

TEST REPORT

FCC Part 27

Report Reference No.: HK2007171893-3E

FCC ID: 2AHH4TL-403

Compiled by

(position+printed name+signature)..: File administrators Gary Qian

Gogt Binn Edon Hu Jason Zhou

Supervised by

(position+printed name+signature)..: Technique principal Eden Hu

Approved by

(position+printed name+signature)... Manager Jason Zhou

Date of issue...... Aug. 03, 2020

Testing Laboratory Name Shenzhen HUAK Testing Technology Co., Ltd.

Applicant's name...... Toplovo Industrial Co.,Ltd

Address...... Building B2b, Yingzhan Industrial Park Kengzi Town, Longgang

District, Shenzhen, China

Test specification:

Standard : FCC Part 27

Shenzhen HUAK Testing Technology Co., Ltd.All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd.as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Personal GPS tracker

Trade Mark N/A

Manufacturer...... Toplovo Industrial Co.,Ltd

Model/Type reference....: TL-403

Listed Models N/A

Ratings...... DC 5V from USB or DC3.7V By Battery

Modulation QPSK, 16QAM

Hardware version: V05

Software version: V05

Frequency...... LTE Band 12

Result..... PASS

Page 2 of 49 Report No.: HK2007171893-3E

TEST REPORT

Test Report No. :	HK2007171893-3E	Aug. 03, 2020
	11K2007171093-3L	Date of issue

Equipment under Test : Personal GPS tracker

Model /Type : TL-403

Listed Models : N/A

Applicant : Toplovo Industrial Co.,Ltd

Address : Building B2b, Yingzhan Industrial Park Kengzi Town,

Longgang District, Shenzhen, China

Manufacturer : Toplovo Industrial Co.,Ltd

Address : Building B2b, Yingzhan Industrial Park Kengzi Town,

Longgang District, Shenzhen, China

Test result	Pass

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1	5 U M M A R Y	4
1.1	TEST STANDARDS	4
1.2	Test Description	4
1.3	Test Facility	5
	1.3.1 Address of the test laboratory	5
1.4	Statement of the measurement uncertainty	5 5
<u>2</u>	GENERAL INFORMATION	6
0.4	Fuvinamental conditions	
2.1 2.2	Environmental conditions	6 6
2.2	Description of Test Modes Equipments Used during the Test	7
2.3	Modifications	7
2.4	Wountations	,
<u>3</u>	TEST CONDITIONS AND RESULTS	8
3.1	Output Power	8
3.3	Peak-to-Average Ratio (PAR)	13
3.4	Occupied Bandwidth and Emission Bandwidth	18
3.5	Band Edge compliance	24
3.6	Spurious Emission	29
3.7	Frequency Stability under Temperature & Voltage Variations	47
<u>4</u>	TEST SETUP PHOTOS OF THE EUT	49

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND

REG-ULATIONS

KDB971168 D01: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL

TRANSMITTERS

1.2 Test Description

Test Item	FCC /IC Rule No.	Result
RF Output Power	Part 2.1046 Part 27.50(c)(10)	Pass
Peak-to-Average Ratio	Part 2.1046	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(g)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(g)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(g)	Pass
Frequency stability	Part 2.1055 Part 27.54	Pass

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.
1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao' an District, Shenzhen, China

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd.. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen HUAK Testing Technology Co., Ltd.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 6 of 49 Report No.: HK2007171893-3E

2 **GENERAL INFORMATION**

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 Description of Test Modes

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

Note:

- 1. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst resulton this report.
- 2. Test method and refer to 3GPP TS136521.

