

TEST REPORT

Report Reference No. : **TRE1708013301** **R/C.....:** 77954

FCC ID : **2AHF5-ROZEBUDS**

Applicant's name : **Dongguan Rentong Electric Co.,Ltd**

Address : Hecheng Industrial Zone, Qiaotou, Town Dongjiang, Dongguan, Guangdong, China

Manufacturer : Dongguan You Tong Electronics Technology Co.,Ltd

Address : No.12, North 7 Street, East Road, Dongjiang Village, Qiaotou Town, Dongguan City, Guangdong Province, China

Test item description : **Rozebuds Wireless Earphone**

Trade Mark : Rozebuds

Model/Type reference : Rozebuds Earphone

Listed Model(s) : Rosegold version, Blacksilver version, Blackgold version

Standard : **FCC CFR Title 47 Part 15 Subpart C Section 15.247**

Date of receipt of test sample : Aug. 21, 2017

Date of testing : Aug. 22, 2017- Sep. 11, 2017

Date of issue : Sep. 11, 2017

Result : **PASS**

Compiled by
(position+printedname+signature)....: File administrators Shayne Zhu

Supervised by
(position+printedname+signature)....: Project Engineer Lion Cai

Approved by
(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name : **Shenzhen Huatongwei International Inspection Co., Ltd.**

Address : 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Contents

<u>1.</u>	<u>TEST STANDARDS AND TEST DESCRIPTION</u>	<u>3</u>
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	<u>TEST DESCRIPTION</u>	<u>4</u>
<u>3.</u>	<u>SUMMARY</u>	<u>5</u>
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	<u>TEST ENVIRONMENT</u>	<u>7</u>
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	<u>TEST CONDITIONS AND RESULTS</u>	<u>10</u>
5.1.	Antenna requirement	10
5.2.	Conducted Emission (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20dB Emission Bandwidth	18
5.5.	Carrier Frequencies Separation	22
5.6.	Hopping Channel Number	24
5.7.	Dwell Time	26
5.8.	Pseudorandom Frequency Hopping Sequence	30
5.9.	Restricted band (radiated)	31
5.10.	Bandedge and Spurious Emission (conducted)	33
5.11.	Spurious Emission (radiated)	53
<u>6.</u>	<u>TEST SETUP PHOTOS OF THE EUT</u>	<u>57</u>
<u>7.</u>	<u>EXTERNAL AND INTERNAL PHOTOS OF THE EUT</u>	<u>59</u>

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

[FCC Rules Part 15.247](#): Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

[ANSI C63.10-2013](#): American National Standard for Testing Unlicensed Wireless Devices

1.2. Report version

Version No.	Date of issue	Description
00	Sep. 11, 2017	Original

2. Test Description

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Restricted band	15.247(d)/15.205	Pass
Radiated Emission	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	Dongguan Rentong Electric Co.,Ltd
Address:	Hecheng Industrial Zone, Qiaotou, Town Dongjiang, Dongguan, Guangdong, China
Manufacturer:	Dongguan You Tong Electronics Technology Co.,Ltd
Address:	No.12,North 7 Street,East Road,Dongjiang Village,Qiaotou Town, Dongguan City,Guangdong Province China

3.2. Product Description

Name of EUT:	Rozebuds Wireless Earphone
Trade Mark:	Rozebuds
Model No.:	Rozebuds Earphone
Listed Model(s):	Rosegold version, Blacksilver version, Blackgold version
Power supply:	DC 3.7V From internal battery
Adapter information:	-
Hardware version:	EPH-CSR8640-RT-ROZe-B
Software version:	Rozebuds0701
Bluetooth	
Version:	Supported BT4.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Ceramic chip antenna
Antenna gain:	0dBi

3.3. Operation state

➤ Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
0	2402
1	2403
:	:
39	2441
:	:
77	2479
78	2480

➤ Test mode

For RF test items
The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).
For AC power line conducted emissions:
The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.
For RF test axis
EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- - supplied by the lab

	Length (m):	/
	Shield:	/
	Detachable:	/
	Manufacturer:	/
	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.
Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China
Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter Power Conducted	0.57 dB	(1)
Transmitter Power Radiated	2.20 dB	(1)
Conducted Spurious Emission 9 kHz ~ 40 GHz	1.60 dB	(1)
Radiated Spurious Emission 9 kHz ~ 40 GHz	2.20 dB	(1)
Conducted Emission 9 kHz ~ 30 MHz	3.39 dB	(1)
Radiated Emission 30 ~ 1000 MHz	4.24 dB	(1)
Radiated Emission 1 ~ 18 GHz	5.16 dB	(1)
Radiated Emission 18 ~ 40 GHz	5.54 dB	(1)
Occupied Bandwidth	-----	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

4.5. Equipments Used during the Test

Conducted Emission (AC Main)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A

Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2016/11/13
3	EMI TEST Software	Audix	E3	N/A	N/A
4	TURNTABLE	ETS	2088	2149	N/A
5	ANTENNA MAST	ETS	2075	2346	N/A
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A
7	HORNANTENNA	ShwarzBeck	9120D	1011	2016/11/13
8	Amplifier	Sonoma	310N	E009-13	2016/11/13
9	JS amplifier	Rohde&Schwarz	JS4-00101800-28-5A	F201504	2016/11/13
10	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
11	HORNANTENNA	ShwarzBeck	9120D	1012	2016/11/13
12	Amplifier	Compliance Direction systems	PAP1-4060	120	2016/11/13
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13
14	TURNTABLE	MATURO	TT2.0	----	N/A
15	ANTENNA MAST	MATURO	TAM-4.0-P	----	N/A
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
17	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	2016/11/13

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13
2	MXA Signal Analyzer	Agilent Technologies	N9020A	MY5050187	2016/11/13

The Cal.Interval was one year

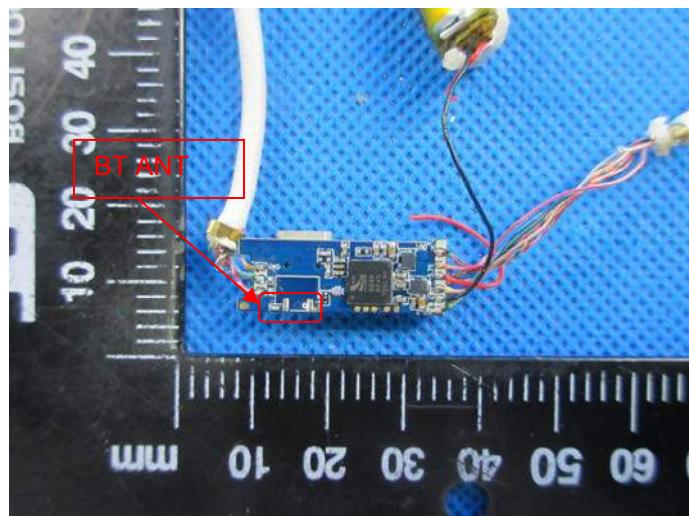
5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

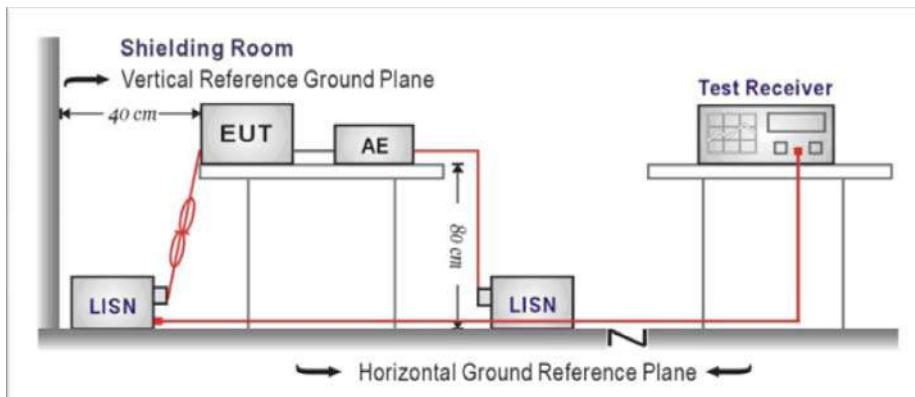
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Test Result:

Passed

Not Applicable

5.2. Conducted Emission (AC Main)


LIMIT

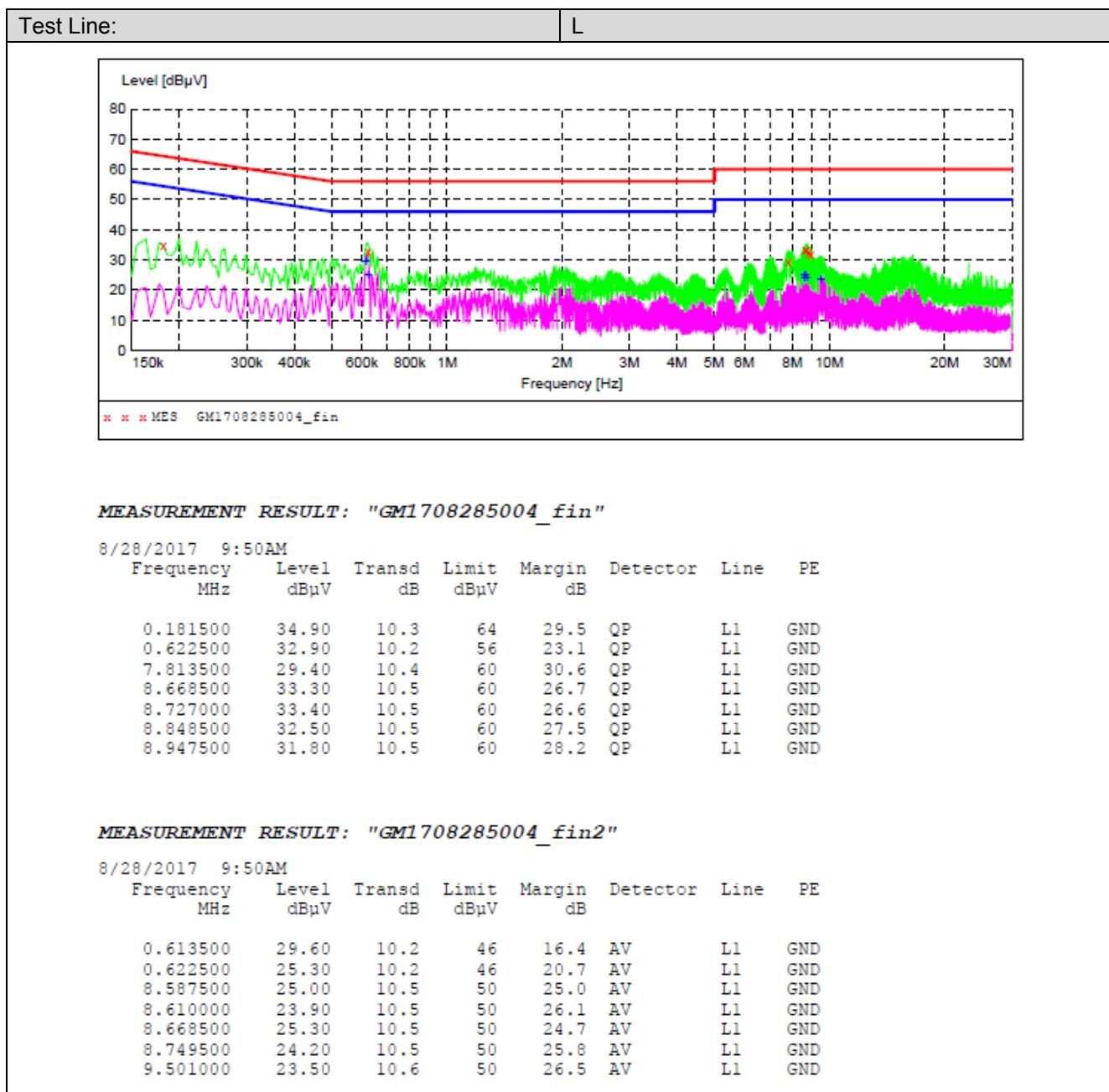
FCC CFR Title 47 Part 15 Subpart C Section 15.207

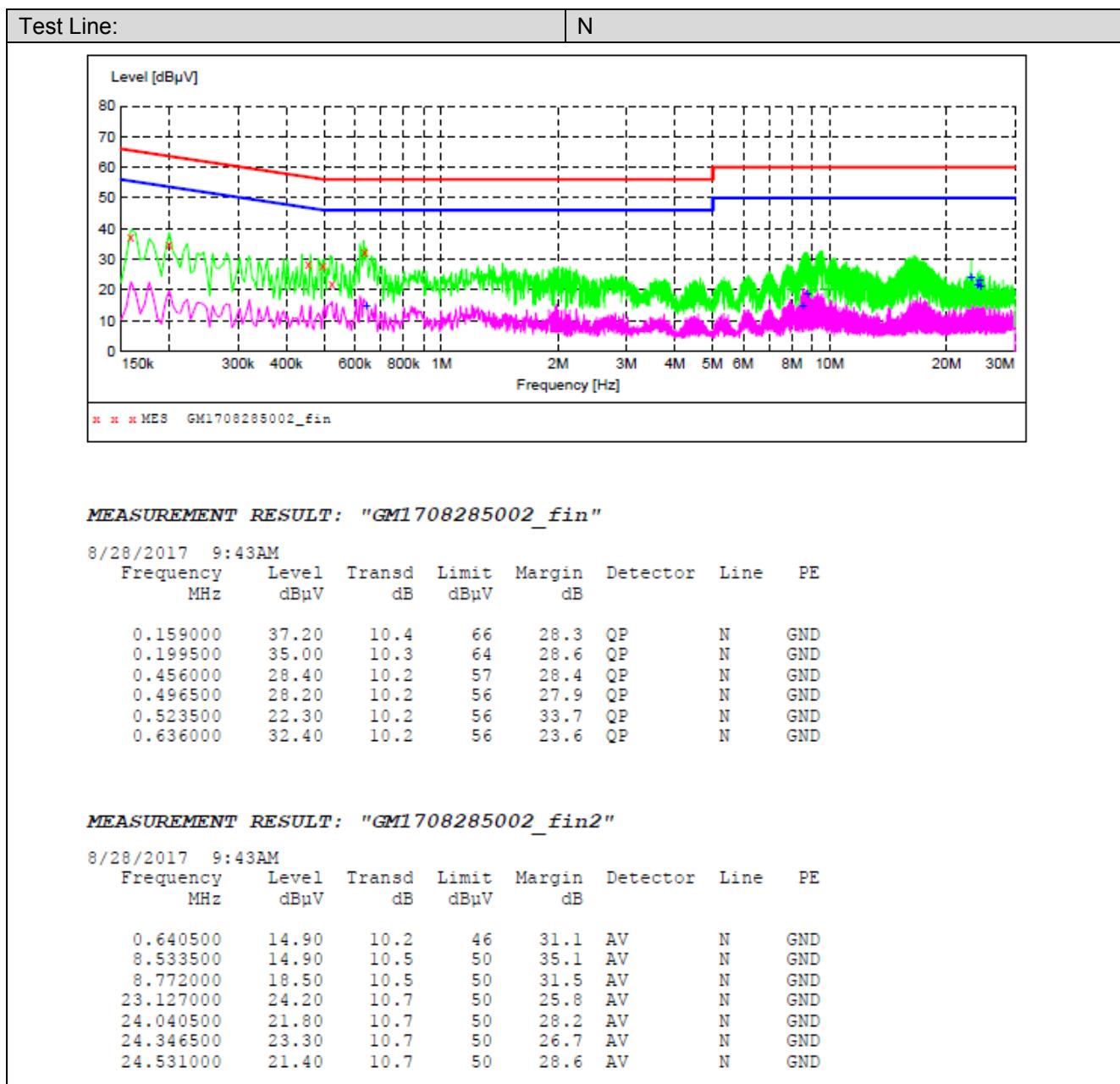
Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

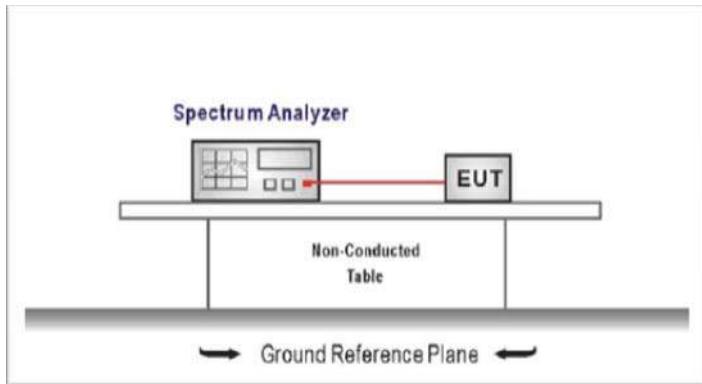

1. The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
7. Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.
8. During the above scans, the emissions were maximized by cable manipulation.
- 9.


