

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page1of 117

FCC SAR Test Report

Client Name : Toplovo Industrial Co.,Ltd

Building B2b, Yingzhan Industrial Park Kengzi Town, Longgang Address :

District, Shenzhen, China

Product Name : Personal GPS tracker

Date : Aug. 06, 2020

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page2of 117

Contents

1.	State	ement of Compliance	ek hupo	bir.		boten	6
2.	Gen	eral Information		,botek	Yupo, I	- Jotek	7
	2.1	Client Information		otek	Anbo	Pr.	7
	2.2	Description of Equipment Under Test (EUT)	Anbor	br.	mboter	And	7
	2.3	Device Category and SAR Limits	popole.	Vur.	K	Anbo.	9
	2.4	Applied Standard	hoter	And		lek Pup,	9
	2.5	Environment of Test Site	,	iek Vup	01. VII.	- Note	9
	2.6	Test Configuration			oboter Ar	(b- 79)	9
3.	Spe	Test Configuration	oter An	Xo	Kupotek	Anbo.	10
	3. 1	Introduction	poler	Anda	ojek	anbor	10
	3. 2	SAR Definition	, botek	Anbore	bre.	upoten	10
4.	SAR	SAR Definition	VIII.	anboter	Amba	9وړيکان	11
	4. 1	E-Field Probe	Anv	20,,,,,,,,,	rek Anbo		12
	4.2	Data Acquisition Electronics (DAE)					12
	4.3	Robot Measurement Server	otek Anl	oor A		Repoter.	13
	4. 4	Measurement Server	otek	Mooter	Andr	Hootek	14
	4.5	Phantom		botek	Anbo	r.	14
	4.6	Device Holder	Anbo	otek	Anbore	P.U.	16
	4.7	Data Storage and Evaluation					v. 17
5.	Test	Equipment Listue Simulating Liquids	Anbote	YUD.		otek An	19
6.	Tiss	ue Simulating Liquids	do, do,	otek Ar	100. N.	, otek	21
7.	Syst	em Verification Procedures		wotek	Anbo,	***	23
8.	EUT	Testing Position	1,00,	Alek .	*abote.	AMP	25
	8. 1	Body Worn Position	anbote.	Aur ak	botek	Anbo.	25
9.	Mea	surement Procedures	hotek	Anbo.	M	k Anboh	26
	9. 1	Spatial Peak SAR Evaluation	in motel	k Anbor	bru.	la,, 194,	26
	9. 2	Power Reference Measurement	by	lay Yas	ooten And		27
	9.3	Area Scan Procedures	ier Vup		tootek P	upo,	27
	9.4	Zoom Scan Procedures	potek P	upo,	h. motek	Vupope.	28
	9. 5	Volume Scan Procedures	, totek	Anbore	Ann		29
	9.6	Volume Scan Procedures Power Drift Monitoring	VII.	eapoten.	Anbo	, bote	29
10	.Con	ducted Power	Anu	bote	k Anbo		30
11.	Ante	nna Location	Anbo.		otek Anbo	No. And	41
12	.SAR	R Test Results Summary	ak Anbo	No. Viv.	Volv	botek P	43
	. Simi	ultaneous Transmission Analysis	stell or	abore	Yup	bolek	47
	Simul	taneous TX SAR Considerations			Anbo.	Air. motek	
	Evalua	ation of Simultaneous SARsurement Uncertainty	Aupo	w.	Anbote.	Anv	47
14	. Mea	surement Uncertainty	Anbore	Pu.,	k sabotek	Anbe	48
		notek Anbors Air					

Report No.: 1	8220WC000362 FCC ID: 2AHH4TL-403 Page3of 117		
Appendix A.	EUT Photos and Test Setup Photos	Anbor	49
Appendix B.	Plots of SAR System Check	, poter	51
Appendix C.	Plots of SAR Test Data	hote	56
Appendix D.	DASY System Calibration Certificate		62

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page4of 117

TEST REPORT

Applicant : Toplovo Industrial Co.,Ltd

Manufacturer : Toplovo Industrial Co.,Ltd

Product Name : Personal GPS tracker

Model No. : TL-403

Trade Mark : N/A

Rating(s) : DC 5V from USB or DC3.7V By Battery

Test Standard(s) : IEEE 1528:2013; IEC 62209-2:2010; FCC 47 CFR Part 2 (2.1093:2013);

ANSI/IEEE C95.1:2005; Reference FCC KDBs;

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528:2013, IEC 62209-2:2010, FCC 47 CFR Part 2 (2.1093:2013), ANSI/IEEE C95.1:2005, and Reference FCC KDBs requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt	Jul.17, 2020
Date of Test	Jul.17, 2020~ Aug. 06, 2020
	Kingkong Jin
Prepared By	abortek J J J wortek Anborten
Anbotek Anbotek Anbotek Anbotek	(Engineer / Kingkong Jin)
	Anborek Anbore
	Bib Zhang
Reviewer	otek Anbotes, Ane Mek Vulpatek W
upotek Anbotek Anbotek Anbotek	(Supervisor / Bibo Zhang)
	Anbotek Anbote Ant botek Anbotek
	Ton chan
Approved & Authorized Signer	Anbotek Anbo tek anbotek Anbo
Hek Anbo K Motek Anbore Ans	(Manager / Tom Chen)

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page5of 117

Version

	Version No.	Date	Description
e K	01	Aug. 06, 2020	Original
ote	k Anbotek	Anbore Anborek	Anbores Anborek Anborek Anborek
inb	otek Anbores	k Anbotek Anbo	ter Anbotek Anbotek Anbotek Anbotek
P	nbotek Anbox	otek Anbotek Ar	troise Anbotek Anbotek Anbotek Anbotek Anbote
	Anbore Ame	nbotek Anbotek	hotek Anbotek Anbotek Ant
V	Anborotek	Anbotek Anboth	Anbotek Anboten Anbotek Anbotek

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page6of 117

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Francisco Dand	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit	
Frequency Band	Body-worn(5mm)	(W/Kg)	
WCDMA Band V	0.484	anbotek Anbo	
WCDMA Band II	0.656	anbotek Ani	
LTE Band 2	Anbore Anbores Anbores	A. abotek	
LTE Band 4	Anbored And O.411	ak 1.60tek	
LTE Band 12	0.327	1.6	
WLAN2.4G	0.305	boter Anu	
Simultaneous Reported SAR	0.961	Anboten Anbo	
Test Result	PASS	Pu. Potek	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in KDB 447498 D01 v06, 2015 and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page7of 117

2. General Information

2.1 Client Information

Applicant	:	Toplovo Industrial Co.,Ltd
Address	i	Building B2b, Yingzhan Industrial Park Kengzi Town, Longgang District, Shenzhen, China
Manufacturer : Toplovo Industrial Co.,Ltd		Toplovo Industrial Co.,Ltd
Address : Building B2b, Ying Shenzhen, China		Building B2b, Yingzhan Industrial Park Kengzi Town, Longgang District, Shenzhen, China
Factory	:	Toplovo Industrial Co.,Ltd
Address : Building B2b, Yingzhan Industrial Park Kengzi Town, Shenzhen, China		Building B2b, Yingzhan Industrial Park Kengzi Town, Longgang District, Shenzhen, China