Page 7 of 49 Report No.: HK2007171893-3E

2.3 Equipments Used during the Test

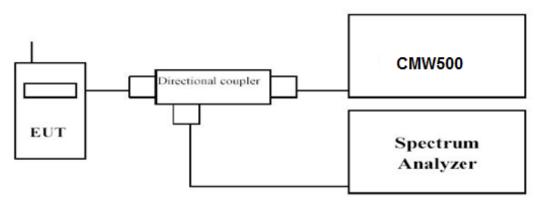
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration	Calibration
Test Equipment	Manufacturei	Model No.		Date	Due Date
LISN	ENV216	R&S	HKE-059	2019/12/26	2020/12/25
LISN	R&S	ENV216	HKE-002	2019/12/26	2020/12/25
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	2019/12/26	2020/12/25
Receiver	R&S	ESCI 7	HKE-010	2019/12/26	2020/12/25
Spectrum analyzer	Agilent	N9020A	HKE-048	2019/12/26	2020/12/25
RF automatic control unit	Tonscend	JS0806-2	HKE-060	2019/12/26	2020/12/25
Horn antenna	Schwarzbeck	9120D	HKE-013	2019/12/26	2020/12/25
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	2019/12/26	2020/12/25
Preamplifier	EMCI	EMC051845SE	HKE-015	2019/12/26	2020/12/25
Preamplifier	Agilent	83051A	HKE-016	2019/12/26	2020/12/25
Temperature and humidity meter	Boyang	HTC-1	HKE-075	2019/12/26	2020/12/25
High pass filter unit	Tonscend	JS0806-F	HKE-055	2019/12/26	2020/12/25
RF cable	Times	1-40G	HKE-034	2019/12/26	2020/12/25
Power meter	Agilent	E4419B	HKE-085	2019/12/26	2020/12/25
Power Sensor	Agilent	E9300A	HKE-086	2019/12/26	2020/12/25
Wireless Communication Test Set	R&S	CMW500	HKE-026	2019/12/26	2020/12/25
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	2019/12/26	2020/12/25

2.4 Modifications

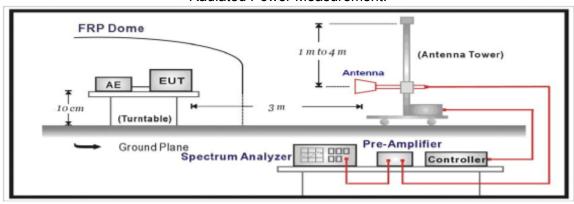
No modifications were implemented to meet testing criteria.

3 TEST CONDITIONS AND RESULTS

3.1 Output Power


LIMIT

Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are FCC limited to 3 watts ERP." IC limited to 5 watts ERP."


TEST CONFIGURATION

Conducted Power Measurement

Report No.: HK2007171893-3E

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

Page 9 of 49 Report No.: HK2007171893-3E

- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- g. Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Conducted Measurement:

	LTE I	-DD Band 12		
TX Channel	DD 0:/0#	Frequency	Average P	ower [dBm]
Bandwidth	RB Size/Offset	(MHz)	QPSK	16QAM
Banaman		699.7	23.52	22.85
	1 RB low	707.5	23.76	22.75
		715.3	23.54	22.68
		699.7	23.61	22.47
	1 RB high	707.5	23.44	22.27
4 4 8 41 1	G	715.3	23.79	21.91
1.4 MHz		699.7	22.60	21.41
	50% RB mid	707.5	23.61	22.65
		715.3	23.94	23.17
		699.7	23.77	22.78
	100% RB	707.5	23.50	22.54
		715.3	23.64	22.11
		700.5	23.67	21.94
	1 RB low	707.5	22.73	21.43
		714.5	23.73	22.69
		700.5	23.71	22.73
	1 RB high	707.5	23.72	22.66
0.1411	3	714.5	23.48	22.38
3 MHz		700.5	23.55	22.45
	50% RB mid	707.5	23.51	22.09
		714.5	22.59	21.62
		700.5	23.67	23.68
	100% RB	707.5	22.73	23.69
		714.5	23.73	23.84
		701.5	22.93	21.78
	1 RB low	707.5	22.75	21.73
		713.5	22.76	23.54
		701.5	22.86	22.81
	1 RB high	707.5	23.81	23.01
5 MHz	· ·	713.5	23.81	21.58
5 IVI⊓∠		701.5	23.87	21.58
	50% RB mid	707.5	22.69	21.49
		713.5	22.65	21.60
		701.5	22.79	23.57
	100% RB	707.5	22.72	23.67
		713.5	22.67	23.63

