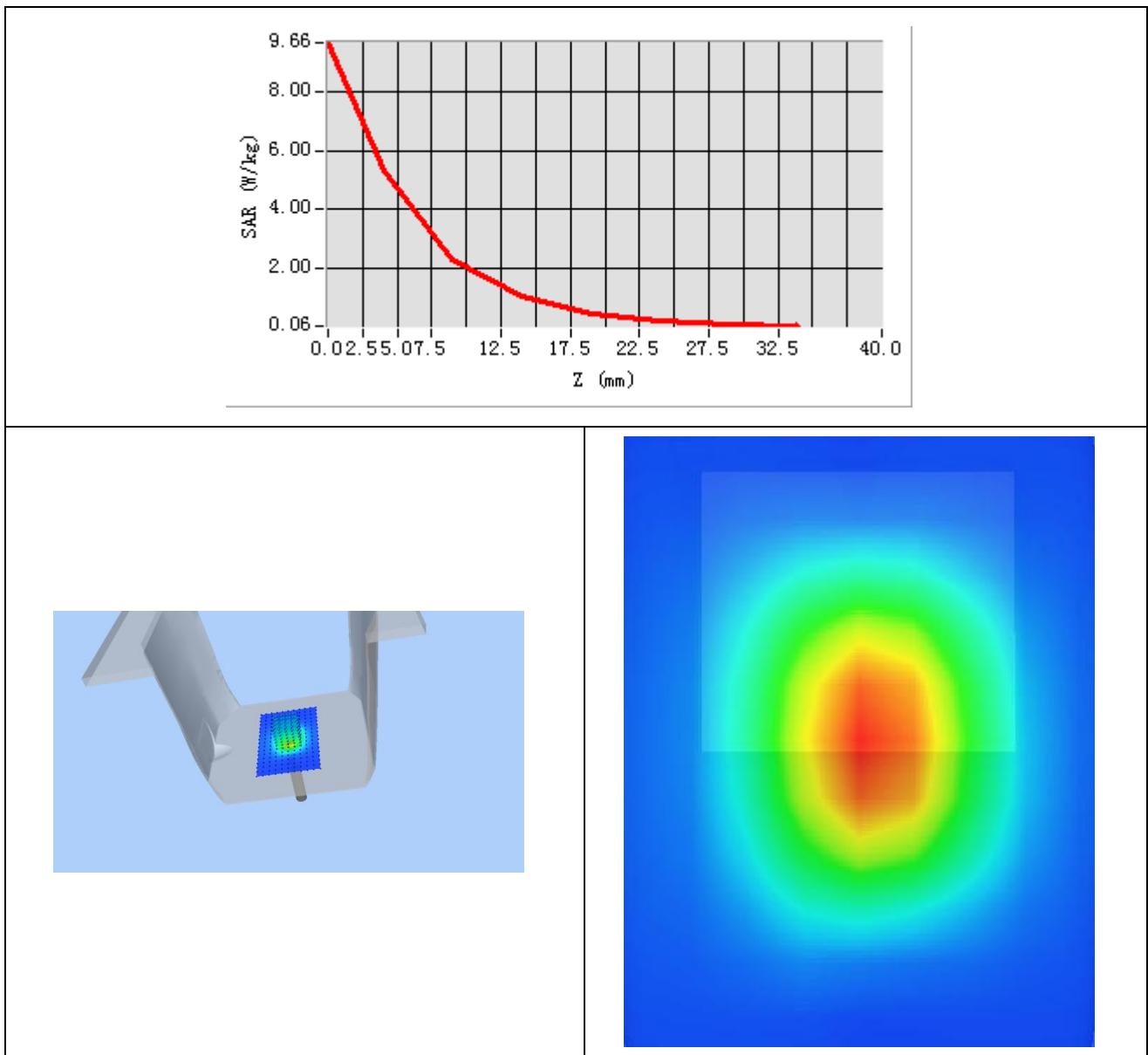
Area scan resolution: dx=8mm,dy=8mm


Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017-05-15

Measurement duration: 13 minutes 51seconds

Experimental conditions.