2. 2 Description of Equipment Under Test (EUT)

e,	Product Name	:	Personal GPS tracker
	Model No.		TL-403
Ī	Trade Mark	:	N/A Mark Annothing Annothi
	Test Power Supply	:	DC 5V from USB or DC3.7V By Battery
	Tx Frequency	:	2.4G WIFI:2412~2462MHz WCDMA Band 2: 1852.4 MHz ~ 1907.6 MHz WCDMA Band 5: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7~1909.3 MHz LTE Band 4: 1710-1755 MHz LTE Band 12: 699-716 MHz
0	Type of Modulation	:	2.4G WiFi: 802.11b CCK; 802.11g/n OFDM WCDMA:QPSK,16QAM LTE:QPSK,16QAM
V _S	Antenna Type	:	2.4G WIFI:PIFA Antenna WCDMA Band 2/5: PIFA Antenna LTE: PIFA Antenna

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page8of 117

10220110		2.4G WIFI: 1 dBi
		WCDMA Band 2:1 dBi
Antenna Gain(Peak)		WCDMA Band 5:1 dBi
Antenna Gam(reak)	•	LTE Band 2: 1 dBi
		LTE Band 4: 1 dBi
		LTE Band 12: 1 dBi
Category of device		Portable device

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page9of 117

2. 3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2. 4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB248227 D01 802 11 Wi-Fi SAR v02r02
- KDB941225 D01 3G SAR Procedures v03r01
- KDB 941225 D05 SAR for LTE Devicesv02r05
- KDB 941225 D06 Hotspot SARv02r01
- KDB648474 D04 Handset SAR v01r03

2. 5 Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70 Andrew Andrew	55~65

2. 6 Test Configuration

For WIFI SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page10of 117

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3. 2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{odv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

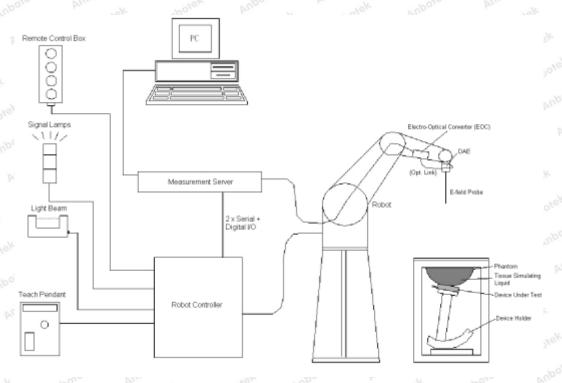
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page11of 117

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page12of 117

- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4. 1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to 100 mW/g; Linearity: \pm 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm

Photo of EX3DV4

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4. 2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page13of 117

and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

4. 3 **Robot**

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page14of 117

4. 4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	re role, pur
Filling Volume	Approx. 25 liters	The second
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	All yes
	Anbotek Anbotek Anbotek	Photo of SAM Phanto

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page15of 117

<ELI4 Phantom>

100		16.
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	all a constant
Filling Volume	Approx. 30 liters	din
Dimensions	Major ellipse axis: 600 mm	
	Minor axis:400 mm	
	Anborek Anborek Anborek Anb	8 9 8 8 B
	Anbotek Anbotek Anbotek	, hel
	Hek Anbotek Anbore Anbotek	And ok hotek Anbe
	abotek Anbotek Anbotek Anbotek	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page16of 117

4. 6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page17of 117

4. 7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

- Conversion factor ConvF_i

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page18of 117

correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i = x, y, z)

Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

a_{ij}= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel i in V/m

H_i= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude)

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page19of 117

5. Test Equipment List

Manufacture	Name of Favrings and	Type/Marks	Carial Normals	Calibration			
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	835MHz System Validation Kit	D835V2	4d154	Jun 16,2018	Jun 15,2021		
SPEAG	1900MHz System Validation Kit	D1900V2	5d175	Jun. 15, 2019	Jun. 14, 2022		
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun 15,2018	Jun 14,2021		
SPEAG	750MHz System Validation Kit	D750V3	1163	Sep. 03,2019	Sep. 02,2022		
SPEAG	1750MHz System Validation Kit	D1750V2	1021	Jul. 03,2019	Jul. 02,2022		
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMU 200	117888	Nov.04, 2019	Nov.03, 2020		
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMU 500	104209	Nov.04, 2019	Nov.03, 2020		
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.03,2019	Sept.02,2020		
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2020	May 05,2021		
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Nov.04, 2019	Nov.03, 2020		
SPEAG	DAK	DAK-3.5	1226	NCR	NCR		
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR		
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR		
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR		
Agilent	Power Meter	N1914A	MY50001102	Nov.04, 2019	Nov.03, 2020		
Agilent	Power Sensor	N8481H	MY51240001	Nov.04, 2019	Nov.03, 2020		
R&S	Spectrum Analyzer	N9020A	MY51170037	Nov.04, 2019	Nov.03, 2020		
Agilent	Signal Generation	N5182A	MY48180656	Nov.04, 2019	Nov.03, 2020		
Worken	Directional Coupler	0110A05601O- 10	COM5BNW1A2	Nov.04, 2019	Nov.03, 2020		

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page20of 117

5. In system check we need to monitor the level on the power meter, and adjust the power amplifierlevel to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page21of 117

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(er)
				For Hea	ıd			
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1750	55.2	0	0	0.3	0	44.5	1.37	40.1
1800,1900,2000	55.2	0	0	0.3	otek O Ant	44.5	1.40	40.0
2450	55.0	0	0	otek 0	nbokelo I	45.0	1.80	39.2
2600	54.8	M O MA	O Am	0.1	0	45.1	1.96	39.0
5000	65.5	otel O	17.2	Orek	17.3	Onbox	5.27	35.3
5000	78.6	0	10.7	0	10.7	0 Mak	6.00	48.2

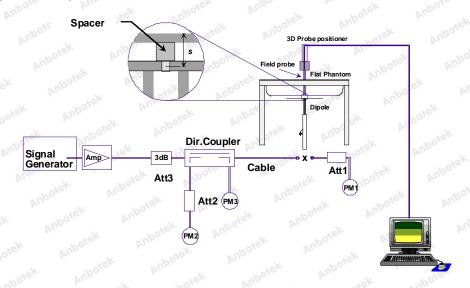
Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page22of 117

The following table shows the measuring results for simulating liquid.

Measured	Target '	Гissue		Measure	ed Tissue		T	
Frequency (MHz)	ϵ_{r}	σ	ε _r	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Date
850	41.5	0.97	41.4	-0.24%	0.95	-2.06	22.3	07/20/2020
1900	40.0	1.40	39.04	-2.40%	1.38	-1.43	22.6	07/21/2020
2450	39.2	1.80	39.05	-0.38%	1.86	3.33	22.4	07/22/2020
750	750	41.9	0.89	41.16	-1.77	0.916	2.92	07/23/2020
1750	1750	40.1	1.37	40.33	0.57	1.361	-0.66	07/24/2020

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page23of 117

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

> System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page24of 117

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)	Test Date
835	250	9.57	2.35	9.4	-1.78	07/20/2020
1900	250	40.1	10.21	40.84	1.85	07/21/2020
2450	250	51.8	12.92	51.68	-0.23	07/22/2020
750	250	8.53	2.15	8.60	0.82	07/23/2020
1750	250	36.9	8.85	35.40	-4.07	07/24/2020

Target and Measurement SAR after Normalized


Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page25of 117

8. EUT Testing Position

8.1 Body Worn Position

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positionedagainst a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessoryexposure is typically related to voice mode operations when handsets are carried in body-worn accessories. Thebody-worn accessory procedures in FCC KDB 447498 D01 v06, 2015 should be used to test for body-worn accessory SARcompliance, without a headset connected to it. This enables the test results for such configuration to be compatible withthat required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to thatrequired for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without aheadset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode andfrequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. Whenmultiple accessories that do not contain metallic components are supplied with the device, the device is tested with onlythe accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body Worn Position