Page 10 of 49 Report No.: HK2007171893-3E

		704.0	22.77	22.63
	1 RB low	707.5	22.65	22.71
		711.0	23.90	22.56
		704.0	21.91	22.79
	1 RB high	707.5	21.99	22.91
10 MHz		711.0	21.89	23.59
IO IVITZ	50% RB mid	704.0	22.59	23.68
		707.5	22.91	22.51
		711.0	22.86	22.64
		704.0	22.04	22.69
	100% RB	707.5	21.78	22.57
		711.0	22.93	21.78

Radiated Measurement:

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$

3. ERP = EIRP - 2.15dBi as EIRP by subtracting the gain of the dipole.

LTE FDD Band 12 Channel Bandwidth 1.4MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
699.7	-18.95	2.38	8.23	2.15	36.7	21.45	34.77	V
707.5	-19.79	2.4	8.29	2.15	36.7	20.65	34.77	V
715.3	-20.2	2.43	8.28	2.15	36.7	20.2	34.77	V

LTE FDD Band 12_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
700.5	-18.49	2.38	8.23	2.15	36.7	21.91	34.77	V
707.5	-19	2.4	8.29	2.15	36.7	21.44	34.77	V
714.5	-19.33	2.43	8.28	2.15	36.7	21.07	34.77	V

LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
701.5	-18.7	2.38	8.23	2.15	36.7	21.7	34.77	V
707.5	-18.86	2.4	8.29	2.15	36.7	21.58	34.77	V
713.5	-20.24	2.43	8.28	2.15	36.7	20.16	34.77	V

LTE FDD Band 12 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
704.0	-18.16	2.38	8.23	2.15	36.7	22.24	34.77	V
707.5	-19.76	2.4	8.29	2.15	36.7	20.68	34.77	V
711.0	-20.01	2.43	8.28	2.15	36.7	20.39	34.77	V

LTE FDD Band 12_Channel Bandwidth 1.4MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
699.7	-18.5	2.38	8.23	2.15	36.7	21.9	34.77	V
707.5	-19.58	2.4	8.29	2.15	36.7	20.86	34.77	V
715.3	-20.05	2.43	8.28	2.15	36.7	20.35	34.77	V

LTE FDD Band 12_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
700.5	-18.17	2.38	8.23	2.15	36.7	22.23	34.77	V
707.5	-19.3	2.4	8.29	2.15	36.7	21.14	34.77	V
714.5	-19.95	2.43	8.28	2.15	36.7	20.45	34.77	V

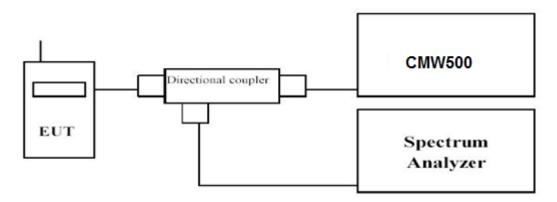
LTE FDD Band 12_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
701.5	-18.05	2.38	8.23	2.15	36.7	22.35	34.77	V
707.5	-19.61	2.4	8.29	2.15	36.7	20.83	34.77	V
713.5	-19.32	2.43	8.28	2.15	36.7	21.08	34.77	V

Page 12 of 49 Report No.: HK2007171893-3E

LTE FDD Band 12_Channel Bandwidth 10MHz_16QAM

	ETET BB Band TE_Gnamici Bandman Tomi IE_TOQ; ini							
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	FCC Limit (dBm)	Polarization
704.0	-18.03	2.38	8.23	2.15	36.7	22.37	34.77	V
707.5	-19.41	2.4	8.29	2.15	36.7	21.03	34.77	V
711.0	-19.68	2.43	8.28	2.15	36.7	20.72	34.77	V