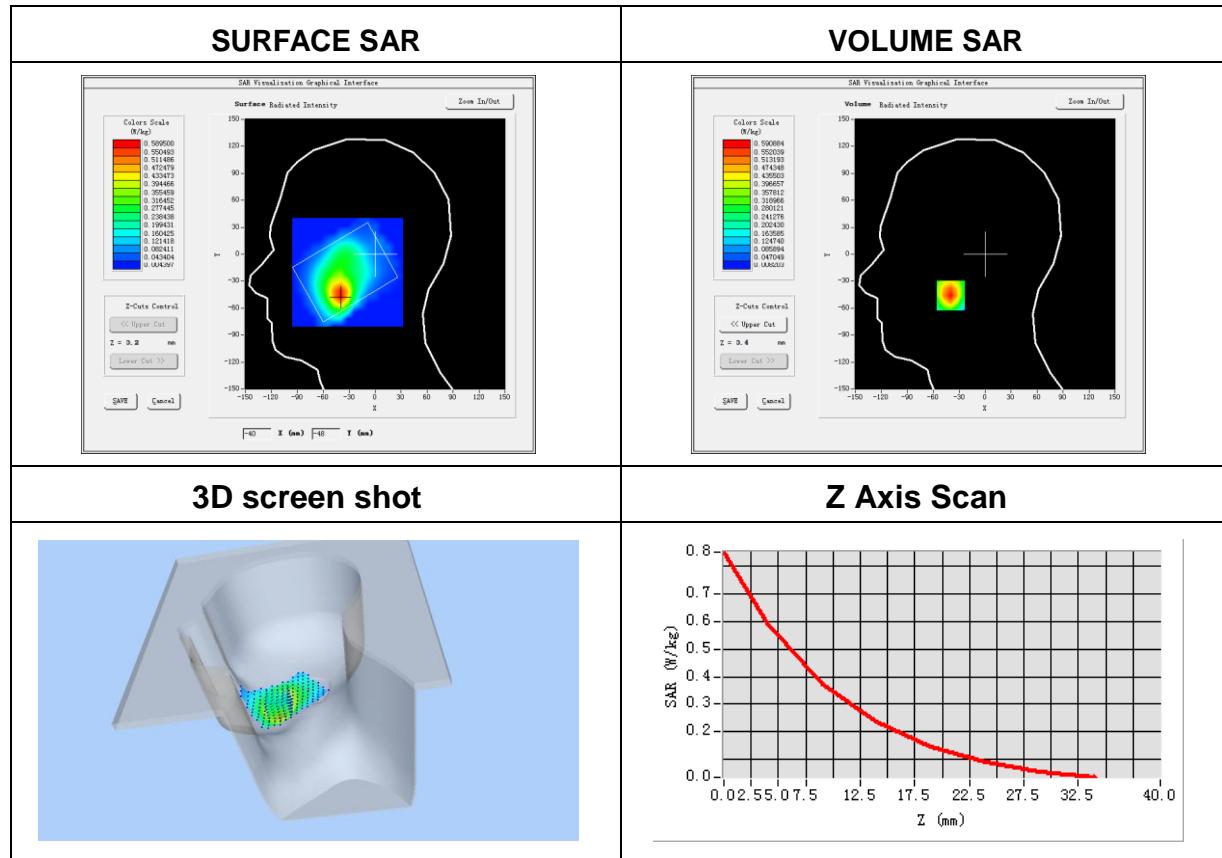

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	39.88
Conductivity (S/m)	1.79
Power drift (%)	-0.39
Probe	SN 14/16 EP309
ConvF	5.09
Crest factor:	1:1

Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.548268
SAR 1g (W/Kg)	5.364258