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page26of 117

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9. 1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page27of 117

- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9. 2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz

	≤3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	$20^{\circ}\pm1^{\circ}$		
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the abo the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page28of 117

9. 4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz	
abore Arri	ž s	-oten and	sek sport	All K notes	
Maximum zoom scan s	natial reso	lution: Ava Ava	≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm [*]	
With All Scales	THILIT ICSO	Attachi. AAZoom, AyZoom	2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
6				3 – 4 GHz: ≤ 4 mm	
	uniform	grid: $\Delta z_{Z_{00m}}(n)$	≤ 5 mm	4 – 5 GHz: ≤ 3 mm	
c				5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan		Δz _{Zoom} (1): between		3 – 4 GHz: ≤ 3 mm	
spatial resolution,		1 st two points closest to phantom surface	≤ 4 mm	4 – 5 GHz: ≤ 2.5 mm	
normal to phantom surface				5 – 6 GHz: ≤ 2 mm	
3	grid	Δz _{Zoom} (n>1): between subsequent	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
P		points			
36''				3 – 4 GHz: ≥ 28 mm	
Minimum zoom scan volume	x, y, z		≥ 30 mm	4 – 5 GHz: ≥ 25 mm	
· ORdine				5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page29of 117

9. 5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9. 6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page30of 117

10. Conducted Power

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page31of 117

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βd	β _d (SF)	β₀/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and $\triangle_{\mathsf{NACK}}$ = 30/15 with β_{hs} = 30/15 * β_c , and \triangle_{CQI} = 24/15

with $\beta_{hs} = 24/15 * \beta_{c}$.

Note 3: CM = 1 for β_0/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page32of 117

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_0/β_0 ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page33of 117

<WCDMA Conducted Power>

WCDMA		Band I	I (dBm)			Band V	V (dBm)	
TX Channel	Tune-up	9262	9400	9538	Tune-up	4132	4183	4233
Frequency (MHz)	power	1852.4	1880.0	1907.6	power	826.4	836.6	846.6
RMC 12.2Kbps	23.1	23.01	22.66	22.78	23.5	23.19	23.36	23.12
HSDPA Subtest-1	22.7	22.00	22.68	22.44	23.0	22.00	22.78	22.14
HSDPA Subtest-2	22.2	21.85	21.90	22.11	22.5	22.44	21.64	22.18
HSDPA Subtest-3	23.0	22.65	22.37	22.98	22.5	22.41	21.60	22.87
HSDPA Subtest-4	22.0	21.52	21.93	21.87	22.0	21.46	21.91	21.44
HSUPA Subtest-1	22.0	20.39	21.81	20.87	22.5	20.98	21.32	22.46
HSUPA Subtest-2	21.0	20.36	20.76	20.56	22.0	20.59	20.35	21.95
HSUPA Subtest-3	21.8	21.04	21.73	20.15	21.7	20.98	21.15	21.68
HSUPA Subtest-4	20.6	19.76	20.55	20.55	21.8	20.73	19.98	21.78
HSUPA Subtest-5	22.0	20.25	21.82	20.97	22.0	19.91	21.55	21.83

General Note

- 1. Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.
- 2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.
- 3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page34of 117

<LTE Conducted Power>

totek	Aupor Air	LTE FDD Band 2	storek Anbo	Dir.
TX Channel	Frequency	RB Size/Offset	Burst Averag	e Power [dBm]
Bandwidth	(MHz)	ND 012C/0113Ct	QPSK	16QAM
yek Aupora		1 RB low	23.42	22.51
botek Anbots	1850.7	1 RB high	23.53	22.60
hotek Ank	ofer 1030.7	50% RB mid	23.56	22.46
And	abotek Anbor A	100% RB	23.42	22.10
Anbo.		1 RB low	23.31	22.23
1.4 MHz	1880.0	1 RB high	23.19	22.11
1.4 IVIDZ	1000.0	50% RB mid	22.38	21.41
otek anbote		100% RB	23.49	22.53
de yes	stek Anbor Ar.	1 RB low	23.54	21.42
Aupo, W.	1000.3	1 RB high	23.71	21.58
Ambore K Ame	1909.3	50% RB mid	23.71	21.79
Anboten		100% RB	23.65	22.23
anbotek Anbotek	Anbo sek abotek	1 RB low	22.88	22.31
sek abotel	10E1 E	1 RB high	23.01	22.14
or by	1851.5	50% RB mid	22.94	22.15
nbotek Anboten		100% RB	22.22	21.12
Anboten A	tek supotek	1 RB low	22.14	21.18
2 MI I-	1000 0	1 RB high	22.07	21.20
3 MHz	1880.0	50% RB mid	22.12	21.18
ok hotek		100% RB	23.20	22.39
Offer Arte	ek anboten Anbo	1 RB low	23.28	22.45
inbotek Anbo	4000 F	1 RB high	23.64	22.42
Anbotek An	1908.5	50% RB mid	22.42	21.57
abořek.		100% RB	22.55	21.65
, nbořek	Anbore And And	1 RB low	22.98	22.18
Aur	4050 F	1 RB high	23.27	22.26
Her And	1852.5	50% RB mid	23.18	21.05
nbotek Anbot		100% RB	22.16	21.16
5 MHz	o. Ar. motek	1 RB low	22.06	21.08
b., hotek	Anbores Ango o stek	1 RB high	22.10	21.17
Ann	1880.0	50% RB mid	22.08	22.35
Anbu		100% RB	23.32	22.50
rek Anbore	1907.5	1 RB low	23.33	22.05

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220	WC000362 FCC	ID: 2AHH4TL-403 Page35	of 117	abore Ar
anbotek Anbo		1 RB high	23.10	21.54
hotek Anboti		50% RB mid	22.47	21.27
Ans otek ant		100% RB	22.55	21.45
And	anbotek Anbo.	1 RB low	23.98	21.69
Anbo.	4055.0	1 RB high	23.81	21.87
otek Anbore	1855.0	50% RB mid	23.99	wotek ar
hotek Anbotek		100% RB	22.76	Arra
nt otek anbore	Aupa	1 RB low	22.95	23.43
Ando Mille	4000.0	1 RB high	22.73	22.87
10 MHz	1880.0	50% RB mid	22.76	otek Anbore
Anbore		100% RB	23.63	hotek Anbot
rek Anboten	Ann rek anbotek	1 RB low	21.63	22.43
otek Anbotek	4005.0	1 RB high	23.27	22.11
botek Anbotek	1905.0	50% RB mid	22.51	Aupo
Vupo, by		100% RB	22.74	VIA OLO
Anborek Anbor	-otek Anboten	1 RB low	23.82	22.94
Anboten		1 RB high	23.94	23.00
ak Anbotek Anbo	1857.5	50% RB mid	23.81	iba ak /
		100% RB	23.81	Anbore
or Air, petek	Vupose Vue	1 RB low	23.56	23.03
Anbore Ans	1000.0	1 RB high	23.78	22.57
15 MHz	1880.0	50% RB mid	22.86	ek Inbotek
anbotek Ar		100% RB	23.97	ak I abote
ak abotek	Aupor K Motok	1 RB low	24.01	22.23
ok hotek	Amboret Amus Amus Amus Amus Amus Amus Amus Amus	1 RB high	23.49	23.14
DOL YUR TOTAL	1902.5	50% RB mid	23.59	Anbotes
Anboten Anbo		100% RB	23.99	Anb/tek
anbotek Arbot	sek shotek p	1 RB low	23.82	23.76
anborek Ani	1860.0	1 RB high	23.31	22.98
k Pupotek	1800.0	50% RB mid	22.89	DOTO / ATT
Auratek		100% RB	23.18	Anboter / Anb
oter And	Anborek Anbore	1 RB low	24.05	22.91
20 MHz	4000.0	1 RB high	22.98	22.91
anbotek Anbote	1880.0	50% RB mid	23.77	k hotek
Ant Motek		100% RB	22.91	Am
Yu. Votek	Anborer Anbor	1 RB low	23.53	22.92
Anbo	1900.0	1 RB high	23.30	23.28
otek Anbotes		50% RB mid	23.05	potek An
	607	LOY ADU IN	110	1207