3.3 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

LTE FDD Band 12							
TX Channel	Frequency	RB Size/Offset	PAPR (dB)				
Bandwidth	(MHz)	RB Size/Offset	QPSK	16QAM			
	699.7		3.89	4.75			
1.4 MHz	707.5	1RB#0	4.27	5.30			
	715.3		4.11	4.99			
	700.5		8.48	8.49			
3 MHz	707.5	1RB#0	4.35	5.35			
	714.5		4.22	5.15			
	701.5		2.52	8.49			
5 MHz	707.5	1RB#0	4.08	4.97			
	713.5		3.39	3.65			
	704.0		3.85	5.1			
10 MHz	707.5	1RB#0	4.25	5.12			
	711.0		3.36	5.31			

0.01%

0.001 %

1RB#0

0.01%

4.16 dB

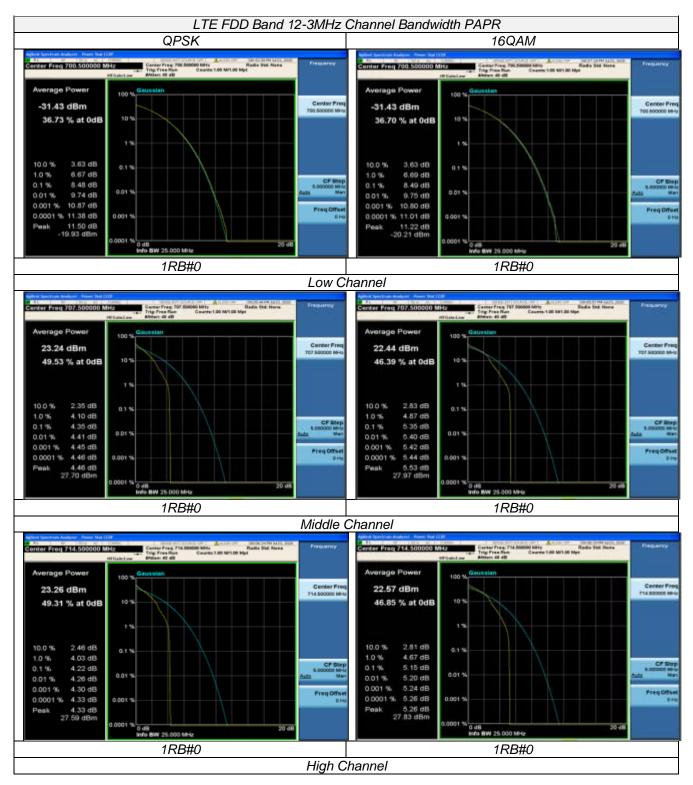
0.0001 % 4.23 dB

Page 14 of 49 Report No.: HK2007171893-3E LTE FDD Band 12-1.4MHz Channel Bandwidth PAPR QPSK 16QAM 23.50 dBm 22.90 dBm 50.60 % at 0dB 10% 47.28 % at 0dB 10% 4.40 dB 4.75 dB 4.80 dB 3.72 dB 3.89 dB 1.0 % 1.0 % 0.1% 0.1% 0.01% 0.01% 3.92 dB 0.01% 0.001 % 3.94 dB 0.001 % 4.81 dB 0.0001 % 4.81 dB Peak 4.85 dB 27.78 dBm 0.0001 % 3.95 dB 0.001 % 4.01 dB 27.51 dBm 1RB#0 1RB#0 Low Channel Center Fre Center Fre 23.40 dBm 22.45 dBm 49.40 % at 0dB 46.10 % at 0dB 10.0 % 2.41 dB 10.0 % 2.85 dB 0.1 % 4.07 dB 4.86 dB 1.0 % 1.0 % 1.0 % 4.86 dB 0.1 % 5.30 dB 0.01 % 5.35 dB 0.001 % 5.40 dB 0.0001 % 5.41 dB Peak 5.43 dB 27 88 dB 4.27 dB 4.30 dB 0.001 % 4.33 dB 0.0001 % 4.34 dB 0.001 % 0.001 % 4.35 dB 27.75 dBm 1RB#0 1RB#0 Middle Channel er Freq 715.300000 MHz 22.89 dBm 23.37 dBm 50.46 % at 0dB 10% 46.98 % at 0dB 10 % 2.35 dB 2.84 dB 0.1 % 0.1 % 3.86 dB 4.11 dB 4.51 dB 4.99 dB 1.0 % 0.1 % 1.0 % 0.1%