Z Axis Scan

Appendix B. SAR Test Plots

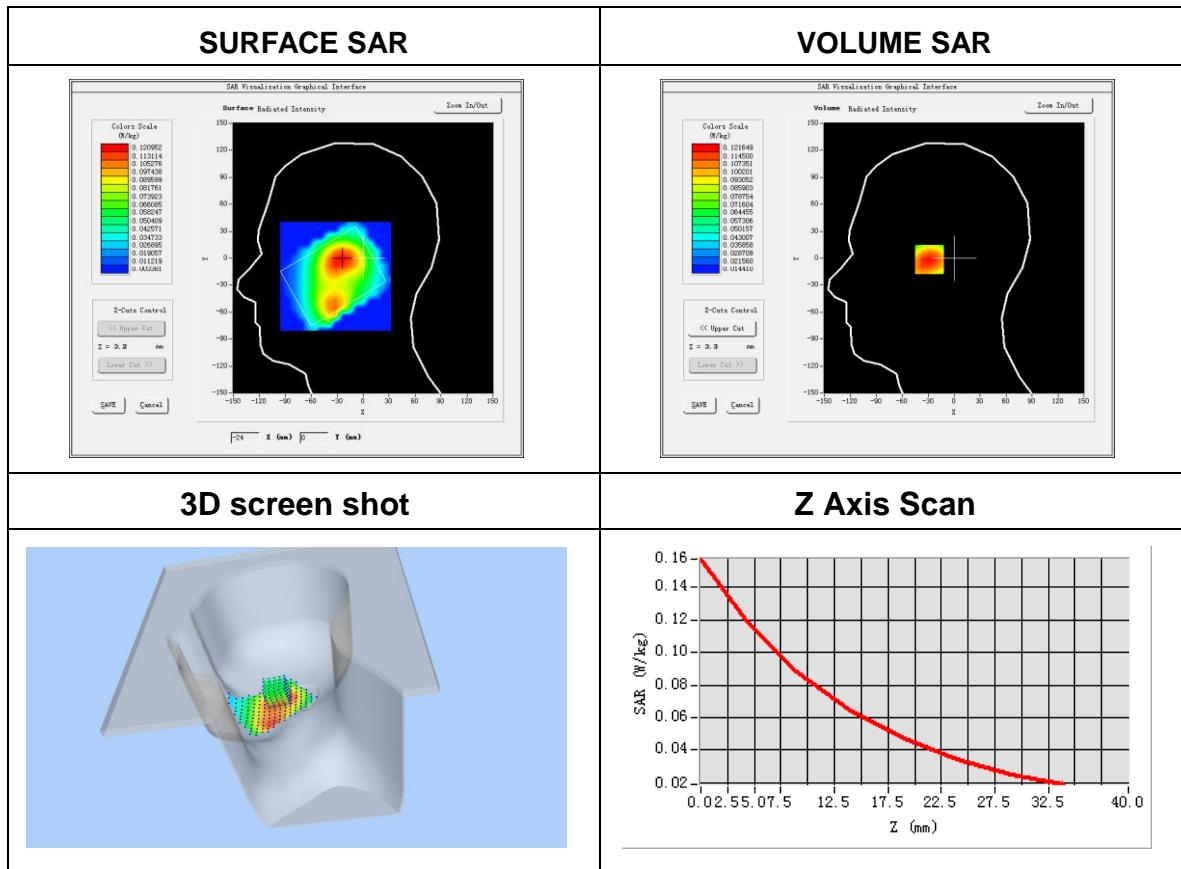

Plot 1: DUT: Vinci Hearable; EUT Model: Vinci Hearable 1.5

Test Date	2017-05-15
Probe	SN 14/16 EP309
ConvF	5.46
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7, dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Right head
Device Position	Cheek
Band	WCDMA II
Channels	Middle
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	1880.0
Relative permittivity (real part)	40.00
Conductivity (S/m)	1.40
Variation (%)	-1.77