Shenzhen Anbotek Compliance Laboratory Limited

Report N	o.: 18220WC000362	FCC ID:	2AHH4TL-403 Pag	je36of 117	k spoter	VUS
hotek	Anbo, Ar.	Vupoter.	100% RB	23.32	Pr. Yek	

And	hotek Anbor LT	E FDD Band 4	AUD	shorek Anb
TX Channel Bandwidth	Frequency (MHz)	RB Size/Offset	Average Power [dBm]	
			QPSK	16QAM
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	otek Anbo tek abot	1 RB low	23.27	22.81
	1710.7	1 RB high	23.37	22.88
	Anbotek Anbotek Anbotek	50% RB mid	23.45	22.64
		100% RB	23.53	21.82
iek Anboten	Ann otek Anbotek	1 RB low	23.70	22.33
1.4 MHz	1722 E	1 RB high	23.34	22.13
Anbotek Anbatel	1732.5 AND OF STREET	50% RB mid	22.50	21.47
		100% RB	23.40	22.21
	Anborek Anborek An	1 RB low	23.38	22.27
Anbotek	And And And Andrew	1 RB high	23.43	22.48
anbotek Anbotek	1754.3	50% RB mid	22.95	22.81
tek hotel	Anbore K Ans Sotek	100% RB	23.17	22.88
or to total	JK Anbores And	1 RB low	23.16	22.17
Anbotek Anbote	otek 1stotek Anbo	1 RB high	23.15	22.36
Anbotek Anbote	1711.5	50% RB mid	23.14	22.39
	upo, ok Potek b	100% RB	22.25	21.38
3 MHz	1732.5	1 RB low	22.35	21.52
		1 RB high	22.37	21.17
		50% RB mid	22.27	21.27
		100% RB	22.87	21.90
2500	Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	1 RB low	22.80	21.89
		1 RB high	22.94	21.90
		50% RB mid	22.14	21.15
		100% RB	22.07	21.16
And tak	Anborek Anbor	1 RB low	23.44	22.21
abotek Anbo	1712.	1 RB high	23.14	22.23
abotek Anbo	1712.	50% RB mid	23.23	22.06
5 MHz	Anboter And stek	100% RB	22.27	21.24
k Anbotek	Anboren Anbo. Lak	1 RB low	22.24	21.24
	1732.5	1 RB high	22.27	21.22
	Anboten Anboten	50% RB mid	22.31	21.31

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page37of 117

Report No.: 18220	DWC000362 FCC ID	: 2AHH4TL-403	of 117	above An
abotek Anbo	ak hotek Anbotes	100% RB	22.99	21.78
Anbotek Anbot	Ans otek anbo	1 RB low	22.91	21.56
An Lotek an	1750 5	1 RB high	23.25	22.01
And	1752.5	50% RB mid	22.04	22.31
Jek Aupo	Anbotek Anbote	100% RB	22.04	23.23
Coolek Anbo.	hotek Anboten	1 RB low	23.32	22.90
botek Anbote	1715.0	1 RB high	23.47	23.13
Ant botek Antote	M 1713.0	50% RB mid	23.32	Anb
Ann otek of	Potek William ok William	100% RB	23.47	K APO.
Aupo	abotek Anbote An	1 RB low	23.90	22.38
10 MHz	1732.5	1 RB high	24.09	22.37
TO IVII IZ	1732.3	50% RB mid	24.18	in otek and
hotek Anbotek	And rek abotek	100% RB	23.13	Anb
And hotek Anbote	Aupo. A. Pote	1 RB low	23.15	23.38
Aupo, Pak	1750.0	1 RB high	23.06	22.16
Anbors A	1750.0	50% RB mid	23.12	tek Anboten
ek Anbote. A	int otek Anbotek	100% RB	23.67	otek / Anbotek
otek Anboten	Anbo tek anbotek	1 RB low	23.40	23.30
otek anbotek	1717.5	1 RB high	23.84	23.47
Anbetek Anbetek	And ATT.5 And	50% RB mid	24.26	Auport A
Anbotek Anbote	stek Anbotek Anbo	100% RB	24.13	VUID-Ser.
Anbore Alle	otek Anbotek Anb	1 RB low	24.06	23.78
15 MHz	1732.5	1 RB high	23.93	23.27
13 IVII IZ	Anbo 1732.0	50% RB mid	24.10	po. I k.
ak shotek	Anbore And And	100% RB	23.08	Anbore / Am
Supora K Polek	Anboten And	1 RB low	22.62	22.93
Anbore And	1747.5	1 RB high	23.55	23.82
Anboten Anbo	1141.5	50% RB mid	23.70	ek Jobotek
k anborek Ar	100. W. Potek W.	100% RB	23.94	-botek
rek nbotek	Anboro K Am	1 RB low	23.39	23.91
or All	1720.0	1 RB high	23.45	24.15
abote And	1720.0	50% RB mid	23.49	23.09
Anbotek Anbo	ek abotek Anbote	100% RB	23.20	22.96
20 MHz	ek stotek Anbo	1 RB low	24.27	22.79
Anbotek Ant	DOTO ATT	1 RB high	24.24	22.84
ak hotek	1732.5	50% RB mid	24.13	ofer / And
And atek	Anbotek Anbo.	100% RB	23.59	inbotek / Anbo
hootek Anbe	1745.0	1 RB low	23.09	23.90
M. 140°	DV. 70.	- 47	V WO	IA'

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page38of 117

abotek Anb	-X-	hotek A	upoter	1 RB high	23.40	23.27
Pr. Potek	hpoter		Vupo, ek	50% RB mid	23.44	And
Ann	Anbotek	Anbo	pore	100% RB	23.39	Mariek

nbotek Anbot	LTE FDD	Band 12	ek Anbore	Ann
TX Channel	RB Size/Offset	Frequency		Power [dBm]
Bandwidth	aborek Ann k sorek	(MHz)	QPSK	16QAM
	abotek Anbore An wotek	699.7	23.52	22.85
	1 RB low	707.5	23.76	22.75
	And tek Anbotek Anbo	715.3	23.54	22.68
	Anbo tek nbotek Ar	699.7	23.61	22.47
	1 RB high	707.5	23.44	22.27
1.4 MHz	botek Anbore And otek	715.3	23.79	21.91
	hotek Anbotek Anbo	699.7	22.60	21.41
	50% RB mid	707.5	23.61	22.65
Anbotek Anbote	Anbo	715.3	23.94	23.17
	Anbor Ar work An	699.7	23.77	22.78
	100% RB	707.5	23.50	22.54
nbote Ans	sotek Anbotek Anbo	715.3	23.64	22.11
Anbote. A	tek anbotek Anbo.	700.5	23.67	21.94
	1 RB low	707.5	22.73	21.43
	Anbore An Motek Anbore	714.5	23.73	22.69
	Anbore And Otek on	700.5	23.71	22.73
	1 RB high	707.5	23.72	22.66
hoten Anbo	stek anbotek Ambot	714.5	23.48	22.38
3 MHz	oo Ak botek Anbore	700.5	23.55	22.45
	50% RB mid	707.5	23.51	22.09
	Anbote Ann Stek Shoote	714.5	22.59	21.62
	Anbotek Anbo	700.5	23.67	23.68
	100% RB	707.5	22.73	23.69
	Anbotek Anbotes	714.5	23.73	23.84
abotek Ani	701.5	701.5	22.93	21.78
Ano botek	1 RB low	707.5	22.75	21.73
5 MHz	anbotek Anbo sek abotel	713.5	22.76	23.54
	4 DD High W	701.5	22.86	22.81
	1 RB high	707.5	23.81	23.01