0.01 1

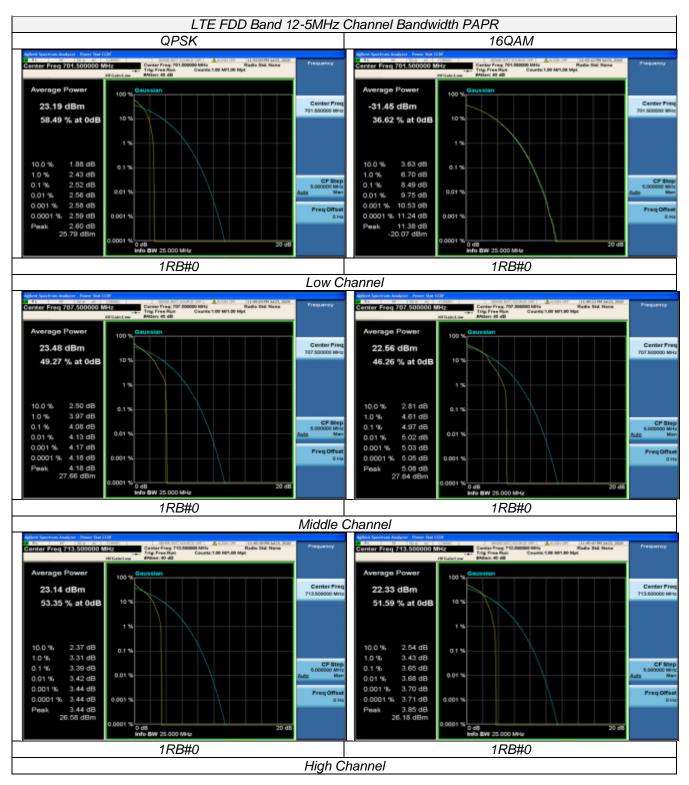
0.001 %

1RB#0

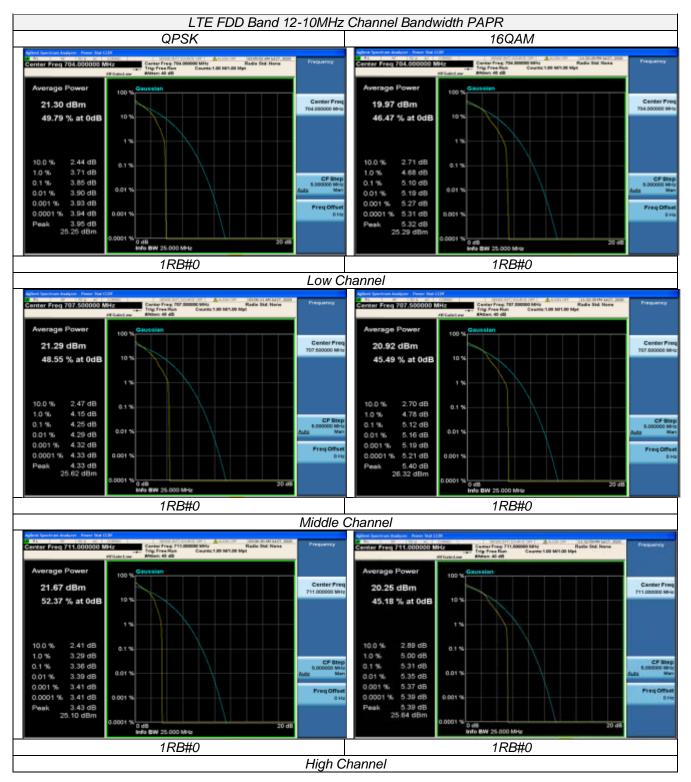

5.05 dB

0.01% 0.001% 5.10 dB 0.0001% 5.11 dB

High Channel

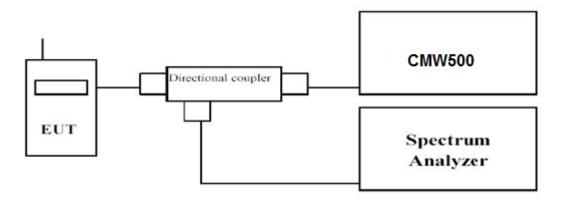


Page 15 of 49 Report No.: HK2007171893-3E



Page 16 of 49 Report No.: HK2007171893-3E

Page 17 of 49 Report No.: HK2007171893-3E


Page 18 of 49 Report No.: HK2007171893-3E

Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

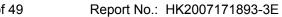
TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