TEST RESULTS

Passed Not Applicable

Note:

- 1) Transd= Cable loss + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit - Level



5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): **30dBm**

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:
Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
RBW \geq the 20 dB bandwidth of the emission being measured, VBW \geq RBW
Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

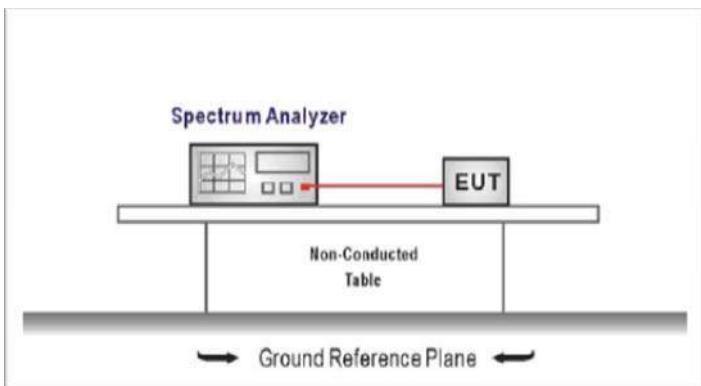
TEST RESULTS

Passed Not Applicable

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
GFSK	00	-4.622	≤ 30.00	Pass
	39	-1.550		
	78	-1.281		
$\pi/4$ DQPSK	00	-6.534	≤ 21.00	Pass
	39	-2.344		
	78	-1.667		
8DPSK	00	-6.179	≤ 21.00	Pass
	39	-2.042		
	78	-1.378		

Modulation Type:		GFSK
CH00		<p>Agilent Spectrum Analyzer - Swept SA</p> <p>SENSE: PULSE ALIGN: AUTO 01:19-69PM Sep 11, 2017</p> <p>Center Freq 2.402000000 GHz PWD: Fast Trig: Free Run #Avg Type: RMS TRACE 1 TYPE: MMWAVE DET: P P P P P P</p> <p>Ref Offset 0.9 dB #Avg Hold: 100/100 Mkr1 2.402 236 250 GHz -4.622 dBm Frequency</p> <p>Ref 20.50 dBm</p> <p>10 dB/div 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5 -4.5 -5.5 -6.5 -7.5 -8.5 -9.5 -10.5</p> <p>Center 2.402000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Span 5.000 MHz Sweep 1.067 ms (8001 pts)</p> <p>MSG STATUS</p>
CH39		<p>Agilent Spectrum Analyzer - Swept SA</p> <p>SENSE: PULSE ALIGN: AUTO 01:19-69PM Sep 11, 2017</p> <p>Center Freq 2.441000000 GHz PWD: Fast Trig: Free Run #Avg Type: RMS TRACE 1 TYPE: MMWAVE DET: P P P P P P</p> <p>Ref Offset 0.9 dB #Avg Hold: 100/100 Mkr1 2.440 934 375 GHz -1.550 dBm Frequency</p> <p>Ref 20.50 dBm</p> <p>10 dB/div 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5 -4.5 -5.5 -6.5 -7.5 -8.5 -9.5 -10.5</p> <p>Center 2.441000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Span 5.000 MHz Sweep 1.067 ms (8001 pts)</p> <p>MSG STATUS</p>
CH78		<p>Agilent Spectrum Analyzer - Swept SA</p> <p>SENSE: PULSE ALIGN: AUTO 01:27-08PM Sep 11, 2017</p> <p>Center Freq 2.480000000 GHz PWD: Fast Trig: Free Run #Avg Type: RMS TRACE 1 TYPE: MMWAVE DET: P P P P P P</p> <p>Ref Offset 0.9 dB #Avg Hold: 100/100 Mkr1 2.479 855 000 GHz -1.281 dBm Frequency</p> <p>Ref 20.50 dBm</p> <p>10 dB/div 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5 -1.5 -2.5 -3.5 -4.5 -5.5 -6.5 -7.5 -8.5 -9.5 -10.5</p> <p>Center 2.480000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Span 5.000 MHz Sweep 1.067 ms (8001 pts)</p> <p>MSG STATUS</p>

Modulation Type:		$\pi/4$ DQPSK
CH00		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.402000000 GHz</p> <p>Ref Offset 0.9 dB</p> <p>Ref 20.50 dBm</p> <p>10 dB/div Log</p> <p>Center 2.402000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 5.000 MHz Span 5.000 MHz</p> <p>Trig: Free Run #Atten: 30 dB</p> <p>#Avg Type: RMS AvgHold: 100/100</p> <p>DET P P P P P P P P P P</p> <p>Mkr1 2.402 156 250 GHz -6.534 dBm</p> <p>MSG STATUS</p> <p>Auto Tune</p> <p>Frequency</p> <p>Center Freq 2.402000000 GHz</p> <p>Start Freq 2.399500000 GHz</p> <p>Stop Freq 2.404500000 GHz</p> <p>CF Step 500.000 kHz Auto</p> <p>Freq Offset 0 Hz</p>
CH39		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref Offset 0.9 dB</p> <p>Ref 20.50 dBm</p> <p>10 dB/div Log</p> <p>Center 2.441000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 5.000 MHz Span 5.000 MHz</p> <p>Trig: Free Run #Atten: 30 dB</p> <p>#Avg Type: RMS AvgHold: 100/100</p> <p>DET P P P P P P P P P P</p> <p>Mkr1 2.440 855 625 GHz -2.344 dBm</p> <p>MSG STATUS</p> <p>Auto Tune</p> <p>Frequency</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.438500000 GHz</p> <p>Stop Freq 2.443500000 GHz</p> <p>CF Step 500.000 kHz Auto</p> <p>Freq Offset 0 Hz</p>
CH78		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.480000000 GHz</p> <p>Ref Offset 0.9 dB</p> <p>Ref 20.50 dBm</p> <p>10 dB/div Log</p> <p>Center 2.480000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 1.067 ms (8001 pts) Span 5.000 MHz</p> <p>Trig: Free Run #Atten: 30 dB</p> <p>#Avg Type: RMS AvgHold: 100/100</p> <p>DET P P P P P P P P P P</p> <p>Mkr1 2.479 868 125 GHz -1.667 dBm</p> <p>MSG STATUS</p> <p>Auto Tune</p> <p>Frequency</p> <p>Center Freq 2.480000000 GHz</p> <p>Start Freq 2.477500000 GHz</p> <p>Stop Freq 2.482500000 GHz</p> <p>CF Step 500.000 kHz Auto</p> <p>Freq Offset 0 Hz</p>


Modulation Type:	8DPSK
CH00	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.40200000 GHz</p> <p>Ref Offset 0.9 dB</p> <p>Ref 20.50 dBm</p> <p>10 dB/div Log</p> <p>Center 2.402000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 5.000 MHz Span 1.067 ms (8001 pts)</p> <p>Mkr1 2.402 071 875 GHz -6.179 dBm</p> <p>MSG STATUS</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.40200000 GHz</p> <p>Start Freq 2.399500000 GHz</p> <p>Stop Freq 2.404500000 GHz</p> <p>CF Step 500.000 kHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p>
CH39	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.44100000 GHz</p> <p>Ref Offset 0.9 dB</p> <p>Ref 20.50 dBm</p> <p>10 dB/div Log</p> <p>Center 2.441000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 5.000 MHz Span 1.067 ms (8001 pts)</p> <p>Mkr1 2.441 035 000 GHz -2.042 dBm</p> <p>MSG STATUS</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.44100000 GHz</p> <p>Start Freq 2.438500000 GHz</p> <p>Stop Freq 2.443500000 GHz</p> <p>CF Step 500.000 kHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p>
CH78	<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.48000000 GHz</p> <p>Ref Offset 0.9 dB</p> <p>Ref 20.50 dBm</p> <p>10 dB/div Log</p> <p>Center 2.480000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 5.000 MHz Span 1.067 ms (8001 pts)</p> <p>Mkr1 2.479 972 500 GHz -1.378 dBm</p> <p>MSG STATUS</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.48000000 GHz</p> <p>Start Freq 2.477500000 GHz</p> <p>Stop Freq 2.482500000 GHz</p> <p>CF Step 500.000 kHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p>

5.4. 20dB Emission Bandwidth

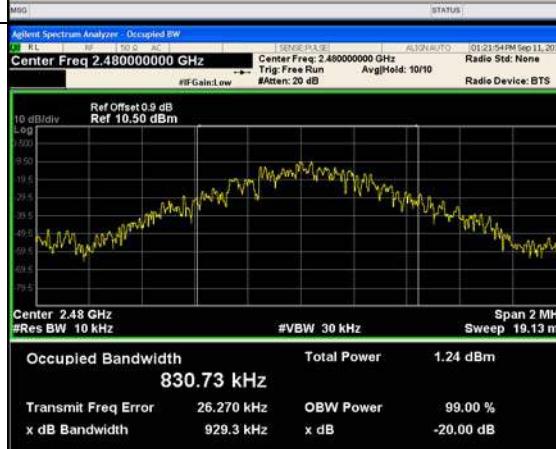
LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW
Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

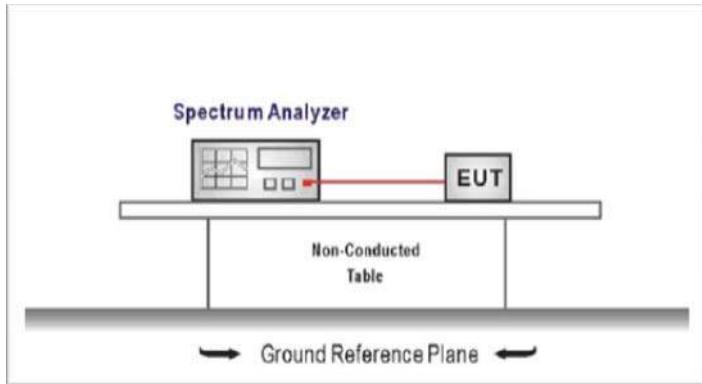
TEST RESULTS

Passed Not Applicable

Modulation type	Channel	20dB Bandwidth (MHz)	Limit (MHz)	Result
GFSK	00	0.928	-	Pass
	39	0.885		
	78	0.929		
$\pi/4$ DQPSK	00	1.362	-	Pass
	39	1.357		
	78	1.352		
8DPSK	00	1.324	-	Pass
	39	1.303		
	78	1.318		

Modulation Type:	GFSK
CH00	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.402000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.402 GHz #Res BW 10 kHz</p> <p>#VBW 30 kHz</p> <p>Span 2 MHz</p> <p>Sweep 19.13 ms</p> <p>Occupied Bandwidth 882.36 kHz</p> <p>Total Power -0.19 dBm</p> <p>Transmit Freq Error 24.857 kHz</p> <p>OBW Power 99.00 %</p> <p>x dB Bandwidth 928.1 kHz</p> <p>x dB -20.00 dB</p> <p>MSG STATUS</p> <p>Frequency</p> <p>Center Freq 2.402000000 GHz</p> <p>CF Step 200.000 kHz</p> <p>Freq Offset 0 Hz</p>
CH39	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.441 GHz #Res BW 10 kHz</p> <p>#VBW 30 kHz</p> <p>Span 2 MHz</p> <p>Sweep 19.13 ms</p> <p>Occupied Bandwidth 881.04 kHz</p> <p>Total Power 2.63 dBm</p> <p>Transmit Freq Error 8.645 kHz</p> <p>OBW Power 99.00 %</p> <p>x dB Bandwidth 885.1 kHz</p> <p>x dB -20.00 dB</p> <p>MSG STATUS</p> <p>Frequency</p> <p>Center Freq 2.441000000 GHz</p> <p>CF Step 200.000 kHz</p> <p>Freq Offset 0 Hz</p>
CH78	<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.480000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.48 GHz #Res BW 10 kHz</p> <p>#VBW 30 kHz</p> <p>Span 2 MHz</p> <p>Sweep 19.13 ms</p> <p>Occupied Bandwidth 830.73 kHz</p> <p>Total Power 1.24 dBm</p> <p>Transmit Freq Error 26.270 kHz</p> <p>OBW Power 99.00 %</p> <p>x dB Bandwidth 929.3 kHz</p> <p>x dB -20.00 dB</p> <p>MSG STATUS</p> <p>Frequency</p> <p>Center Freq 2.480000000 GHz</p> <p>CF Step 200.000 kHz</p> <p>Freq Offset 0 Hz</p>

Modulation Type:		$\pi/4$ DQPSK
CH00		<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.402000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.402 GHz</p> <p>#Res BW 30 kHz</p> <p>#VBW 100 kHz</p> <p>Span 2.5 MHz</p> <p>Sweep 2.667 ms</p> <p>Occupied Bandwidth 1.2061 MHz</p> <p>Total Power -5.32 dBm</p> <p>Transmit Freq Error 26.261 kHz</p> <p>x dB Bandwidth 1.362 MHz</p> <p>OBW Power 99.00 %</p> <p>x dB 1.362 MHz</p> <p>x dB -20.00 dB</p> <p>MSG STATUS</p>
CH39		<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.441 GHz</p> <p>#Res BW 30 kHz</p> <p>#VBW 100 kHz</p> <p>Span 2.5 MHz</p> <p>Sweep 2.667 ms</p> <p>Occupied Bandwidth 1.2059 MHz</p> <p>Total Power -0.61 dBm</p> <p>Transmit Freq Error 18.268 kHz</p> <p>x dB Bandwidth 1.357 MHz</p> <p>OBW Power 99.00 %</p> <p>x dB 1.357 MHz</p> <p>x dB -20.00 dB</p> <p>MSG STATUS</p>
CH78		<p>Agilent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.480000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.48 GHz</p> <p>#Res BW 30 kHz</p> <p>#VBW 100 kHz</p> <p>Span 2.5 MHz</p> <p>Sweep 2.667 ms</p> <p>Occupied Bandwidth 1.1791 MHz</p> <p>Total Power 0.31 dBm</p> <p>Transmit Freq Error 14.783 kHz</p> <p>x dB Bandwidth 1.352 MHz</p> <p>OBW Power 99.00 %</p> <p>x dB 1.352 MHz</p> <p>x dB -20.00 dB</p> <p>MSG STATUS</p>


Modulation Type:	8DPSK
CH00	<p>CH00</p> <p>Agent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.402000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.402 GHz #VBW 100 kHz Span 2.5 MHz Sweep 2.667 ms</p> <p>#Res BW 30 kHz</p> <p>Occupied Bandwidth 1.1904 MHz Total Power -4.55 dBm</p> <p>Transmit Freq Error 29.121 kHz OBW Power 99.00 %</p> <p>x dB Bandwidth 1.324 MHz x dB -20.00 dB</p> <p>MSG STATUS</p>
CH39	<p>CH39</p> <p>Agent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.441 GHz #VBW 100 kHz Span 2.5 MHz Sweep 2.667 ms</p> <p>#Res BW 30 kHz</p> <p>Occupied Bandwidth 1.2057 MHz Total Power -0.13 dBm</p> <p>Transmit Freq Error 7.574 kHz OBW Power 99.00 %</p> <p>x dB Bandwidth 1.303 MHz x dB -20.00 dB</p> <p>MSG STATUS</p>
CH78	<p>CH78</p> <p>Agent Spectrum Analyzer - Occupied BW</p> <p>Center Freq 2.480000000 GHz</p> <p>Ref Offset 0.9 dB Ref 10.50 dBm</p> <p>10 dB/div</p> <p>Center 2.48 GHz #VBW 100 kHz Span 2.5 MHz Sweep 2.667 ms</p> <p>#Res BW 30 kHz</p> <p>Occupied Bandwidth 1.2089 MHz Total Power 0.32 dBm</p> <p>Transmit Freq Error -4.149 kHz OBW Power 99.00 %</p> <p>x dB Bandwidth 1.318 MHz x dB -20.00 dB</p> <p>MSG STATUS</p>

5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):
 frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the $2/3 \times 20$ dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels
 $RBW \geq 1\%$ of the span, $VBW \geq RBW$
 Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.