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page39of 117

Report No., 162	ZUVVCUUU30Z FCC ID. ZATI	141L-403 Pages90) I I I 7	po.
aboiek Anbo	ak hotek Anbote.	713.5	23.81	21.58
botek An	pote And Stek Anbotek	701.5	23.87	21.58
Ann	50% RB mid	707.5	22.69	21.49
Anba		713.5	22.65	21.60
lek Aupo,	botek Anbore Ans	701.5	22.79	23.57
potek Anbore	100% RB	707.5	22.72	23.67
botek Anbote		713.5	22.67	23.63
Arr. ant	ofer Anbo	704.0	22.77	22.63
Anb	1 RB low	707.5	22.65	22.71
Anbo.		711.0	23.90	22.56
ak Anbotek	Anbores Anb	704.0	21.91	22.79
lotek Anboten	1 RB high	707.5	21.99	22.91
TO MI Indiana		711.0	21.89	23.59
10 MHz	Anbour Ak hotek	704.0	22.59	23.68
Aupo, ok	50% RB mid	707.5	22.91	22.51
Anbotek P		711.0	22.86	22.64
k Anbotek	And otek Anbotek Anbe	704.0	22.04	22.69
otek Anbotek	100% RB	707.5	21.78	22.57
otek anbotek		711.0	22.93	21.78

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page40of 117

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Output Power(Peak, dBm)	Test Rate Data
	1 Ans	2412	14.25	1 Mbps
802.11b	oten 6 Ar	2437	14.12	1 Mbps
	, bot 11	2462	14.34	1 Mbps
	, nalek	2412	13.35	6 Mbps
802.11g	6 sek	2437	13.41	6 Mbps
	11	2462	13.52	6 Mbps
	1 Anbo	2412	11.24	MCS0
802.11n(20MHz)	tel 6 An	2437	11.05	MCS0
	,50te ^V 11	2462	11.32	MCS0

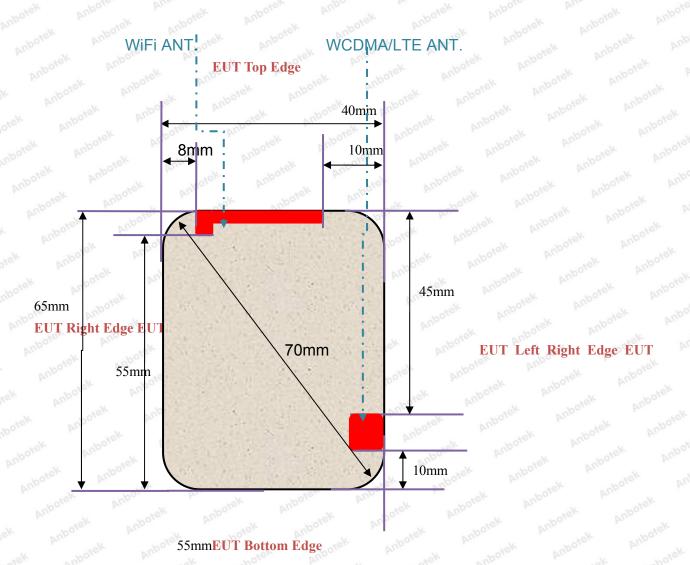
Note:

1. Per KDB 447498 D01 v06, 2015, the test distance less than 5mm

Mode	Frequency (GHz)	Maximum Conducted Output Power	Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
802.11b (2.4G)	2462	14.34	14.5	28.18	An 5	8.84	3.0

Base on the result of note1, RF exposure evaluation of 2.4G mode is required.

- 2. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 3. Per KDB 248227 D01, In the 5GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 5GHz OFDM conditions:
 - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
 - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.



Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page41of 117

11. Antenna Location

EUT BACK VIEW

	D	istance of The A	antenna to the E	UT surface and ed	lge	
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side
WLAN	<25mm	<25mm	<25mm	>25mm	<25mm	<25mm
WWAN	<25mm	<25mm	<25mm	>25mm	<25mm	>25mm

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page42of 117

		Positions	s for SAR tests;	Hotspot mode				
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side		
WLAN	Yes	Yes	Yes	Anbore No Ant	Yes	Yes		
WWAN	Yes	Yes	Yes	No Ar	Yes	otek No Anbor		

General Note: Referring to KDB 941225 D06, When the overall device length and width are < 9cm*5cm, the test distance is 5mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page43of 117

12. SAR Test Results Summary

General Note:

1. Per KDB 447498 D01 v06, 2015, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

- 2. Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary
- Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1
 RB allocation, using the RB offset and required test channel combination with the highest maximum
 output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- Per KDB 941225 D05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05, Smaller bandwidth output power for each RB allocation configuration is > not ⅓ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05, smaller bandwidth SAR testing is not required.
- 8. Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 9. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Body -worn and Hotspot SAR Results

<WCDMA>

S	Plot			Tost	Can		Ewag	Average	Tune-Up	Caaling	Power	Measured	Reported
	No.	Band	Mode	Test Position	Gap	Ch.	Freq. (MHz)	rowei	Lillit	Scaning Factor	ווווע	SAR _{1g}	SAR _{1g}
	110.			rosition	(111111)		(MITZ)	(dBm)	(dBm)	ractor	(dB)	(W/kg)	(W/kg)
Ī		WCDMA Band II	RMC 12.2K	Front	500	9262	1852.4	23.01	23.1	1.004	0.14	0.376	0.377
. 8	#1	WCDMA Band II	RMC 12.2K	Back	5	9262	1852.4	23.01	23.1	1.004	0.11	0.482	0.484
Ī	X	WCDMA Band II	RMC 12.2K	Left Side	5	9262	1852.4	23.01	23.1	1.004	0.08	0.214	0.215
30	010	WCDMA Band II	RMC 12.2K	Right Side	5	9262	1852.4	N/A	N/A	N/A	N/A	N/A	N/A
	nboth	WCDMA Band II	RMC 12.2K	Top Side	5	9262	1852.4	N/A	N/A	N/A	N/A	N/A	N/A

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page44of 117

PLL	WCDMA Band II	RMC 12.2K	Bottom Side	nbotes 5	9262	1852.4	23.01	23.1	1.004	0.08	0.214	0.215
SK.	WCDMA Band II	RMC 12.2K	held to face	10	9262	1852.4	23.01	23.1	1.004	-0.15	0.189	0.190
otek	WCDMA Band V	RMC 12.2K	Front	5	4183	836.6	23.36	23.5	1.006	0.05	0.422	0.425
#2	WCDMA Band V	RMC 12.2K	Back	5	4183	836.6	23.36	23.5	1.006	-0.08	0.652	0.656
br.	WCDMA Band V	RMC 12.2K	Left Side	ob 5ek	4183	836.6	23.36	23.5	1.006	0.08	0.356	0.358
De	WCDMA Band V	RMC 12.2K	Right Side	5	4183	836.6	N/A	N/A	N/A	N/A	N/A	N/A
	WCDMA Band V	RMC 12.2K	Top Side	5	4183	836.6	N/A	N/A	N/A	N/A	N/A	N/A
o rek	WCDMA Band V	RMC 12.2K	Bottom Side	5	4183	836.6	23.36	23.5	1.006	0.10	0.256	0.258
nbott	WCDMA Band V	RMC 12.2K	held to face	10	4183	836.6	23.36	23.5	1.006	0.04	0.211	0.212