Maximum location: X=-40.00, Y=-46.00

SAR Peak: 0.84 W/kg

SAR 10g (W/Kg)	0.319692
SAR 1g (W/Kg)	0.557011

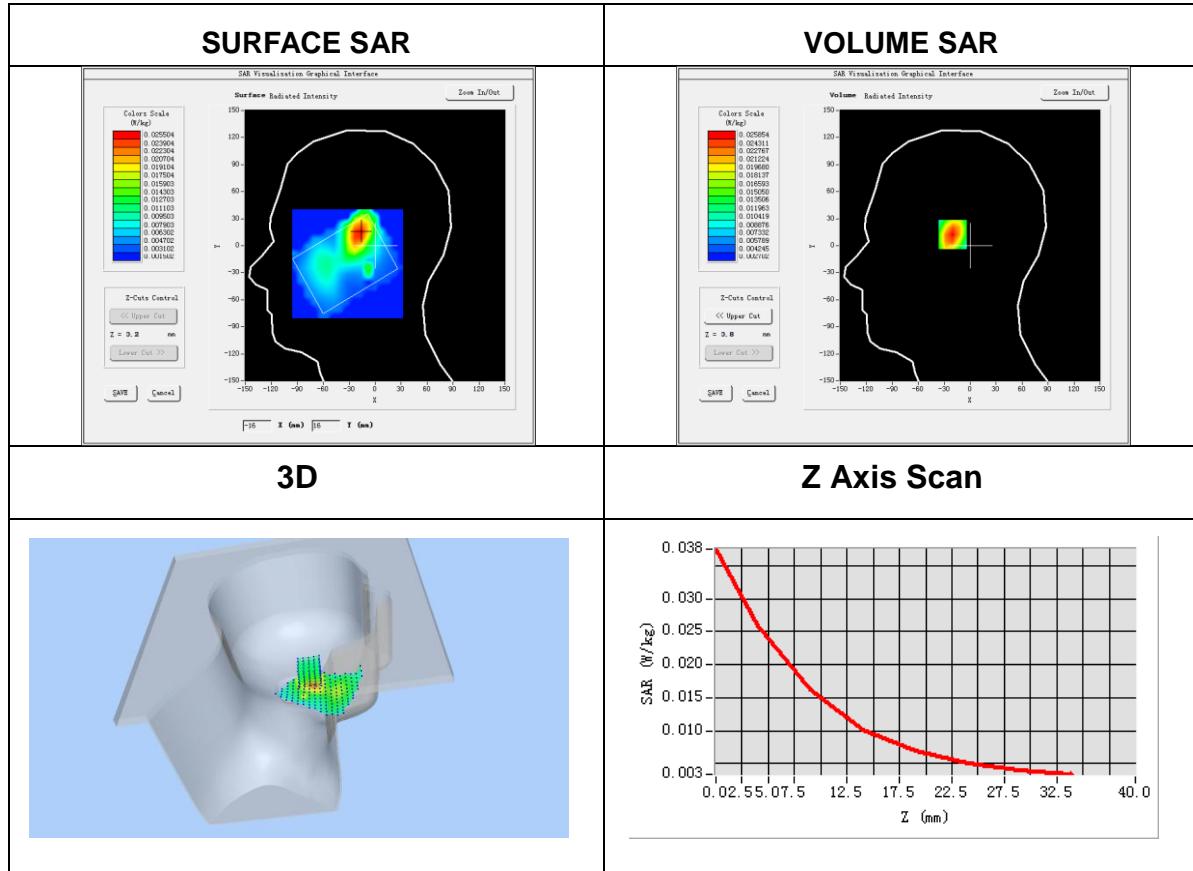


Plot 2: DUT: Vinci Hearable; EUT Model: Vinci Hearable 1.5

Test Date	2017-05-15
Probe	SN 14/16 EP309
ConvF	5.74
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7, dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Right head
Device Position	Cheek
Band	WCDMA V
Channels	Middle
Signal	WCDMA (Crest factor: 1.0)
Frequency (MHz)	836.6
Relative permittivity (real part)	42.27
Conductivity (S/m)	0.91
Variation (%)	-1.10

Maximum location: X=-25.00, Y=-1.00
SAR Peak: 0.16 W/kg

SAR 10g (W/Kg)	0.081722
SAR 1g (W/Kg)	0.117934



Plot 3: DUT: Vinci Hearable; EUT Model: Vinci Hearable 1.5

Test Date	2017-05-15
Probe	SN 14/16 EP309
ConvF	5.09
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7, dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Left head
Device Position	Cheek
Band	IEEE 802.11b ISM
Channels	High
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2462
Relative permittivity (real part)	39.23
Conductivity (S/m)	1.79
Variation (%)	-2.46

Maximum location: X=-18.00, Y=14.00
SAR Peak: 0.04W/kg

SAR 10g (W/Kg)	0.014564
SAR 1g (W/Kg)	0.024613

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT*****