TEST MODE:

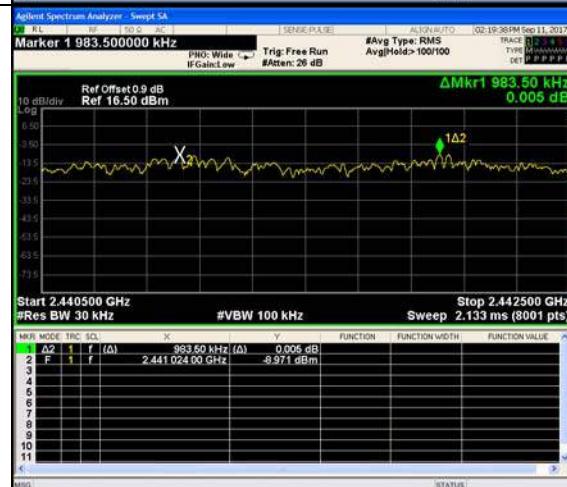
Please refer to the clause 3.3

TEST RESULTS

Passed Not Applicable


Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
GFSK	39	0.985	≥ 0.929	Pass
$\pi/4$ DQPSK	39	1.017	≥ 0.908	Pass
8DPSK	39	0.984	≥ 0.883	Pass

GFSK

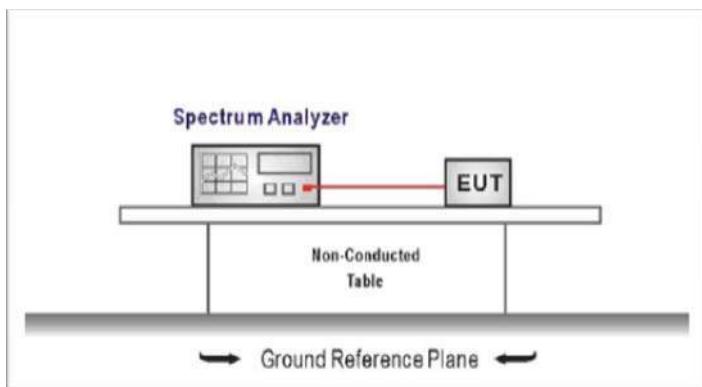

Peak Search
Next Peak
Next Pk Right
Next Pk Left
Marker Delta
Mkr--CF
Mkr--Ref Lvl
More 1 of 2

π/4DQPSK

Peak Search
Next Peak
Next Pk Right
Next Pk Left
Marker Delta
Mkr--CF
Mkr--Ref Lvl
More 1 of 2

8DPSK

Peak Search
Next Peak
Next Pk Right
Next Pk Left
Marker Delta
Mkr--CF
Mkr--Ref Lvl
More 1 of 2


5.6. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:
Span = the frequency band of operation
RBW \geq 1% of the span, VBW \geq RBW
Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.

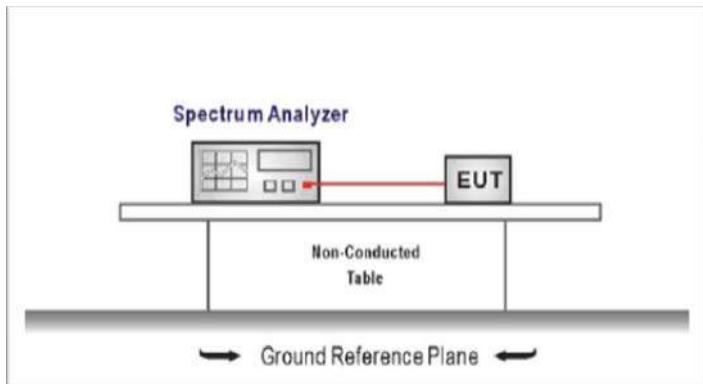
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Passed Not Applicable

Modulation type	Channel number	Limit	Result
GFSK	79	\geq 15.00	Pass
$\pi/4$ DQPSK	79		
8DPSK	79		


5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

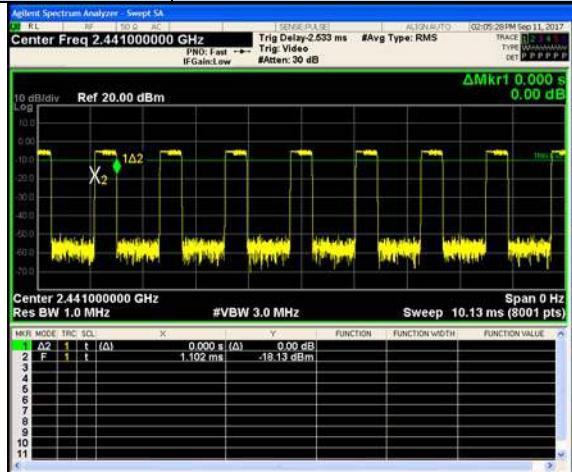
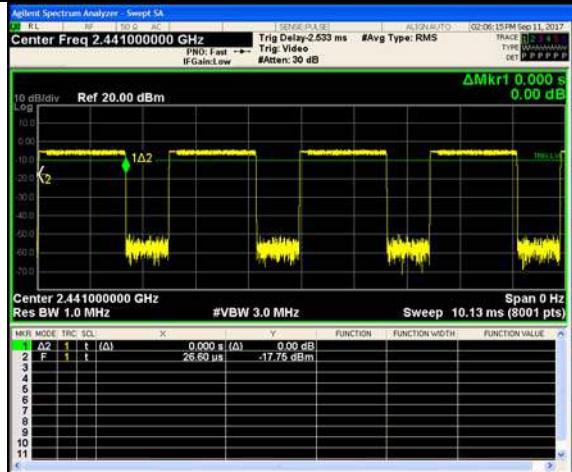
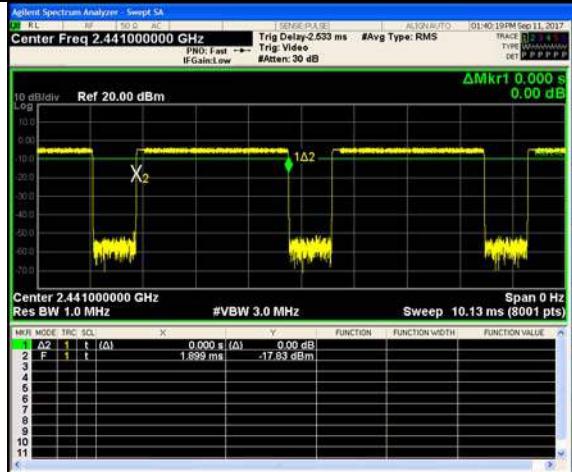
TEST PROCEDURE

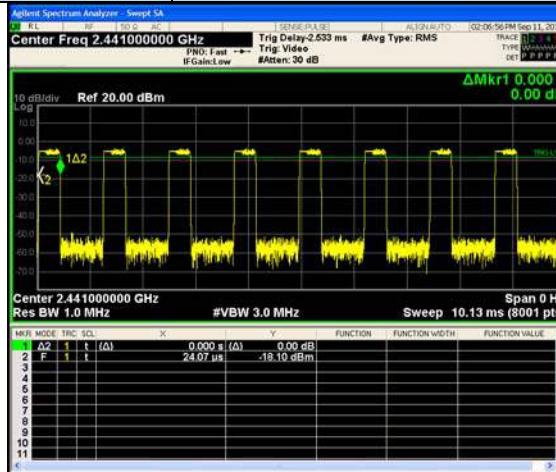
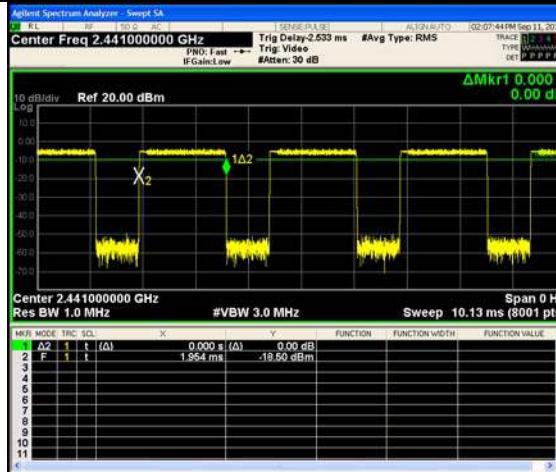
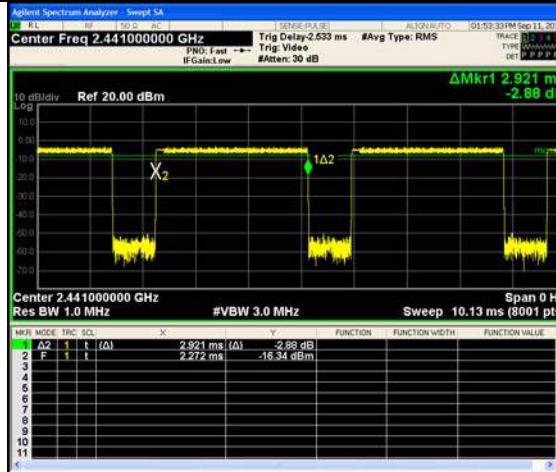
1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:
Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW \geq RBW
Sweep = as necessary to capture the entire dwell time per hopping channel,
Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS




Passed Not Applicable




Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
GFSK	DH1	0.131	≤ 0.40	Pass
	DH3	0.267		
	DH5	0.310		
$\pi/4$ DQPSK	2-DH1	0.134	≤ 0.40	Pass
	2-DH3	0.267		
	2-DH5	0.312		
8DPSK	3-DH1	0.134	≤ 0.40	Pass
	3-DH3	0.267		
	3-DH5	0.312		

Note:

1. We have tested all mode at high, middle and low channel, and recorded worst case at middle channel.
2. Dwell time = Pulse time (ms) \times $(1600 \div 2 \div 79) \times 31.6$ Second for DH1, 2-DH1, 3-DH1
Dwell time = Pulse time (ms) \times $(1600 \div 4 \div 79) \times 31.6$ Second for DH3, 2-DH3, 3-DH3
Dwell time = Pulse time (ms) \times $(1600 \div 6 \div 79) \times 31.6$ Second for DH5, 2-DH5, 3-DH5

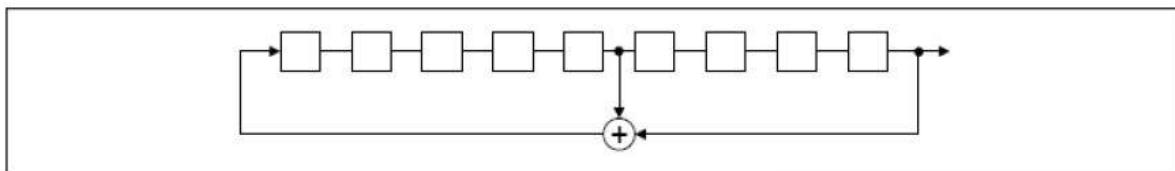
Modulation Type:		GFSK
DH1		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>Span 0 Hz</p> <p>Res BW 1.0 MHz</p> <p>#VBW 3.0 MHz</p> <p>Sweep 10.13 ms (8001 pts)</p> <p>Trig Delay:2.533 ms #Avg Type: RMS</p> <p>Trig: Video</p> <p>PWD: Fast --></p> <p>IF Gain:Low</p> <p>#Atten: 30 dB</p> <p>DET: P P P P P</p> <p>TYPE: W W W W W</p> <p>DETR: P P P P P</p> <p>ΔMkr1 0.000 s 0.00 dB</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.441000000 GHz</p> <p>Stop Freq 2.441000000 GHz</p> <p>CF Step 1.000000 MHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p>
DH3		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>Span 0 Hz</p> <p>Res BW 1.0 MHz</p> <p>#VBW 3.0 MHz</p> <p>Sweep 10.13 ms (8001 pts)</p> <p>Trig Delay:2.533 ms #Avg Type: RMS</p> <p>Trig: Video</p> <p>PWD: Fast --></p> <p>IF Gain:Low</p> <p>#Atten: 30 dB</p> <p>DET: P P P P P</p> <p>TYPE: W W W W W</p> <p>DETR: P P P P P</p> <p>ΔMkr1 0.000 s 0.00 dB</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.441000000 GHz</p> <p>Stop Freq 2.441000000 GHz</p> <p>CF Step 1.000000 MHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p>
DH5		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>Span 0 Hz</p> <p>Res BW 1.0 MHz</p> <p>#VBW 3.0 MHz</p> <p>Sweep 10.13 ms (8001 pts)</p> <p>Trig Delay:2.533 ms #Avg Type: RMS</p> <p>Trig: Video</p> <p>PWD: Fast --></p> <p>IF Gain:Low</p> <p>#Atten: 30 dB</p> <p>DET: P P P P P</p> <p>TYPE: W W W W W</p> <p>DETR: P P P P P</p> <p>ΔMkr1 0.000 s 0.00 dB</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.441000000 GHz</p> <p>Stop Freq 2.441000000 GHz</p> <p>CF Step 1.000000 MHz</p> <p>Auto</p> <p>Freq Offset 0 Hz</p>

Modulation Type:		π/4DQPSK
2DH1		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>10 dB/div</p> <p>ΔMkr1 0.000 s 0.00 dB</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.441000000 GHz</p> <p>Stop Freq 2.441000000 GHz</p> <p>CF Step 1.000000 MHz</p> <p>Freq Offset 0 Hz</p>
2DH3		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>10 dB/div</p> <p>ΔMkr1 0.000 s 0.00 dB</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.441000000 GHz</p> <p>Stop Freq 2.441000000 GHz</p> <p>CF Step 1.000000 MHz</p> <p>Freq Offset 0 Hz</p>
2DH5		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>10 dB/div</p> <p>ΔMkr1 0.000 s 0.00 dB</p> <p>Auto Tune</p> <p>Center Freq 2.441000000 GHz</p> <p>Start Freq 2.441000000 GHz</p> <p>Stop Freq 2.441000000 GHz</p> <p>CF Step 1.000000 MHz</p> <p>Freq Offset 0 Hz</p>

Modulation Type:		8DPSK
3DH1		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>Span 0 Hz</p> <p>Res BW 1.0 MHz</p> <p>#VBW 3.0 MHz</p> <p>Sweep 10.13 ms (8001 pts)</p> <p>Trig Delay:2.533 ms #Avg Type: RMS</p> <p>PND: Fast --> Trig: Video</p> <p>IF Gain:Low #Atten: 30 dB</p> <p>DET: P.P.P.P.P</p> <p>CF Step: 1.000000 MHz</p> <p>Auto</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq: 2.441000000 GHz</p> <p>Start Freq: 2.441000000 GHz</p> <p>Stop Freq: 2.441000000 GHz</p> <p>CF Step: 1.000000 MHz</p> <p>Man</p> <p>Freq Offset: 0 Hz</p>
3DH3		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>Span 0 Hz</p> <p>Res BW 1.0 MHz</p> <p>#VBW 3.0 MHz</p> <p>Sweep 10.13 ms (8001 pts)</p> <p>Trig Delay:2.533 ms #Avg Type: RMS</p> <p>PND: Fast --> Trig: Video</p> <p>IF Gain:Low #Atten: 30 dB</p> <p>DET: P.P.P.P.P</p> <p>CF Step: 1.000000 MHz</p> <p>Auto</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq: 2.441000000 GHz</p> <p>Start Freq: 2.441000000 GHz</p> <p>Stop Freq: 2.441000000 GHz</p> <p>CF Step: 1.000000 MHz</p> <p>Man</p> <p>Freq Offset: 0 Hz</p>
3DH5		<p>Agilent Spectrum Analyzer - Sweep SA</p> <p>Center Freq 2.441000000 GHz</p> <p>Ref 20.00 dBm</p> <p>Span 0 Hz</p> <p>Res BW 1.0 MHz</p> <p>#VBW 3.0 MHz</p> <p>Sweep 10.13 ms (8001 pts)</p> <p>Trig Delay:2.533 ms #Avg Type: RMS</p> <p>PND: Fast --> Trig: Video</p> <p>IF Gain:Low #Atten: 30 dB</p> <p>DET: P.P.P.P.P</p> <p>CF Step: 1.000000 MHz</p> <p>Auto</p> <p>Frequency</p> <p>Auto Tune</p> <p>Center Freq: 2.441000000 GHz</p> <p>Start Freq: 2.441000000 GHz</p> <p>Stop Freq: 2.441000000 GHz</p> <p>CF Step: 1.000000 MHz</p> <p>Man</p> <p>Freq Offset: 0 Hz</p>

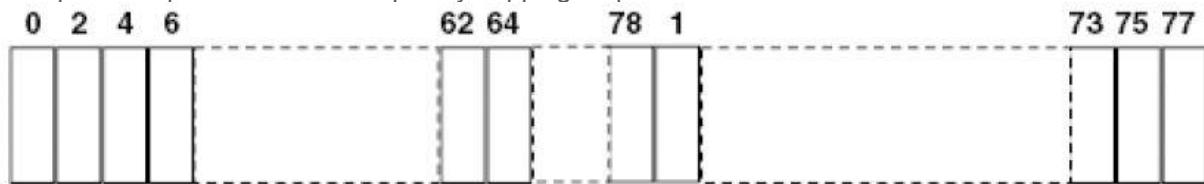
5.8. Pseudorandom Frequency Hopping Sequence

LIMIT


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS


The pseudorandom frequency hopping sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

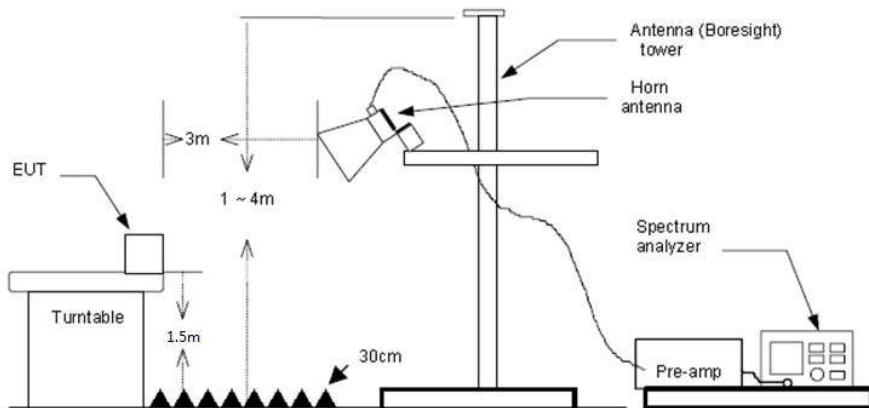
- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 - 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.