<LTE>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	rower	Tune-Up Limit (dBm)	Scaling Factor	l DIIIU	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
	LTE Band 2	20MHz/1RB	Front	5	18900	1880.0	AU.	24.1	1.002	0.08	0.426	0.427
upose	LTE Band 2	20MHz/50RB	Front	5	18900	1880.0	24.05	24.1	1.002	0.06	0.418	0.419
#3	LTE Band 2	20MHz/1RB	Back	5	18900	1880.0	24.05	24.1	1.002	0.10	0.611	0.612
0.	LTE Band 2	20MHz/50RB	Back	15100	18900	1880.0	24.05	24.1	1.002	0.01	0.582	0.583
	LTE Band 2	20MHz/1RB	Left Side	5 px	18900	1880.0	24.05	24.1	1.002	-0.11	0.278	0.279
You	LTE Band 2	20MHz/50RB	Left Side	5	18900	1880.0	24.05	24.1	1.002	-0.10	0.275	0.276
botek	LTE Band 2	20MHz/1RB	Right Side	stek 5	18900	1880.0	N/A	N/A	N/A	N/A	N/A	N/A
Anbo	LTE Band 2	20MHz/50RB	Right Side	Anbor	18900	1880.0	N/A	N/A	N/A	N/A	N/A	N/A
	LTE Band 2	20MHz/1RB	Top Side	5	18900	1880.0	N/A	N/A	N/A	N/A	N/A	N/A
V.	LTE Band 2	20MHz/50RB	Top Side	5	18900	1880.0	N/A	N/A	N/A	N/A	N/A	N/A
potek	LTE Band 2	20MHz/1RB	Bottom Side	**5	18900	1880.0	24.05	24.1	1.002	0.02	0.274	0.275
Anbot	LTE Band 2	20MHz/50RB	Bottom Side	5	18900	1880.0	24.05	24.1	1.002	0.08	0.262	0.263
br.	LTE Band 2	20MHz/1RB	held to face	10 %	18900	1880.0	24.05	24.1	1.002	-0.09	0.162	0.162
orek	LTE Band 2	20MHz/50RB	held to face	№ 10	18900	1880.0	24.05	24.1	1.002	0.11	0.155	0.155
-hote	LTE Band 4	20MHz/1RB	Front	5	20175	1732.5	24.27	24.3	1.001	0.08	0.325	0.325
YI.	LTE Band 4	20MHz/50RB	Front	5000	20175	1732.5	24.27	24.3	1.001	-0.09	0.296	0.296

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page45of 117

V. Can	<u>eport 140 10</u>	8220WC00036	<u> </u>	<u></u>	<u>ID.</u> 2A	11 14 102	-1 00 1 0	age45of	117	101	200	Par.
#4	LTE Band 4	20MHz/1RB	Back	5.0	20175	1732.5	24.27	24.3	1.001	-0.12	0.410	0.411 ✓
h.	LTE Band 4	20MHz/50RB	Back	5	20175	1732.5	24.27	24.3	1.001	0.08	0.402	0.402
V.	LTE Band 4	20MHz/1RB	Left Side	5	20175	1732.5	24.27	24.3	1.001	-0.08	0.225	0.225
	LTE Band 4	20MHz/50RB	Left Side	5	20175	1732.5	24.27	24.3	1.001	0.06	0.210	0.210
otek oboti	LTE Band 4	20MHz/1RB	Right Side	5	20175	1732.5	N/A	N/A	N/A	N/A	N/A	N/A
Anl	LTE Band 4	20MHz/50RB	Right Side	Angor	20175	1732.5	N/A	N/A	N/A	N/A	N/A	N/A
17	LTE Band 4	20MHz/1RB	Top Side	5	20175	1732.5	N/A	N/A	N/A	N/A	N/A	N/A
	LTE Band 4	20MHz/50RB	Top Side	5	20175	1732.5	N/A	N/A	N/A	N/A	N/A	N/A
bite ^k	LTE Band 4	20MHz/1RB	Bottom Side	5. 2015.	20175	1732.5	24.27	24.3	1.001	-0.12	0.211	0.211
Anb	LTE Band 4	20MHz/50RB	Bottom Side	An 5	20175	1732.5	24.27	24.3	1.001	0.08	0.20	0.200
ſ	LTE Band 4	20MHz/1RB	held to face	10	20175	1732.5	24.27	24.3	1.001	-0.08	0.136	0.136
rek Lei	LTE Band 4	20MHz/50RB	held to face	10	20175	1732.5	24.27	24.3	1.001	0.04	0.122	0.122
Po,	LTE Band 12	10MHz/1RB	Front	5	23173	711.0	23.90	24.0	1.004	0.11	0.217	0.218
Anb	LTE Band 12	10MHz/50RB	Front	5	23173	711.0	23.90	24.0	1.004	-0.15	0.212	0.213
0	LTE Band 12	10MHz/1RB	Back	5	23173	711.0	23.90	24.0	1.004	-0.11	0.326	0.327
	LTE Band 12	10MHz/50RB	Back	5	23173	711.0	23.90	24.0	1.004	-0.12	0.314	0.315
No.	LTE Band 12	10MHz/1RB	Left Side	5	23173	711.0	23.90	24.0	1.004	0.12	0.211	0.212
	LTE Band 12	10MHz/50RB	Left Side	5	23173	711.0	23.90	24.0	1.004	0.08	0.204	0.205
anbo	LTE Band 12	10MHz/1RB	Right Side	nb 5ek	23173	711.0	N/A	N/A	N/A	N/A	N/A	N/A
by	LTE Band 12	10MHz/50RB	Right Side	Anbo	23173	711.0	N/A	N/A	N/A	N/A	N/A	N/A
v	LTE Band 12	10MHz/1RB	Top Side	5	23173	711.0	N/A	N/A	N/A	N/A	N/A	N/A
	LTE Band 12	10MHz/50RB	Top Side	5	23173	711.0	N/A	N/A	N/A	N/A	N/A	N/A
otek	LTE Band 12	10MHz/1RB	Bottom Side	1505×	23173	711.0	23.90	24.0	1.004	-0.10	0.205	0.206
An.	LTE Band 12	10MHz/50RB	Bottom Side	Ar5bot	23173	711.0	23.90	24.0	1.004	-0.08	0.202	0.203
JK.	LTE Band 12	10MHz/1RB	held to face	10	23173	711.0	23.90	24.0	1.004	-0.02	0.153	0.154
otek	LTE Band 12	10MHz/50RB	held to	10	23173	711.0	23.90	24.0	1.004	-0.08	0.142	0.143

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page46of 117

<WIFI 2.4GHz>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	_	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Drift	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
Vi.	WIFI2.4GHz	802.11b	Front	5 rek	11	2462	14.34	14.5	1.003	0.10	0.215	0.217
#5	WIFI2.4GHz	802.11b	Back	5	1 1	2462	14.34	14.5	1.003	0.09	0.302	0.305
P.	WIFI2.4GHz	802.11b	Left Side	5	11/4	2462	14.34	14.5	1.003	0.16	0.172	0.174
614	WIFI2.4GHz	802.11b	Right Side	5 🎎	11	2462	N/A	N/A	N/A	N/A	N/A	N/A
otek	WIFI2.4GHz	802.11b	Top Side	5	PII	2462	14.34	14.5	1.003	0.08	0.252	0.255
cotel	WIFI2.4GHz	802.11b	Bottom Side	5	11/2	2462	N/A	N/A	N/A	N/A	N/A	N/A
KUD	WIFI2.4GHz	802.11b	held to face	10	11	2462	14.34	14.5	1.003	0.06	0.124	0.125

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page47of 117

13. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

No.	Applicable Simultaneous Transmiss	sion		
Hup.	WCDMA+WIFI 2.4G	bu. Potek	Anboten	Anb
2. Anii	LTE+WIFI2.4G	Am	Anbotek	Anbo

Note:

- 1. EUT will choose either WCDMA/LTE according to the network signal condition; therefore, WCDMA/LTE cannot transmit simultaneously.
- 2. Bluetooth stand-alone SAR tests are not required and are considered zero in the SAR summation.