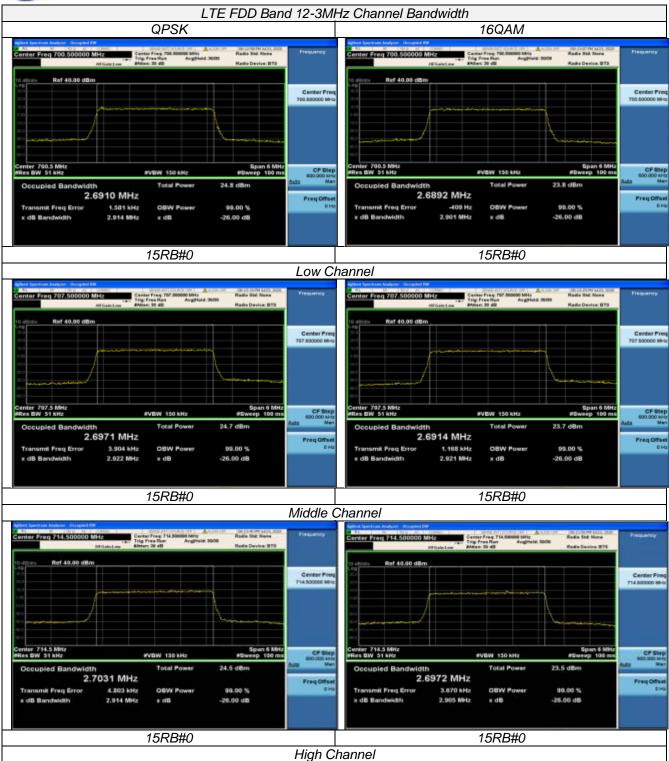
-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

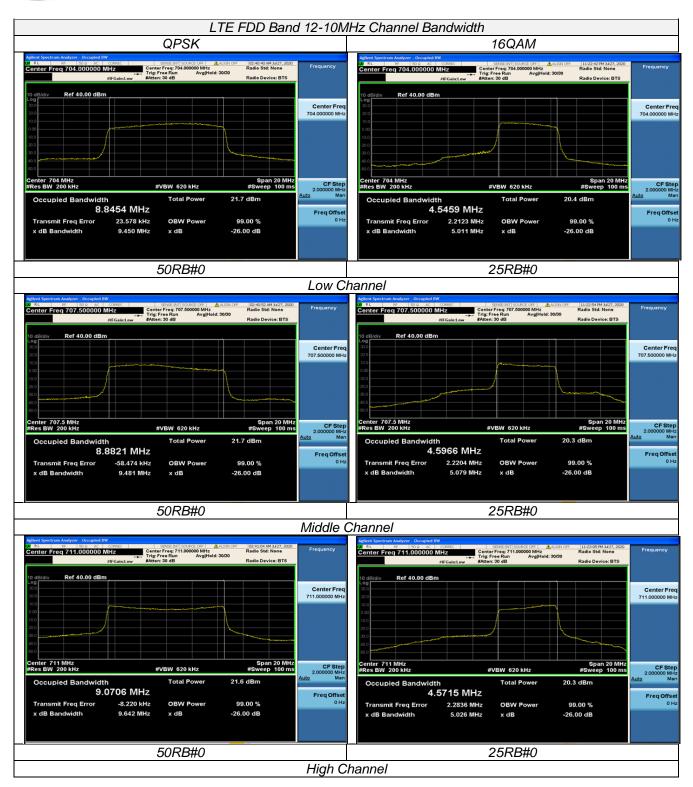

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.