5.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
5. The receiver set as follow:
RBW=1 MHz, VBW=3 MHz for Peak value
RBW=1 MHz, VBW=10 Hz for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

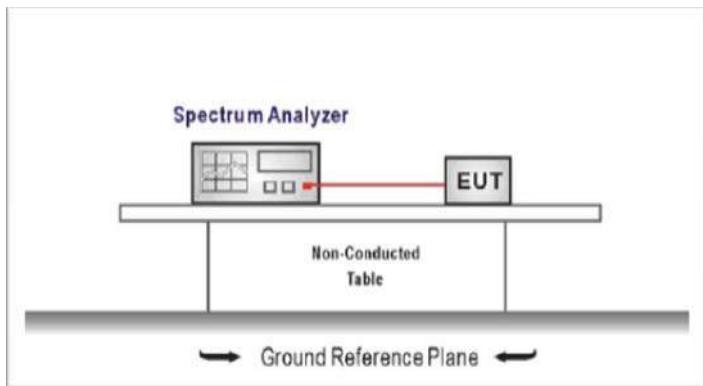
Passed Not Applicable

Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.
- 3) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

CH00									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2310.00	34.40	28.05	6.62	37.65	31.42	74.00	-42.58	Vertical	Peak
2390.03	37.33	27.65	6.75	37.87	33.86	74.00	-40.14	Vertical	
2310.00	35.64	28.05	6.62	37.65	32.66	74.00	-41.34	Horizontal	
2350.26	37.51	27.85	6.69	37.76	34.29	74.00	-39.71	Horizontal	
2390.03	35.01	27.65	6.75	37.87	31.54	74.00	-42.46	Horizontal	
2310.00	22.92	28.05	6.62	37.65	19.94	54.00	-34.06	Vertical	Average
2324.11	24.14	27.98	6.64	37.69	21.07	54.00	-32.93	Vertical	
2350.06	24.12	27.85	6.69	37.76	20.90	54.00	-33.10	Vertical	
2390.03	22.58	27.65	6.75	37.87	19.11	54.00	-34.89	Vertical	
2310.00	22.67	28.05	6.62	37.65	19.69	54.00	-34.31	Horizontal	
2324.01	24.14	27.98	6.64	37.69	21.07	54.00	-32.93	Horizontal	Average
2350.06	24.39	27.85	6.69	37.76	21.17	54.00	-32.83	Horizontal	
2390.03	22.54	27.65	6.75	37.87	19.07	54.00	-34.93	Horizontal	

CH78									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2483.50	64.42	27.26	6.83	37.87	60.64	74.00	-13.36	Vertical	Peak
2500.00	37.67	27.20	6.84	37.87	33.84	74.00	-40.16	Vertical	
2,483.50	63.86	27.26	6.83	37.87	60.08	74.00	-13.92	Horizontal	
2,500.00	38.44	27.20	6.84	37.87	34.61	74.00	-39.39	Horizontal	
2483.50	32.65	27.26	6.83	37.87	28.87	54.00	-25.13	Vertical	Average
2500.00	23.46	27.20	6.84	37.87	19.63	54.00	-34.37	Vertical	
2483.50	30.66	27.26	6.83	37.87	26.88	54.00	-27.12	Horizontal	
2500.00	22.54	27.20	6.84	37.87	18.71	54.00	-35.29	Horizontal	


5.10. Bandedge and Spurious Emission (conducted)

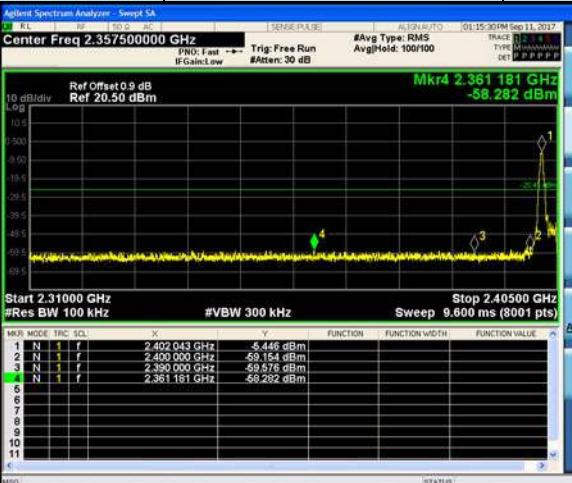
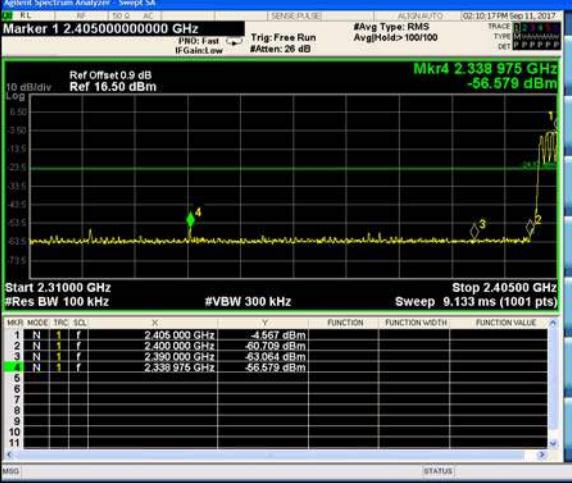
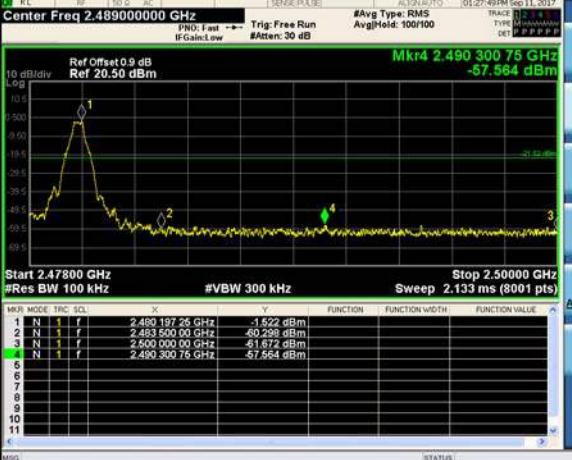
LIMIT

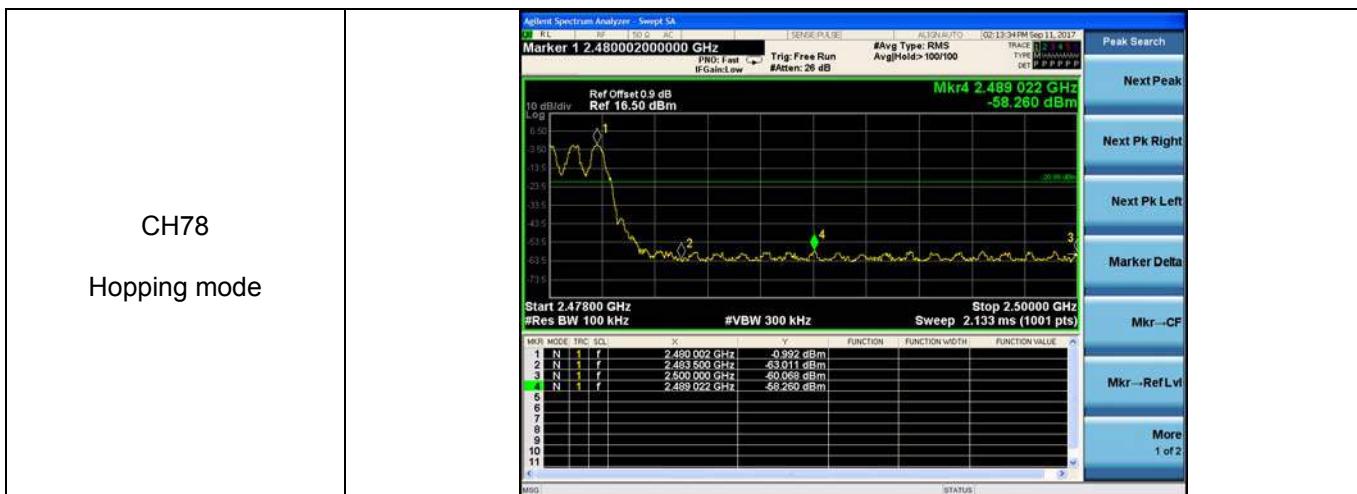
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

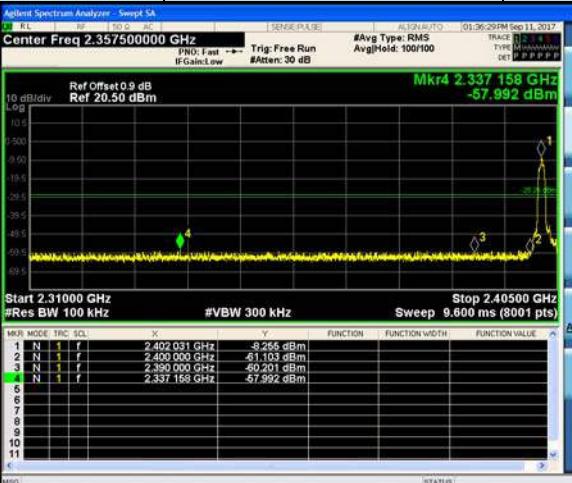
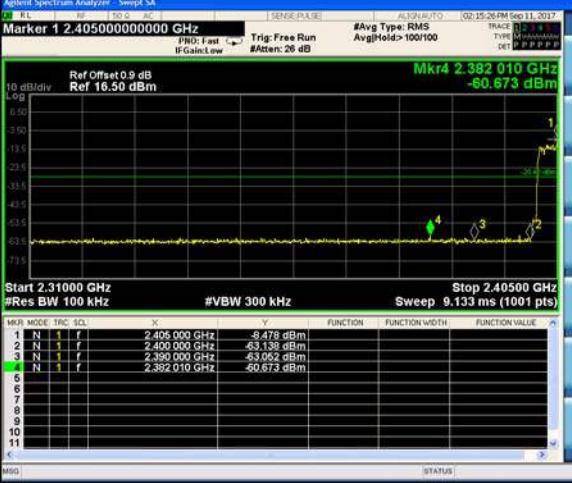
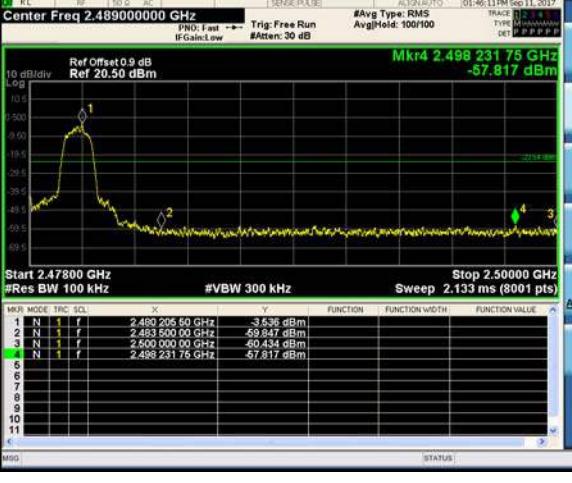
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

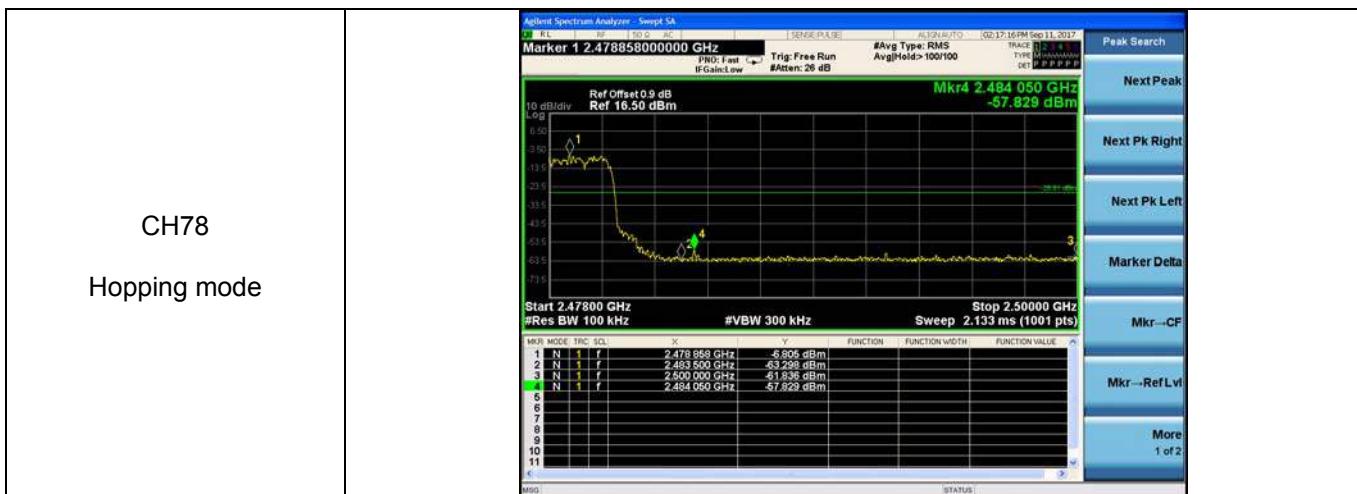
TEST CONFIGURATION

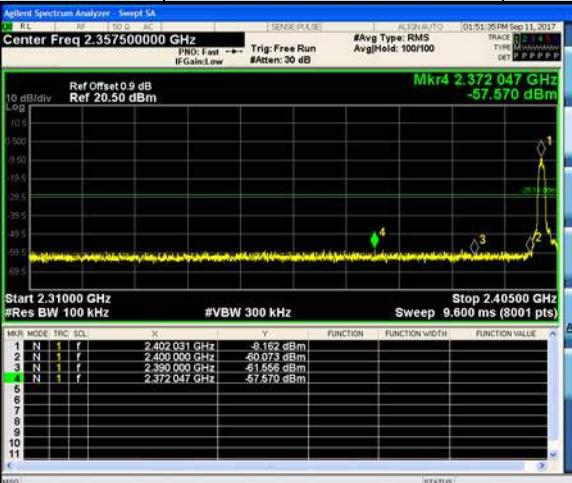
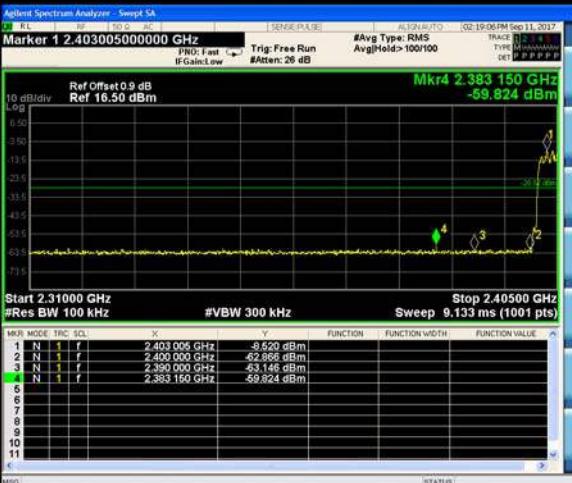
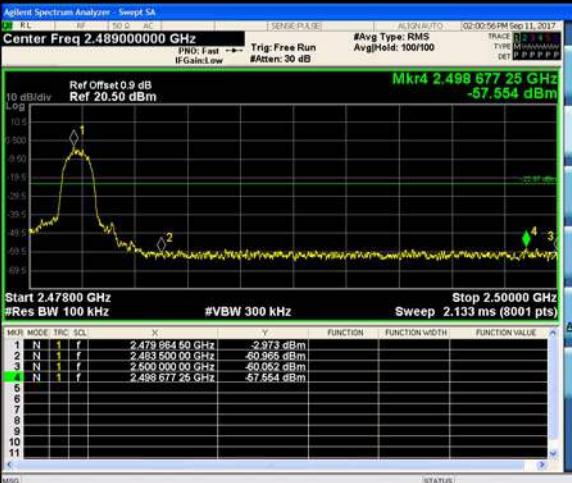
TEST PROCEDURE




1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:
RBW = 100 kHz, VBW \geq RBW
Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.