Evaluation of Simultaneous SAR

<WCDMA>

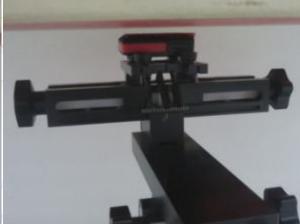
Test Position	est Position WiFi SAR _{1-g} (W/Kg)		WCDMA Band 5 1-g (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required	
Front	0.217	0.377	0.425	0.642	mbotek 1.6 Anb	N/A	
Back	0.305	0.484	0.656	0.961	1.6	N/A	
Left Side	0.174	0.215	0.358	0.532	1.6	N/A	
Right Side	N/A	N/A	N/A	N/A	1.6	N/A	
Top side	0.255	N/A	N/A	N/A	1.6	N/A	
Bottom Side	N/A	0.215	0.258	N/A	1.6	N/A	

<LTE>

Test Position	WiFi SAR _{1-g} (W/Kg)	LTE BAND 2 _{1-g} (W/Kg)	LTE BAND 4 _{1-g} (W/Kg)	LTE BAND 12 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Front	0.217	0.427	0.325	0.218	0.644	1.6	N/A
Back	0.305	0.612	0.411	0.327	0.917	1.6	N/A
Left Side	0.174	0.279	0.225	0.212	0.453	1.6	N/A
Right Side	N/A	N/A	N/A	N/A	N/A	1.6	N/A
Top side	0.255	N/A	N/A	N/A	N/A	1.6	N/A
Bottom Side	N/A	0.275	0.211	0.206	N/A	1.6	N/A

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page48of 117

14. Measurement Uncertainty

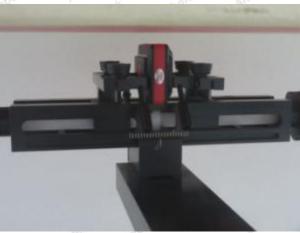

PerKDB865664D01SARMeasurement100MHzto6GHz,whenthehighestmeasured1-gSARwithinafrequencybandis<1.5W/Kg,theextensiveSARmeasurementuncertaintyanalysisdescribedinIEC 62209-2:2010isnotrequiredinSARreportssubmittedforequipmentapproval.

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page49of 117

Appendix A. EUT Photos and Test Setup Photos

Body Front (5mm)


Body Back(5mm)



Top (5mm)

bottom(5mm)

Body Left (5mm)

Body Right (5mm)

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page50of 117

held to face (10mm)

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page51of 117

Appendix B. Plots of SAR System Check

835MHz Head System Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d154

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.95$ S/m; $\epsilon r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

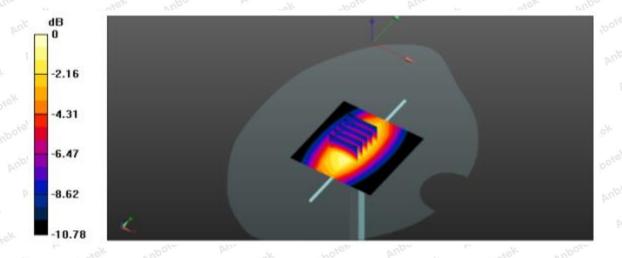
Probe: EX3DV4 - SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: May,06.2020;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

Phantom: SAM; Type: QD000P40CD; Serial: TP: 1670

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Pin=250mW/Area Scan (7x7x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.83 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.865 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.27 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g Maximum value of SAR (measured) = 2.85 mW/g

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page52of 117

1900MHz Head System Check

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.38 \text{S/m}$; $\epsilon r = 39.05$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

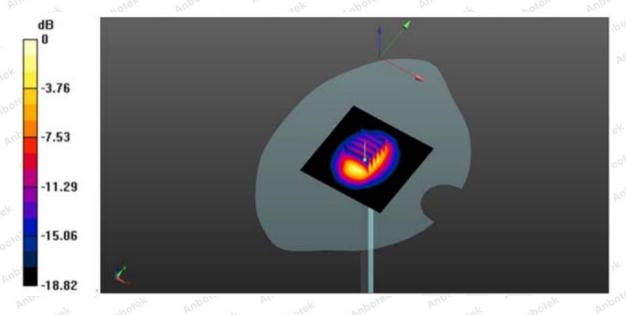
Probe: EX3DV4 – SN7396; ConvF(8.13, 8.13,8.13); Calibrated: May,06.2020;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

Phantom: SAM 1; Type: QD 000 P40 CD; Serial: TP - 1802

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.1 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 73.83 V/m; Power Drift = -0.15 Db

Peak SAR (extrapolated) = 12.352 W/kg

SAR(1 g) = 10.21mW/g; SAR(10 g) = 5.54mW/g Maximum value of SAR (measured) = 12.43 W/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page53of 117

2450MHz Head System Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:910

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 39.05$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

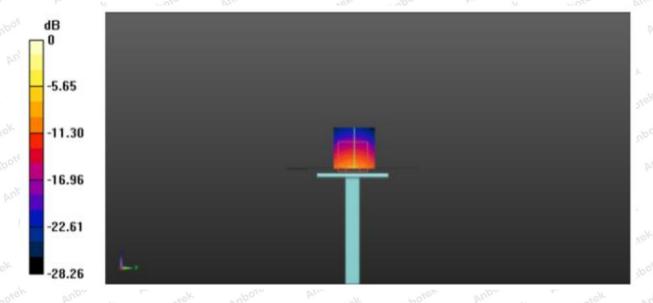
Probe: EX3DV4 – SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May,06.2020;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)


Configuration/Pin=250mW/Area Scan (81x81x1):Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.1 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.352 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.92 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page54of 117

750MHz Body System Check

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.916 \text{ S/m}$; $\epsilon r = 41.162$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

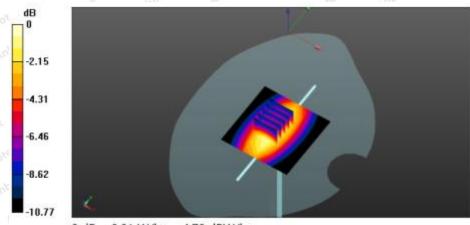
Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May,06.2020;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.28 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 58.616 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.77 W/kg

SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.40 W/kg Maximum value of SAR (measured) = 3.01 W/kg

0 dB = 3.01 W/kg = 4.79 dBW/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page55of 117

1750MHz Body System Check

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1021

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.361 \text{ S/m}$; $\varepsilon_r = 40.334$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

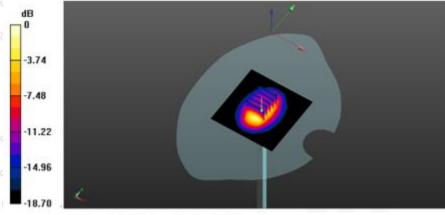
Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May,06.2020;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 11.2 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.815 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 8.85 W/kg; SAR(10 g) = 4.80 W/kg Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page56of 117