LTE FDD Band 12							
TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	99% Occupied bandwidth (MHz)	-26dBc Emission bandwidth (MHz)			
			QPSK	QPSK			
		699.7	1.0890	1.248			
1.4 MHz	6RB#0	707.5	1.0903	1.249			
		715.3	1.0911	1.255			
		700.5	2.6910	2.914			
3 MHz	15RB#0	707.5	2.6971	2.922			
		714.5	2.7031	2.914			
		701.5	4.4979	4.913			
5 MHz	25RB#0	707.5	4.4997	4.898			
		713.5	4.5130	4.901			
		704.0	8.8454	9.450			
10 MHz	50RB#0	707.5	8.8821	9.481			
		711.0	9.0706	9.642			


LTE FDD Band 12							
TX Channel Bandwidth	RB Size/Offset	Frequency (MHz)	99% Occupied bandwidth (MHz)	-26dBc Emission bandwidth (MHz)			
			16QAM	16QAM			
		699.7	1.0903	1.267			
1.4 MHz	6RB#0	707.5	1.0869	1.268			
		715.3	1.0901	1.251			
		700.5	2.6892	2.901			
3 MHz	15RB#0	707.5	2.6914	2.921			
		714.5	2.6972	2.905			
		701.5	4.4946	4.841			
5 MHz	25RB#0	707.5	4.5036	4.887			
		713.5	4.5182	4.894			
10 MHz		704.0	4.5459	5.011			
	25RB#0	707.5	4.5966	5.079			
		711.0	4.5715	5.026			

Page 21 of 49 Report No.: HK2007171893-3E

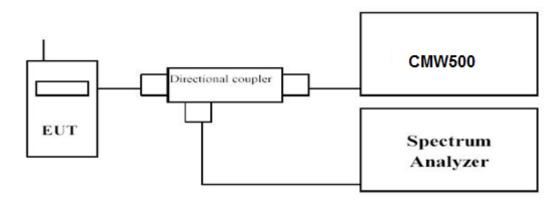


LTE FDD Band 12-5MHz Channel Bandwidth QPSK 16QAM 4.4979 MHz 4.4946 MHz -2.797 kHz -5.246 kHz 4.913 MHz 25RB#0 25RB#0 Low Channel 4.4997 MHz 4.5036 MHz 1.331 kHz 4.09E MHz 25RB#0 25RB#0 Middle Channel

r 713.5 MHz BW 100 kHz ter 713.5 MHz 6 BW 100 kHz 4.5130 MHz 4.5182 MHz -1.540 kHz 4.901 MHz 2.138 kHz 4.894 MHz 25RB#0 25RB#0

High Channel

Page 23 of 49 Report No.: HK2007171893-3E


Band Edge compliance

LIMIT

that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

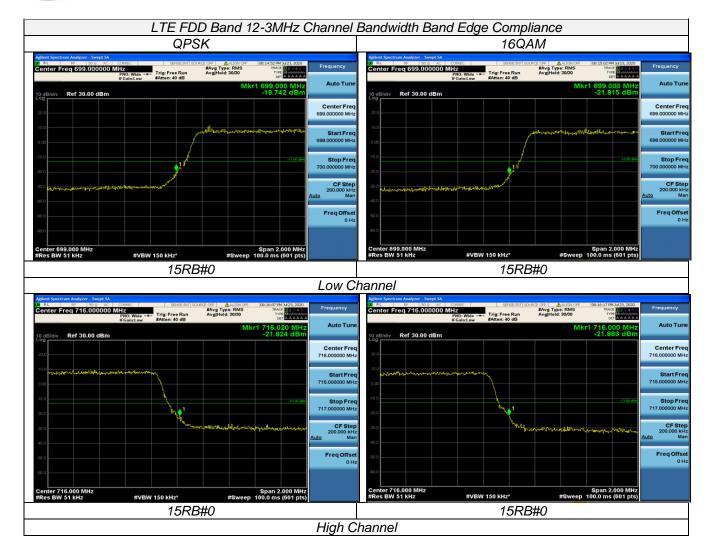
TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- Select lowest and highest channels for each band and different modulation.
- Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