TEST MODE:




Please refer to the clause 3.3

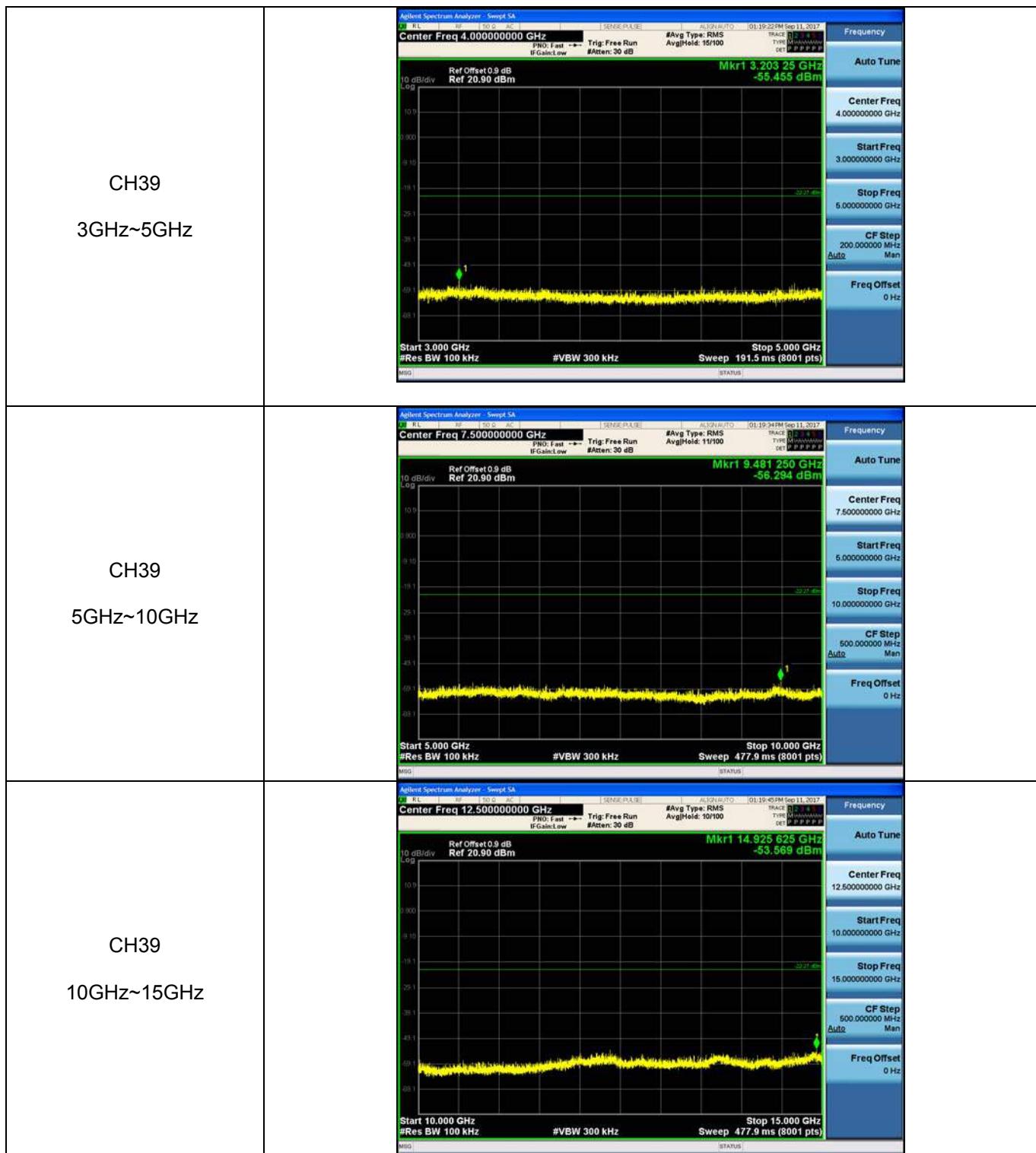

TEST RESULTS

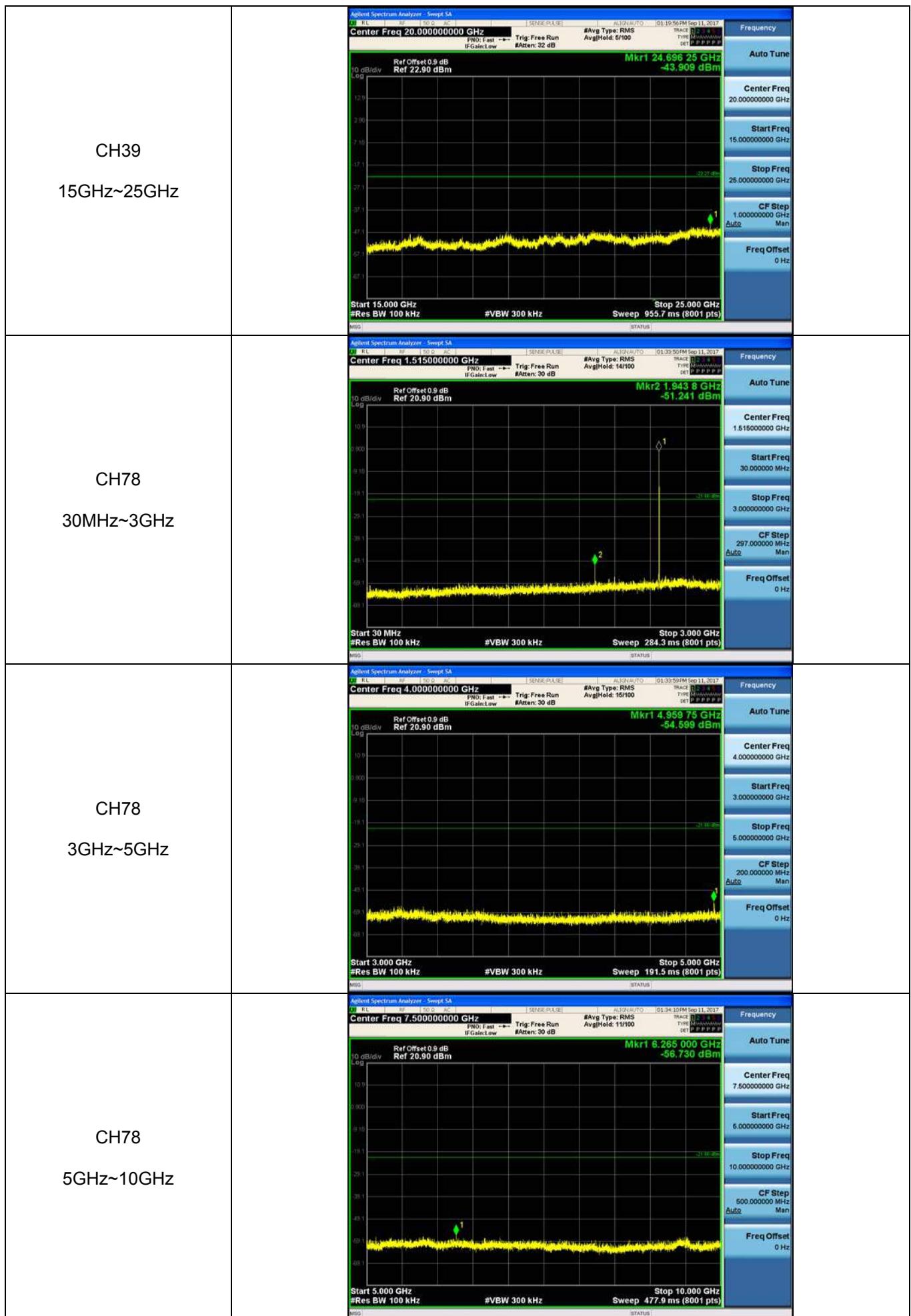



Passed Not Applicable

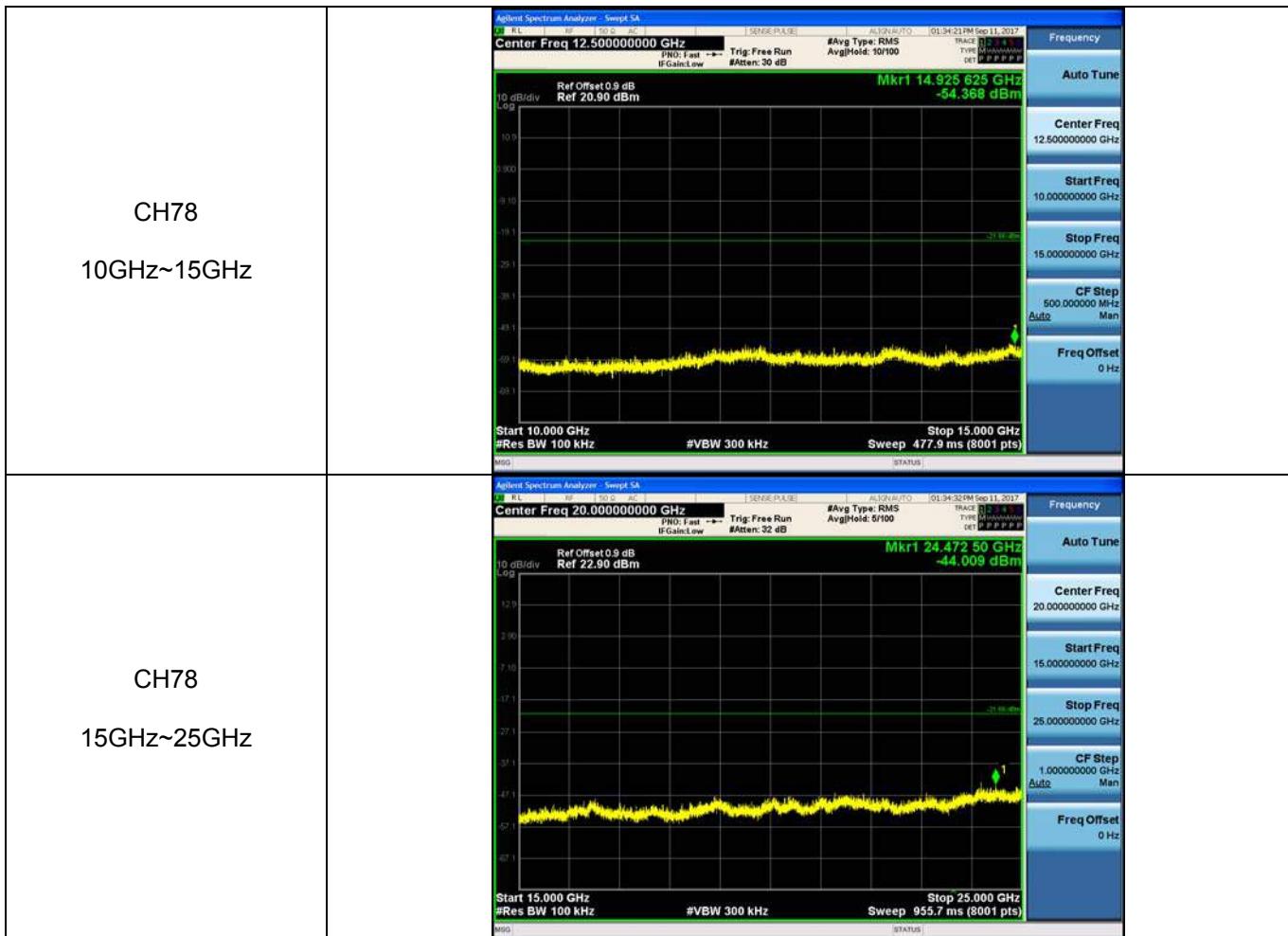
Test Item:	Band edge	Modulation type:	GFSK																																																																		
CH00	No hopping mode	<p>Marker 2.357500000000 GHz Ref Offset 0.9 dB Ref 20.50 dBm Mkr4 2.361 181 GHz -58.282 dBm</p> <p>Start 2.31000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 2.40500 GHz Sweep 9.600 ms (8001 pts)</p> <p>Mkr MODE TRC SQL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE</p> <table border="1"> <tr><td>1</td><td>N</td><td>1</td><td>f</td><td>2.402 043 GHz</td><td>-5.446 dBm</td></tr> <tr><td>2</td><td>N</td><td>1</td><td>f</td><td>2.400 000 GHz</td><td>-69.154 dBm</td></tr> <tr><td>3</td><td>N</td><td>1</td><td>f</td><td>2.399 000 GHz</td><td>-69.576 dBm</td></tr> <tr><td>4</td><td>N</td><td>1</td><td>f</td><td>2.361 181 GHz</td><td>-58.282 dBm</td></tr> <tr><td>5</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>6</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>7</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>8</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>9</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>11</td><td></td><td></td><td></td><td></td><td></td></tr> </table>	1	N	1	f	2.402 043 GHz	-5.446 dBm	2	N	1	f	2.400 000 GHz	-69.154 dBm	3	N	1	f	2.399 000 GHz	-69.576 dBm	4	N	1	f	2.361 181 GHz	-58.282 dBm	5						6						7						8						9						10						11						<p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.357500000000 GHz</p> <p>Start Freq 2.310000000000 GHz</p> <p>Stop Freq 2.405000000000 GHz</p> <p>CF Step 9.500000 MHz Auto</p> <p>Freq Offset 0 Hz</p>
1	N	1	f	2.402 043 GHz	-5.446 dBm																																																																
2	N	1	f	2.400 000 GHz	-69.154 dBm																																																																
3	N	1	f	2.399 000 GHz	-69.576 dBm																																																																
4	N	1	f	2.361 181 GHz	-58.282 dBm																																																																
5																																																																					
6																																																																					
7																																																																					
8																																																																					
9																																																																					
10																																																																					
11																																																																					
CH00	Hopping mode	<p>Marker 1.2405000000000000 GHz Ref Offset 0.9 dB Ref 16.50 dBm Mkr4 2.338 975 GHz -66.579 dBm</p> <p>Start 2.31000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 2.40500 GHz Sweep 9.133 ms (1001 pts)</p> <p>Mkr MODE TRC SQL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE</p> <table border="1"> <tr><td>1</td><td>N</td><td>1</td><td>f</td><td>2.405 000 GHz</td><td>-4.567 dBm</td></tr> <tr><td>2</td><td>N</td><td>1</td><td>f</td><td>2.400 000 GHz</td><td>-60.709 dBm</td></tr> <tr><td>3</td><td>N</td><td>1</td><td>f</td><td>2.399 000 GHz</td><td>-63.064 dBm</td></tr> <tr><td>4</td><td>N</td><td>1</td><td>f</td><td>2.338 975 GHz</td><td>-66.579 dBm</td></tr> <tr><td>5</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>6</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>7</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>8</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>9</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>11</td><td></td><td></td><td></td><td></td><td></td></tr> </table>	1	N	1	f	2.405 000 GHz	-4.567 dBm	2	N	1	f	2.400 000 GHz	-60.709 dBm	3	N	1	f	2.399 000 GHz	-63.064 dBm	4	N	1	f	2.338 975 GHz	-66.579 dBm	5						6						7						8						9						10						11						<p>Peak Search</p> <p>Next Peak</p> <p>Next Pk Right</p> <p>Next Pk Left</p> <p>Marker Delta</p> <p>Mkr-->CF</p> <p>Mkr-->Ref Lvl</p> <p>More 1 of 2</p>
1	N	1	f	2.405 000 GHz	-4.567 dBm																																																																
2	N	1	f	2.400 000 GHz	-60.709 dBm																																																																
3	N	1	f	2.399 000 GHz	-63.064 dBm																																																																
4	N	1	f	2.338 975 GHz	-66.579 dBm																																																																
5																																																																					
6																																																																					
7																																																																					
8																																																																					
9																																																																					
10																																																																					
11																																																																					
CH78	No hopping mode	<p>Marker 4.248900000000 GHz Ref Offset 0.9 dB Ref 20.50 dBm Mkr4 2.490 300 75 GHz -57.564 dBm</p> <p>Start 2.47800 GHz #Res BW 100 kHz #VBW 300 kHz Stop 2.50000 GHz Sweep 2.133 ms (8001 pts)</p> <p>Mkr MODE TRC SQL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE</p> <table border="1"> <tr><td>1</td><td>N</td><td>1</td><td>f</td><td>2.480 197 26 GHz</td><td>-1.522 dBm</td></tr> <tr><td>2</td><td>N</td><td>1</td><td>f</td><td>2.483 500 00 GHz</td><td>-60.299 dBm</td></tr> <tr><td>3</td><td>N</td><td>1</td><td>f</td><td>2.500 000 00 GHz</td><td>-61.672 dBm</td></tr> <tr><td>4</td><td>N</td><td>1</td><td>f</td><td>2.490 300 76 GHz</td><td>-57.564 dBm</td></tr> <tr><td>5</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>6</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>7</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>8</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>9</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>11</td><td></td><td></td><td></td><td></td><td></td></tr> </table>	1	N	1	f	2.480 197 26 GHz	-1.522 dBm	2	N	1	f	2.483 500 00 GHz	-60.299 dBm	3	N	1	f	2.500 000 00 GHz	-61.672 dBm	4	N	1	f	2.490 300 76 GHz	-57.564 dBm	5						6						7						8						9						10						11						<p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.489000000000 GHz</p> <p>Start Freq 2.478000000000 GHz</p> <p>Stop Freq 2.500000000000 GHz</p> <p>CF Step 2.200000 MHz Auto</p> <p>Freq Offset 0 Hz</p>
1	N	1	f	2.480 197 26 GHz	-1.522 dBm																																																																
2	N	1	f	2.483 500 00 GHz	-60.299 dBm																																																																
3	N	1	f	2.500 000 00 GHz	-61.672 dBm																																																																
4	N	1	f	2.490 300 76 GHz	-57.564 dBm																																																																
5																																																																					
6																																																																					
7																																																																					
8																																																																					
9																																																																					
10																																																																					
11																																																																					



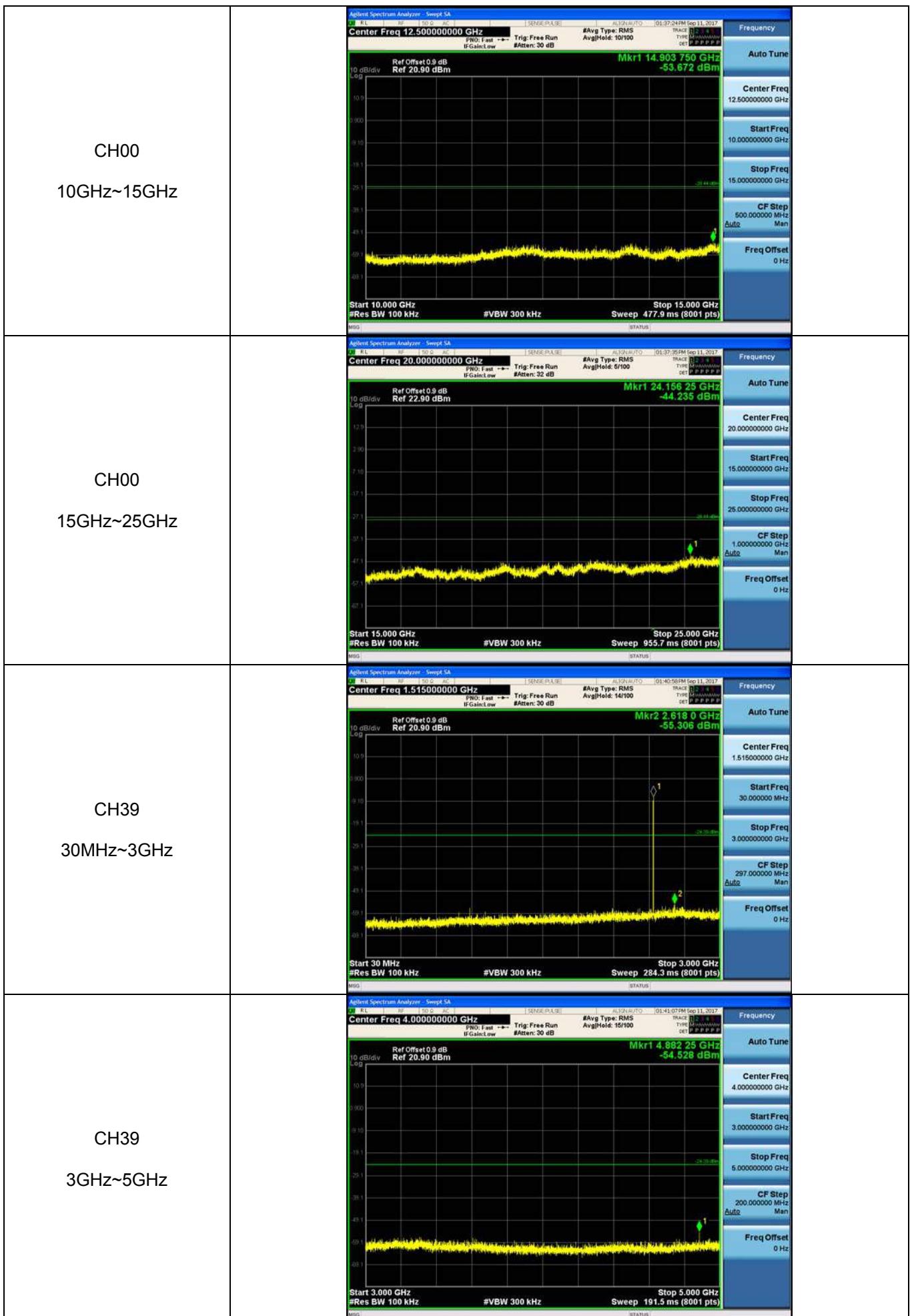
Test Item:	Band edge	Modulation type:	$\pi/4$ DQPSK
CH00	No hopping mode	<p>Marker 4: 2.337 158 GHz, -57.992 dBm</p> <p>Marker 1: 2.402 031 GHz, -8.256 dBm</p> <p>Marker 2: 2.400 000 GHz, -61.103 dBm</p> <p>Marker 3: 2.399 000 GHz, -60.201 dBm</p> <p>Marker 4: 2.337 158 GHz, -57.992 dBm</p>	<p>Frequency</p> <p>Auto Tune</p> <p>Center Freq: 2.357500000 GHz</p> <p>Start Freq: 2.310000000 GHz</p> <p>Stop Freq: 2.405000000 GHz</p> <p>CF Step: 9.500000 MHz</p> <p>Auto</p> <p>Freq Offset: 0 Hz</p>
CH00	Hopping mode	<p>Marker 4: 2.392 010 GHz, -60.673 dBm</p> <p>Marker 1: 2.405 000 GHz, -8.478 dBm</p> <p>Marker 2: 2.400 000 GHz, -63.138 dBm</p> <p>Marker 3: 2.399 000 GHz, -63.052 dBm</p> <p>Marker 4: 2.392 010 GHz, -60.673 dBm</p>	<p>Peak Search</p> <p>Next Peak</p> <p>Next Pk Right</p> <p>Next Pk Left</p> <p>Marker Delta</p> <p>Mkr-->CF</p> <p>Mkr-->Ref Lvl</p> <p>More 1 of 2</p>
CH78	No hopping mode	<p>Marker 4: 2.498 231 75 GHz, -57.817 dBm</p> <p>Marker 1: 2.490 205 50 GHz, -3.536 dBm</p> <p>Marker 2: 2.483 500 00 GHz, -69.847 dBm</p> <p>Marker 3: 2.500 000 00 GHz, -60.434 dBm</p> <p>Marker 4: 2.498 231 76 GHz, -57.817 dBm</p>	<p>Frequency</p> <p>Auto Tune</p> <p>Center Freq: 2.489000000 GHz</p> <p>Start Freq: 2.478000000 GHz</p> <p>Stop Freq: 2.500000000 GHz</p> <p>CF Step: 2.200000 MHz</p> <p>Auto</p> <p>Freq Offset: 0 Hz</p>

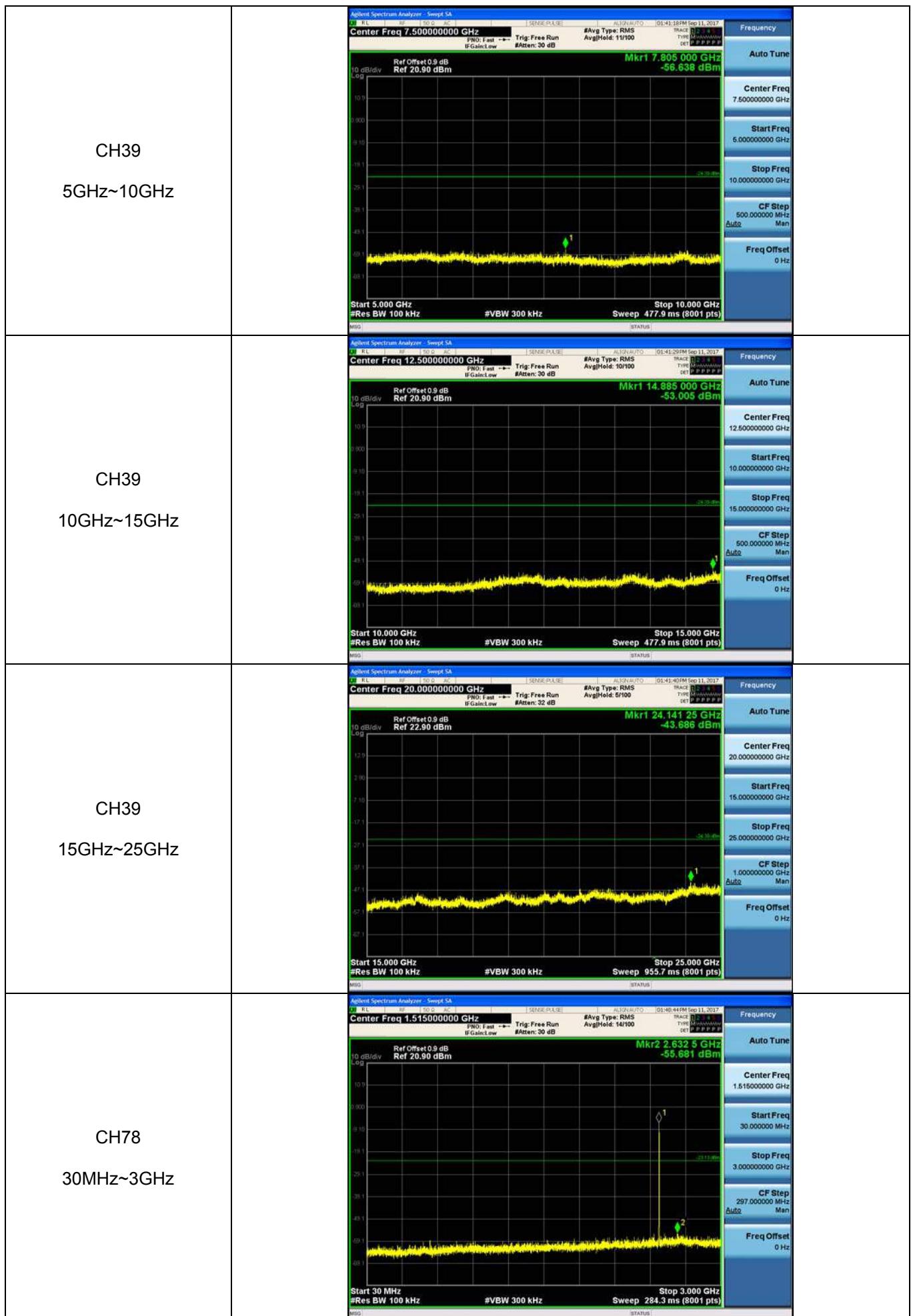


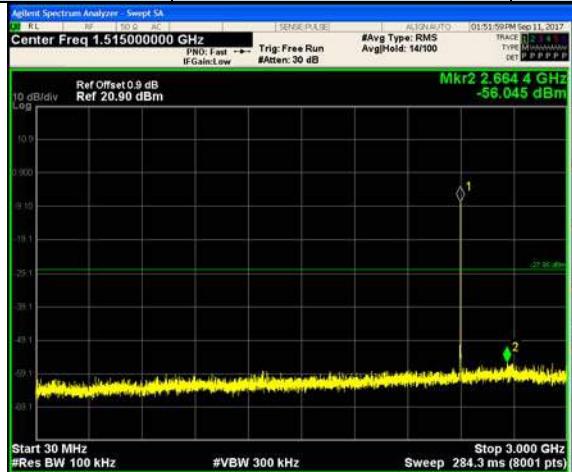

Test Item:	Band edge	Modulation type:	8DPSK
	CH00 No hopping mode		<p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.357500000 GHz</p> <p>Start Freq 2.310000000 GHz</p> <p>Stop Freq 2.405000000 GHz</p> <p>CF Step 9.500000 MHz Auto</p> <p>Freq Offset 0 Hz</p>
	CH00 Hopping mode		<p>Peak Search</p> <p>Next Peak</p> <p>Next Pk Right</p> <p>Next Pk Left</p> <p>Marker Delta</p> <p>Mkr-->CF</p> <p>Mkr-->Ref Lvl</p> <p>More 1 of 2</p>
	CH78 No hopping mode		<p>Frequency</p> <p>Auto Tune</p> <p>Center Freq 2.489000000 GHz</p> <p>Start Freq 2.478000000 GHz</p> <p>Stop Freq 2.500000000 GHz</p> <p>CF Step 2.200000 MHz Auto</p> <p>Freq Offset 0 Hz</p>

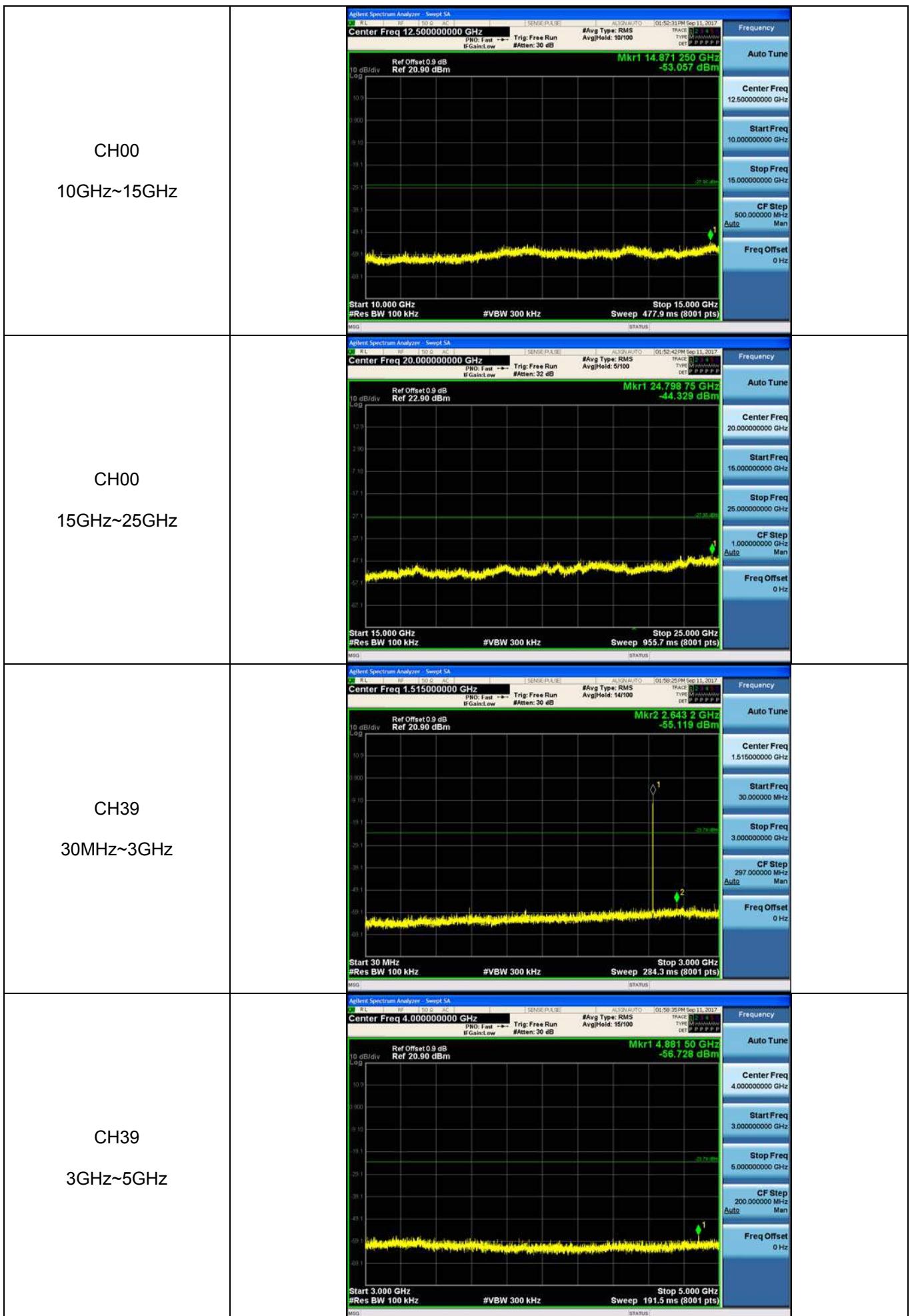


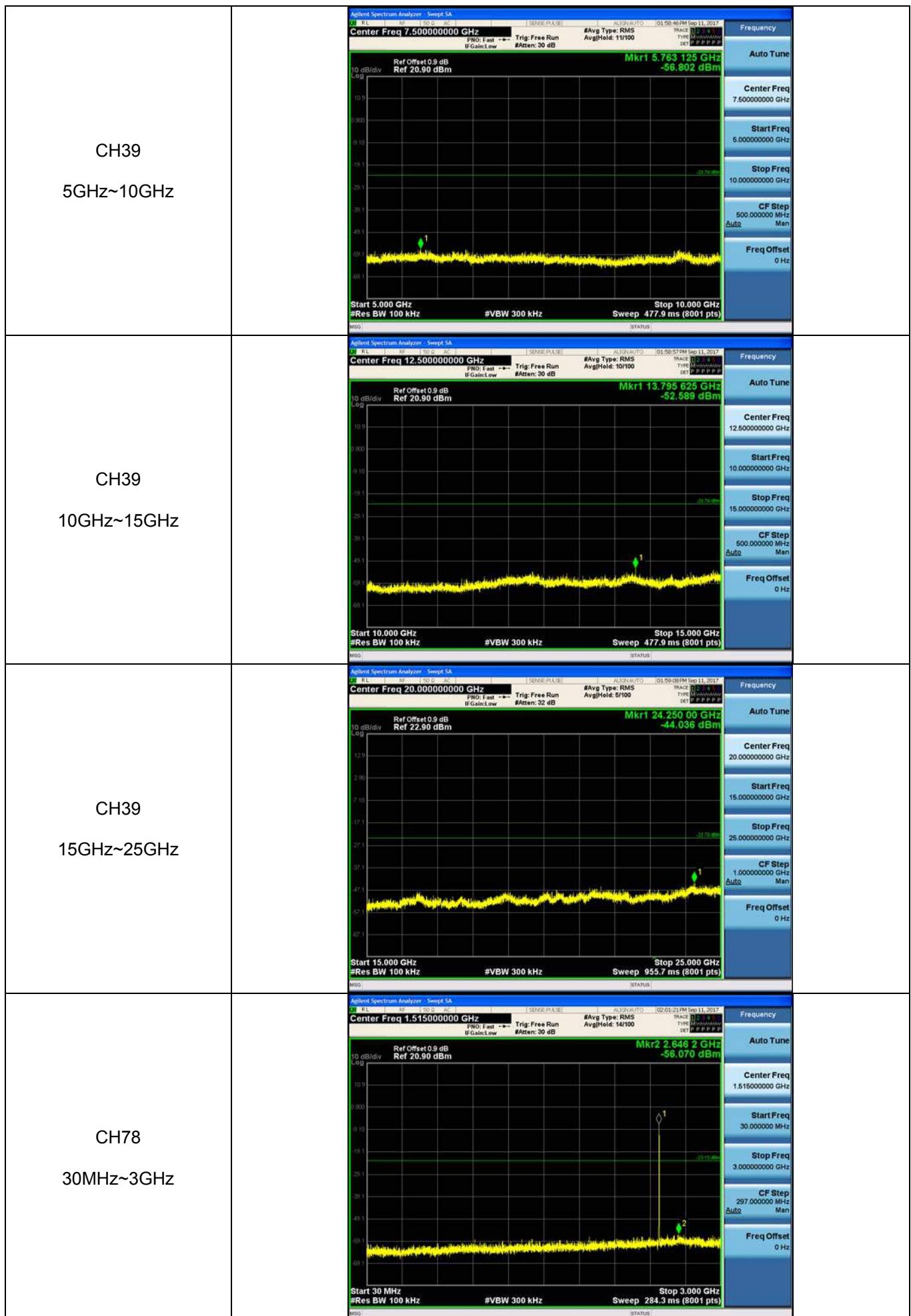
Test Item:	SE	Modulation type:	GFSK
CH00 30MHz~3GHz			
CH00 3GHz~5GHz			
CH00 5GHz~10GHz			

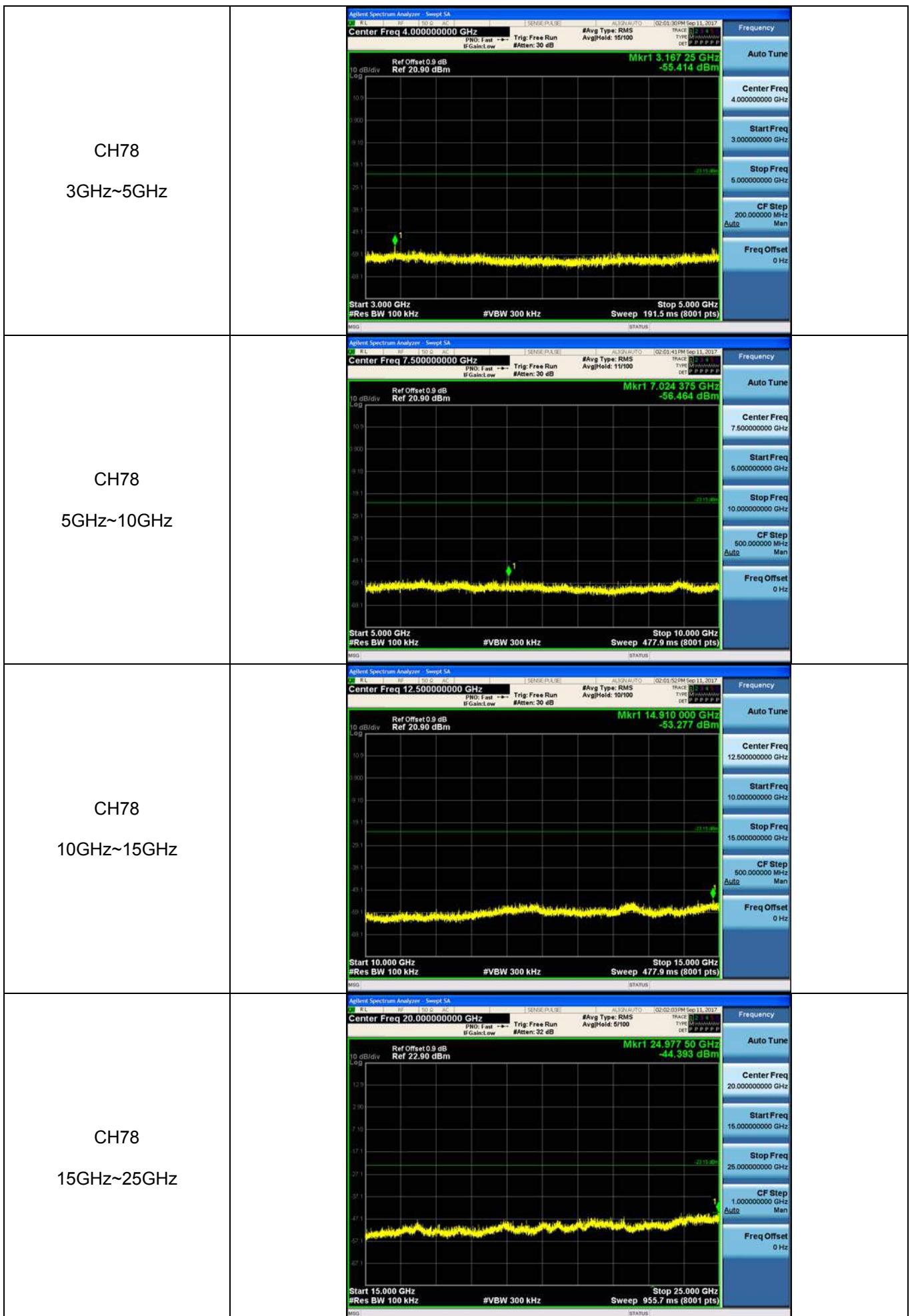

CH00	<p>10GHz~15GHz</p>
CH00	<p>15GHz~25GHz</p>
CH39	<p>30MHz~3GHz</p>





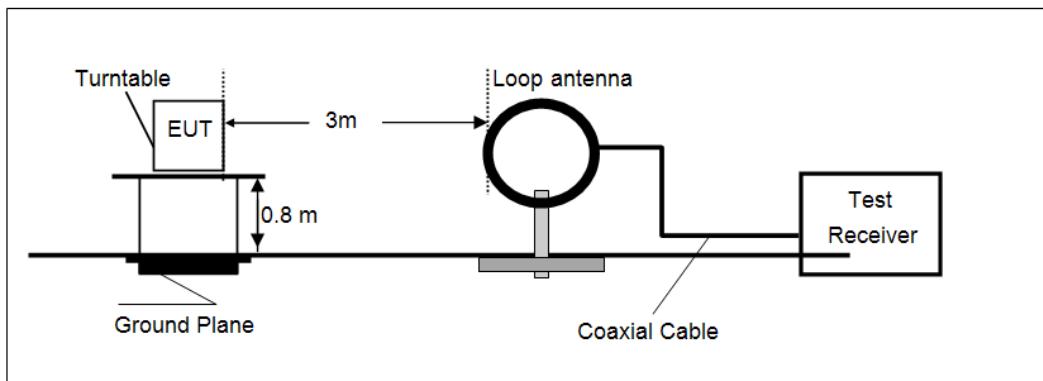

Test Item:	SE	Modulation type:	$\pi/4$ DQPSK
CH00 30MHz~3GHz			
CH00 3GHz~5GHz			
CH00 5GHz~10GHz			



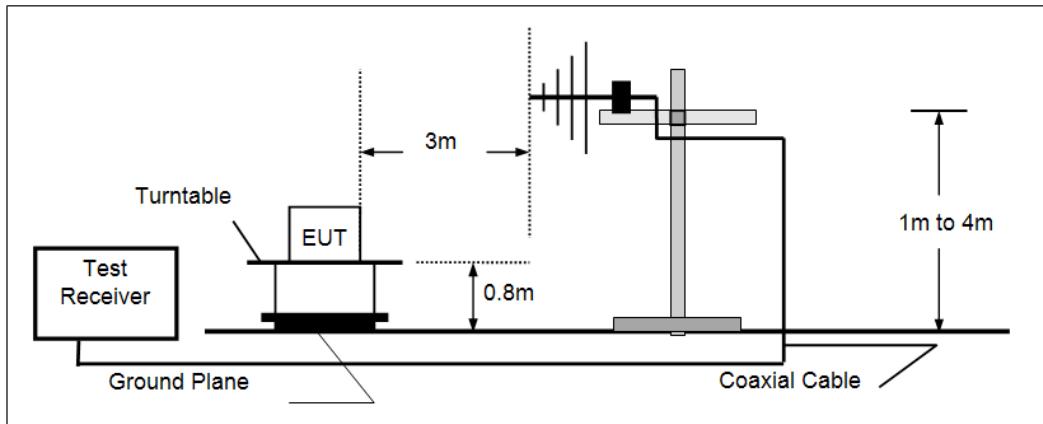


Test Item:	SE	Modulation type:	8DPSK
CH00 30MHz~3GHz		<p>Agilent Spectrum Analyzer - Sweep SA Center Freq 1.515000000 GHz PND: Fast --> Trig: Free Run IF Gain:Low #Atten: 30 dB Ref Offset 0.9 dB Ref 20.90 dBm Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 284.3 ms (8001 pts) Stop 3.000 GHz</p>	Frequency Auto Tune Center Freq 1.515000000 GHz Start Freq 30.000000 MHz Stop Freq 3.000000000 GHz CF Step 297.000000 MHz Auto Man Freq Offset 0 Hz
CH00 3GHz~5GHz		<p>Agilent Spectrum Analyzer - Sweep SA Center Freq 4.000000000 GHz PND: Fast --> Trig: Free Run IF Gain:Low #Atten: 30 dB Ref Offset 0.9 dB Ref 20.90 dBm Start 3.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 191.5 ms (8001 pts) Stop 5.000 GHz</p>	Frequency Auto Tune Center Freq 4.000000000 GHz Start Freq 3.000000000 GHz Stop Freq 6.000000000 GHz CF Step 200.000000 MHz Auto Man Freq Offset 0 Hz
CH00 5GHz~10GHz		<p>Agilent Spectrum Analyzer - Sweep SA Center Freq 7.500000000 GHz PND: Fast --> Trig: Free Run IF Gain:Low #Atten: 30 dB Ref Offset 0.9 dB Ref 20.90 dBm Start 5.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 477.9 ms (8001 pts) Stop 10.000 GHz</p>	Frequency Auto Tune Center Freq 7.500000000 GHz Start Freq 6.000000000 GHz Stop Freq 10.000000000 GHz CF Step 500.000000 MHz Auto Man Freq Offset 0 Hz

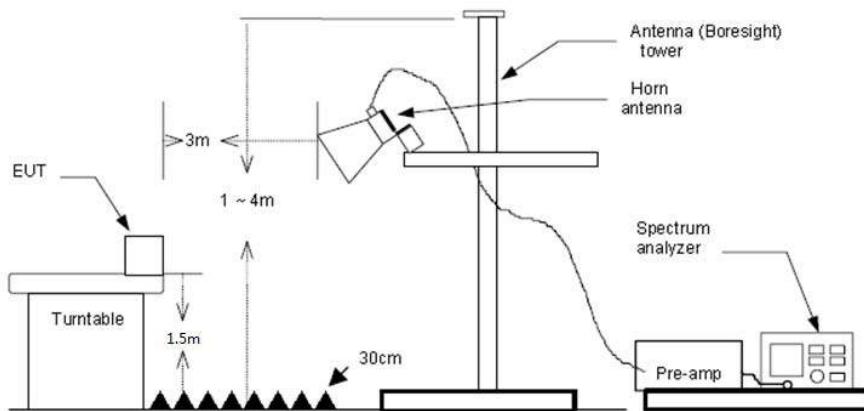
5.11. Spurious Emission (radiated)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dB _{UV} /m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


- Below 30 MHz

- 30 MHz ~1000 MHz

- Above 1 GHz

TEST PROCEDURE

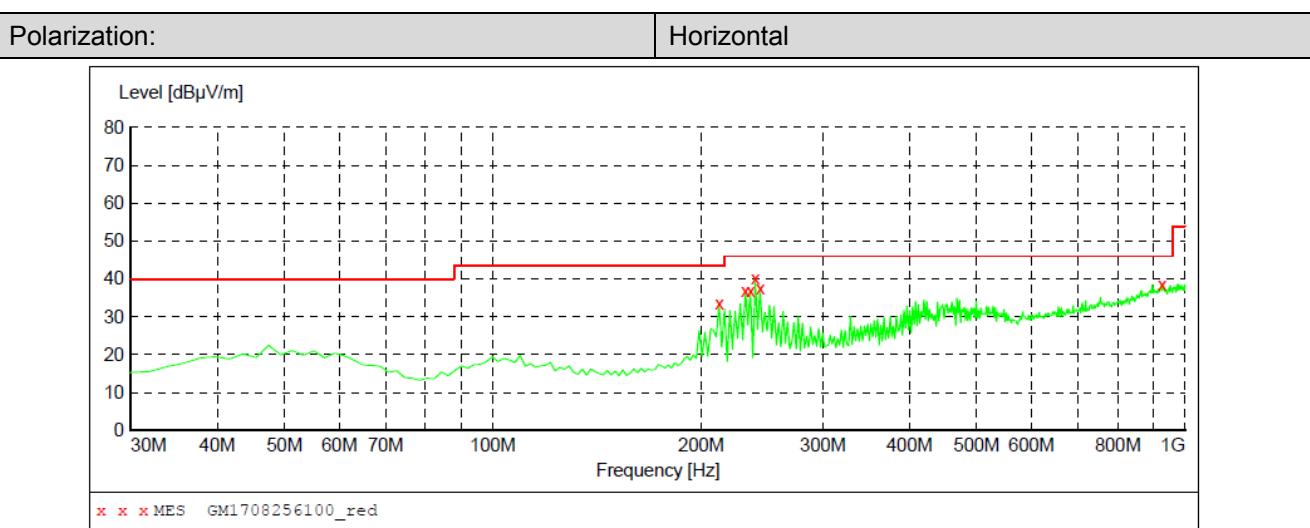
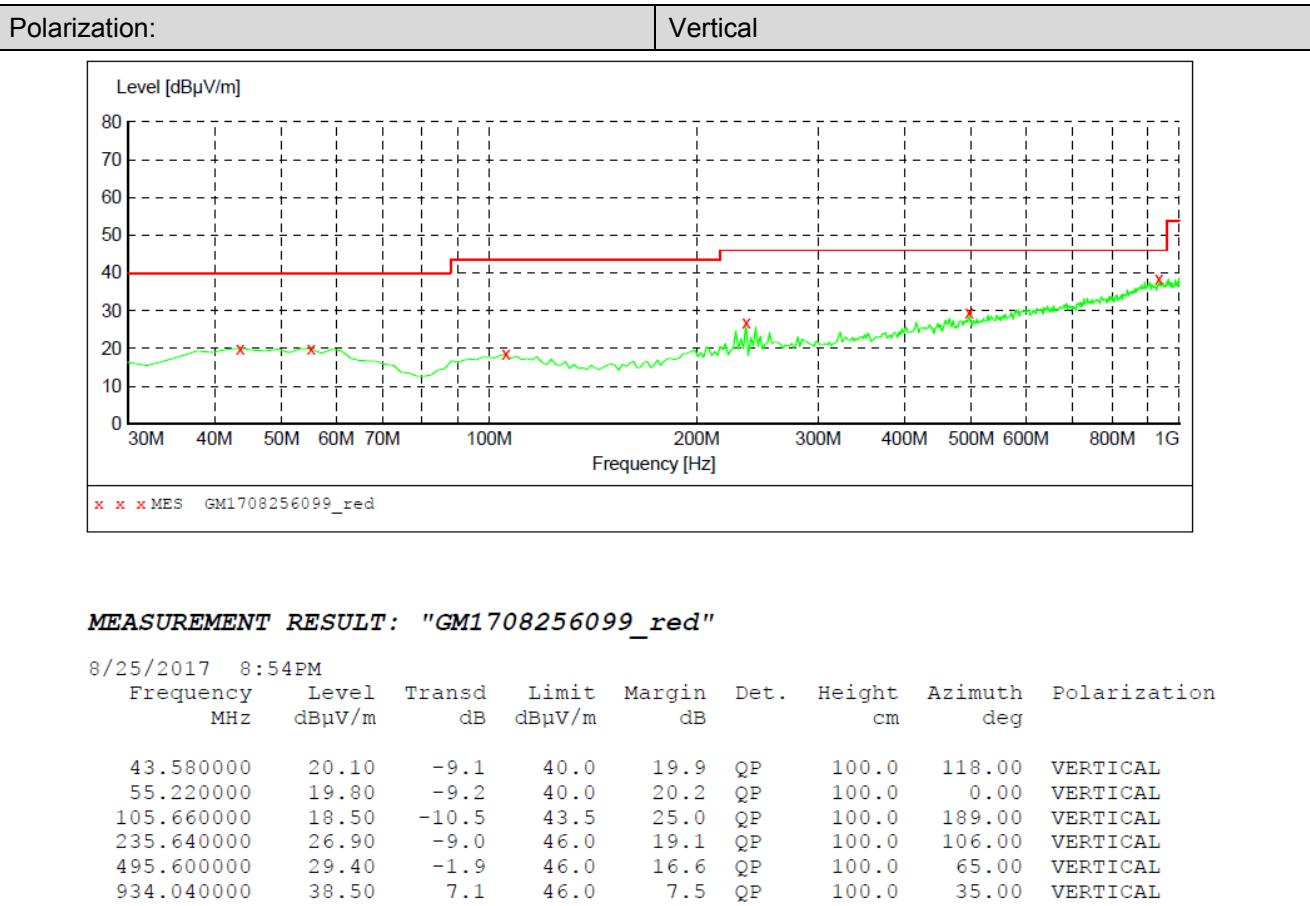
1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz, RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1 GHz, RBW=1 MHz, VBW=3 MHz for Peak value
RBW=1 MHz, VBW=10 Hz for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Passed Not Applicable



Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) Below 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation High channel which it was worst case, so only the worst case's data on the test report.
- 4) Above 1 GHz, Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report
- 5) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

➤ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

➤ 30 MHz ~ 1 GHz

MEASUREMENT RESULT: "GM1708256100_red"

8/25/2017 8:57PM

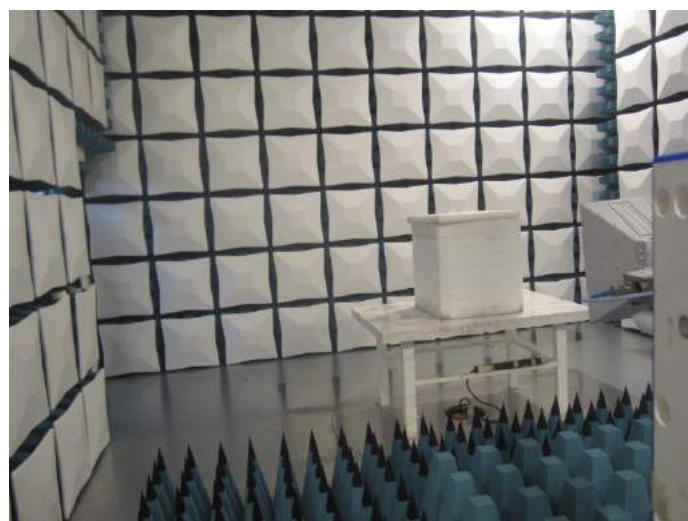
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dB μ V/m	dB	dB μ V/m	dB		cm	deg	
212.360000	33.50	-10.4	43.5	10.0	QP	100.0	0.00	HORIZONTAL
231.760000	36.90	-9.2	46.0	9.1	QP	100.0	186.00	HORIZONTAL
235.640000	37.00	-9.0	46.0	9.0	QP	100.0	46.00	HORIZONTAL
239.520000	40.00	-8.8	46.0	6.0	QP	100.0	6.00	HORIZONTAL
243.400000	37.60	-8.6	46.0	8.4	QP	100.0	0.00	HORIZONTAL
926.280000	38.50	7.1	46.0	7.5	QP	100.0	239.00	HORIZONTAL

➤ Above 1 GHz

CH00 for GFSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1597.40	45.26	24.92	5.56	36.72	39.02	74.00	-34.98	Vertical	Peak
3192.37	41.10	28.80	7.71	38.20	39.41	74.00	-34.59	Vertical	
4809.50	56.65	31.58	9.55	36.93	60.85	74.00	-13.15	Vertical	
7209.02	38.22	36.21	11.87	35.07	51.23	74.00	-22.77	Vertical	
4809.50	36.10	31.58	9.55	36.93	40.30	54.00	-13.70	Vertical	Average
7209.02	19.91	36.21	11.87	35.07	32.92	54.00	-21.08	Vertical	
1593.34	38.12	24.96	5.55	36.71	31.92	74.00	-42.08	Horizontal	Peak
2995.54	41.72	28.60	7.48	38.23	39.57	74.00	-34.43	Horizontal	
4809.50	42.93	31.58	9.55	36.93	47.13	74.00	-26.87	Horizontal	
7209.02	34.90	36.21	11.87	35.07	47.91	74.00	-26.09	Horizontal	

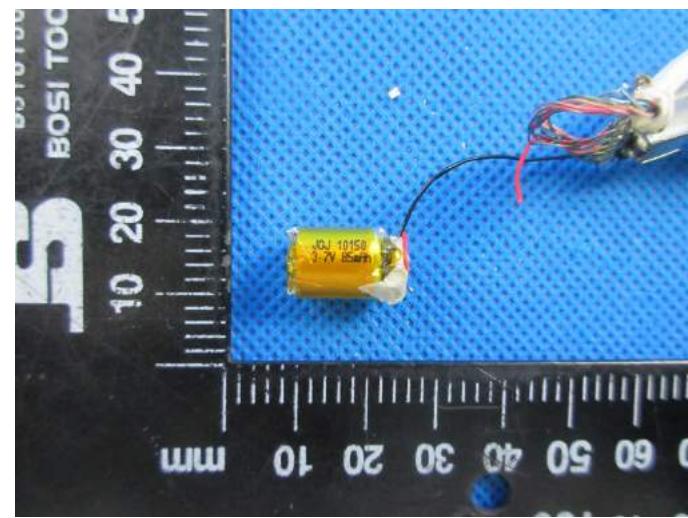
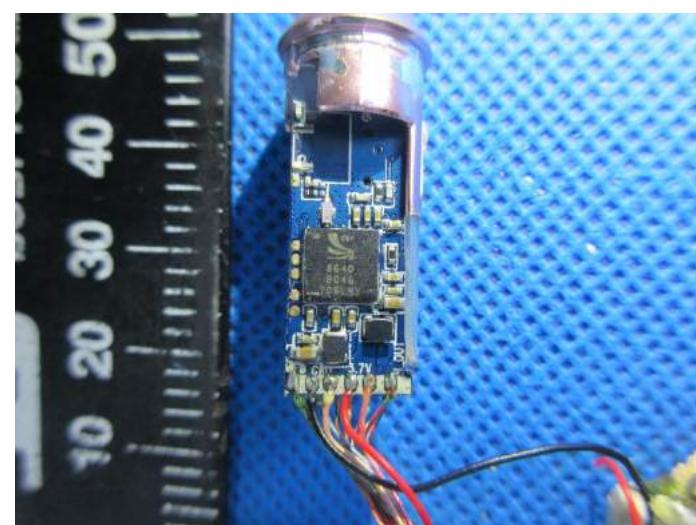
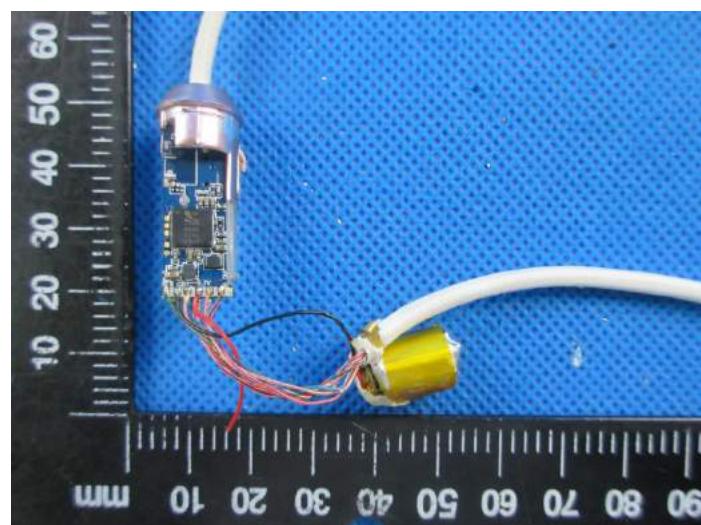
CH39 for GFSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1860.99	40.31	25.34	6.05	37.19	34.51	74.00	-39.49	Vertical	Peak
3489.84	37.12	28.92	8.10	38.42	35.72	74.00	-38.28	Vertical	
4883.52	59.31	31.43	9.59	36.73	63.60	74.00	-10.40	Vertical	
7319.96	45.41	36.30	11.99	34.92	58.78	74.00	-15.22	Vertical	
4883.52	40.27	31.43	9.59	36.73	44.56	54.00	-9.44	Vertical	Average
7319.96	19.65	36.30	11.99	34.92	33.02	54.00	-20.98	Vertical	
1593.34	39.01	24.96	5.55	36.71	32.81	74.00	-41.19	Horizontal	Peak
2987.92	40.01	28.59	7.47	38.24	37.83	74.00	-36.17	Horizontal	
4883.52	43.17	31.43	9.59	36.73	47.46	74.00	-26.54	Horizontal	
7319.96	38.68	36.30	11.99	34.92	52.05	74.00	-21.95	Horizontal	
7319.96	23.55	36.30	11.99	34.92	36.92	54.00	-17.08	Horizontal	Average

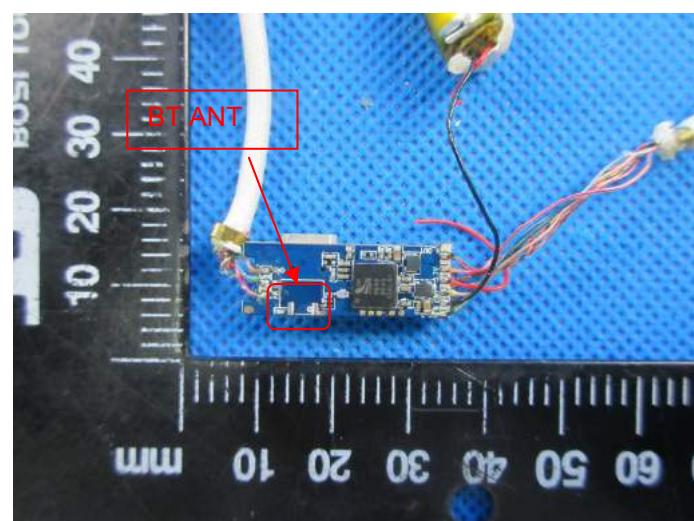
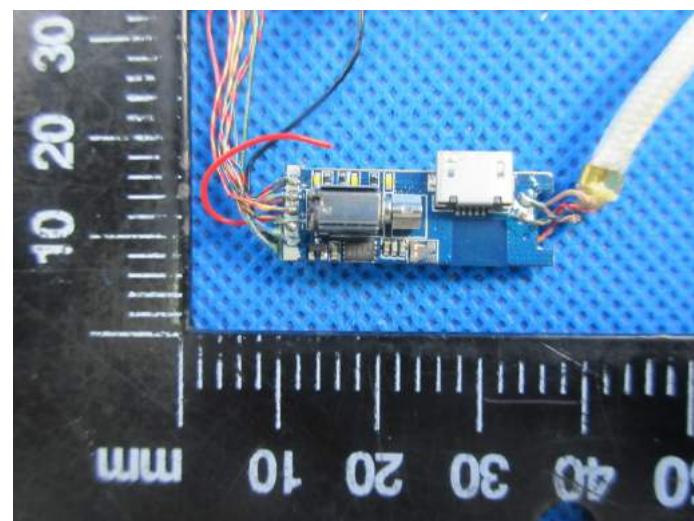
CH78 for GFSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1593.34	39.27	24.96	5.55	36.71	33.07	74.00	-40.93	Vertical	Peak
4256.33	39.92	30.11	8.99	37.62	41.40	74.00	-32.60	Vertical	
4958.68	65.01	31.46	9.64	36.52	69.59	74.00	-4.41	Vertical	
7451.57	49.36	36.20	12.24	34.86	62.94	74.00	-11.06	Vertical	
4958.68	47.16	31.46	9.64	36.52	51.74	54.00	-2.26	Vertical	Average
7451.57	32.54	36.20	12.24	34.86	46.12	54.00	-7.88	Vertical	
1860.99	45.18	25.34	6.05	37.19	39.38	74.00	-34.62	Horizontal	Peak
2987.92	42.15	28.59	7.47	38.24	39.97	74.00	-34.03	Horizontal	
4958.68	57.06	31.46	9.64	36.52	61.64	74.00	-12.36	Horizontal	
7451.57	38.94	36.20	12.24	34.86	52.52	74.00	-21.48	Horizontal	
4958.68	33.01	31.46	9.64	36.52	37.59	54.00	-16.41	Horizontal	Average


6. Test Setup Photos of the EUT

Conducted Emission (AC Mains)

Radiated Emission



7. External and Internal Photos of the EUT

External Photos of the EUT

Internal Photos of the EUT

-----End of Report-----