Appendix C. Plots of SAR Test Data

#1

Date: 07/21/2020

WCDMA 1900 RMC 12.2K Body Back Ch9400

Communication System: UID 0, Generic WCDMA (0); Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880.0 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.04$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(8.14, 8.14, 8.14); Calibrated: May,06.2020;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

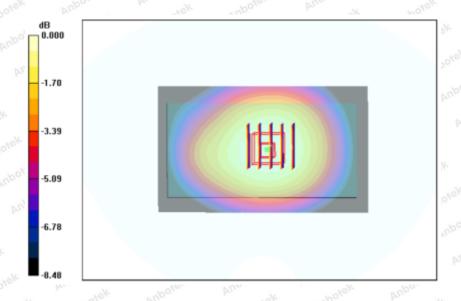
Electronics: DAE4 Sn387; Calibrated: Sep 3,2019

• Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/EARPHONE-H/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) =0.535 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.22 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.498 W/kg

SAR(1 g) = 0.482 W/kg; SAR(10 g) = 0.245 W/kg

Maximum value of SAR (measured) = 0.485 W/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page57of 117

#2

Date: 07/20/2020

WCDMA 850 RMC 12.2K Body Back Ch4132

Communication System: UID 0, Generic WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.95$ S/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 – SN7396; ConvF(8.14, 8.14, 8.14); Calibrated: May,06.2020;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

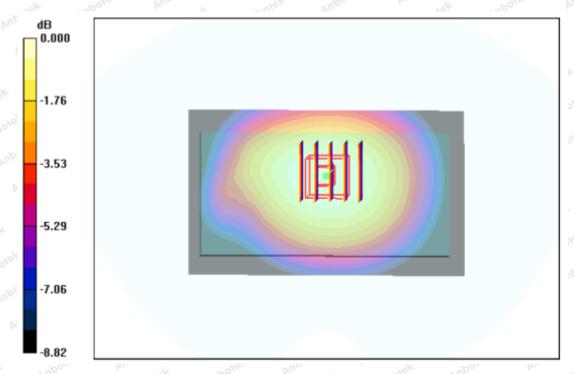
• Electronics: DAE4 Sn387; Calibrated: Sep 3,2019

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/EARPHONE-H/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) =0.782 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.47 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.763 W/kg

SAR(1 g) = 0.652 W/kg; SAR(10 g) = 0.475 W/kg

Maximum value of SAR (measured) = 0.772 W/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page58of 117

#3

Date: 07/21/2020

LTE Band 2_ Body Back_1RB_Ch18900

Communication System: UID 0, Generic LTE (0); Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.38 \text{ S/m}$; $\epsilon_r = 39.04$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(9.87, 9.87, 9.87); Calibrated: May,06.2020;

Sensor-Surface: 2mm (Mechanical Surface Detection)

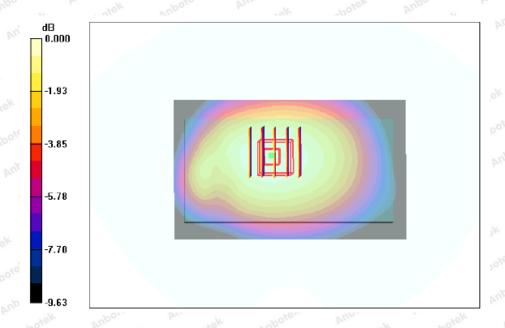
Electronics: DAE4 Sn387; Calibrated: Sep 3,2019

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK-L/Area Scan (8x13x1):Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.792 mW/g


BODY/BACK-L/Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.41 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.634 W/kg

SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.352 mW/g

Maximum value of SAR (measured) = 0.648 mW/g

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page59of 117

#4 Date: 07/24/2020

LTE Band 4_ Body Back_1RB

Communication System: UID 0, Generic WCDMA (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1732.5 MHz; $\sigma = 1.361 \text{ S/m}$; $\varepsilon_r = 40.33$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: May,06.2020;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

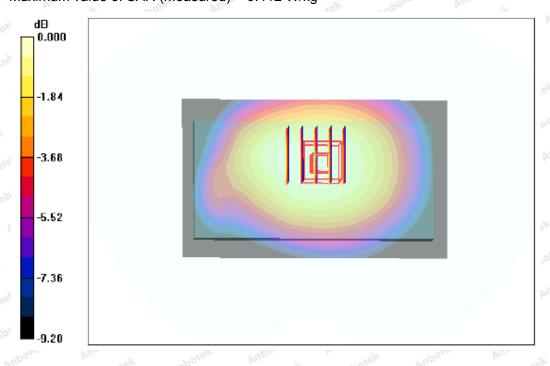
•Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK/Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.501 W/kg


BODY/BACK-L/Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.2 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.410 W/kg; SAR(10 g) = 0.253W/kg

Maximum value of SAR (measured) = 0.412 W/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page60of 117

#5 Date: 07/23/2020

LTE Band 12_ Body Back_1RB

Communication System: UID 0, Generic LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.916 \text{ S/m}$; $\epsilon_r = 41.16$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7396; ConvF(9.87, 9.87, 9.87); Calibrated: May,06.2020;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

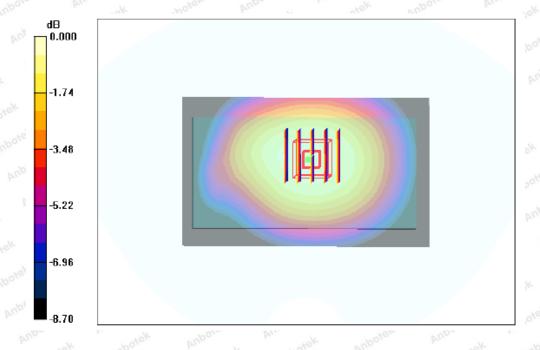
Electronics: DAE4 Sn387; Calibrated: Sep.03.2019

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK-L/Area Scan (8x13x1):Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.582 W/kg


BODY/EARPHONE-L/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.2 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.525 W/kg

SAR(1 g) = 0.326 W/kg; SAR(10 g) = 0.251 W/kg

Maximum value of SAR (measured) = 0.520 W/kg

Report No.: 18220WC000362 FCC ID: 2AHH4TL-403 Page61of 117

#5

Date: 07/22/2020

WIFI 2.4G 802.11n20 Body Back Ch11

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \sigma = 1.86 \text{ S/m}; \epsilon_r = 39.05; \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 – SN7396; ConvF(8.14, 8.14, 8.14); Calibrated: May,06.2020;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

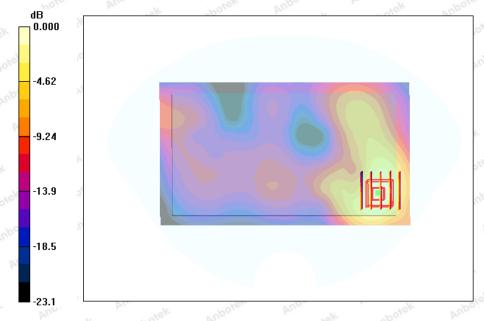
• Electronics: DAE4 Sn387; Calibrated: Sep 3,2019

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/EARPHONE-H/Area Scan (8x13x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.357 W/kg


Configuration/BACK/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.74 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.414 W/kg

SAR(1 g) = 0.302 W/kg; SAR(10 g) = 0.175 W/kg

Maximum value of SAR (measured) = 0.325 W/kg