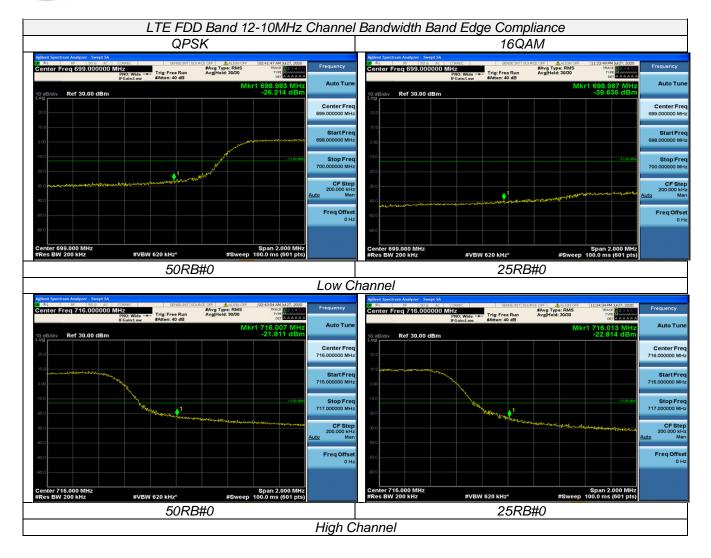
Remark:


We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

LTE FDD Band 12-1.4MHz Channel Bandwidth Band Edge Compliance **QPSK** 16QAM #Avg Type: RMS Avg|Held: 30/30 #Avg Type: RMS Avg|Hold: 30/30 Trig: Free Run Trig: Free Run Ref 30.00 Center Fre CF Stej 200.000 kH Ma Span 2.000 MHz #Sweep 100.0 ms (601 pts) #VBW 91 kHz* 6RB#0 6RB#0 Low Channel #Avg Type: RMS Avg|Hold: 30/30 #Avg Type: RMS Avg|Hold: 30/30 Trig: Free Run Center Fre 716.000000 MH Center Freq 716.000000 MHz Freq Offse Freq Offse 6RB#0 6RB#0

High Channel

Page 26 of 49 Report No.: HK2007171893-3E


25RB#0

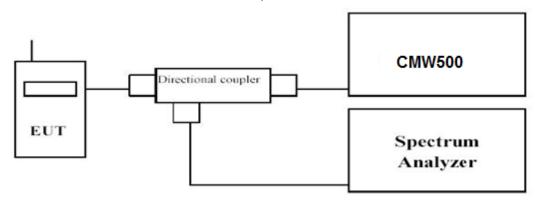
LTE FDD Band 12-5MHz Channel Bandwidth Band Edge Compliance QPSK 16QAM #Avg Type: RMS Avg|Hold: 30/30 Trig: Free Run Trig: Free Run #Atten: 40 dB Ref 30.00 dBm Center Fre CF Ste 200.000 kF Ma Span 2.000 MHz #Sweep 100.0 ms (601 pts) Span 2.000 MHz reep 100.0 ms (601 pts 25RB#0 25RB#0 Low Channel Center Freq 716.000000 MHz #Avg Type: RMS Avg|Hold: 30/30 #Avg Type: RMS Avg|Hold: 30/30 Trig: Free Run #Atten: 40 dB Ref 30.00 dBm Center Free 716.000000 MH Center Freq 716.000000 MHz Freq Offse

High Channel

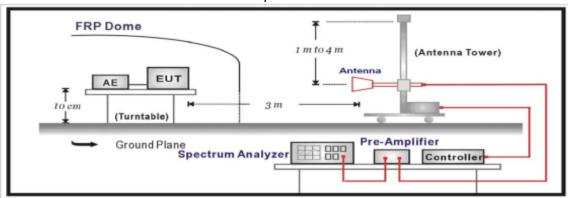
25RB#0

Page 28 of 49 Report No.: HK2007171893-3E

3.6 Spurious Emission


LIMIT

that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.


The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Page 30 of 49 Report No.: HK2007171893-3E

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
LTE FDD Band 12	0.03~26.5	1 MHz	3 MHz	Auto

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

Conducted Measurement: