

Prediction of MPE Limit
47 CFR § 2.1091/ § 2.1093

$$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2}$$

$$S_C = \frac{P_A G_N}{4\pi R_C^2}$$

$$R_C = \sqrt{\frac{P_A G_N}{4\pi S_L}}$$

$$S_L = \frac{180}{f^2} \text{ (mW/cm}^2\text{)}$$

S₂₀ = Power Density of the Device at 20cm

S_L = Power Density Limit

S_C = Power Density of the Device at the Compliance Distance R_C

R₂₀ = 20cm

R_C = Minimum Distance to the Radiating Element to Meet Compliance

P_T = Power Input to Antenna

P_A = Adjust Power

G_N = Numeric Gain of the Antenna

f = Transmit Frequency

Transmit Duty Cycle = 100%

Use Group = General Popuation

Transmit Duty Cycle:	100.00	(%)
Tx Frequency (f):	916.00	(MHz)
RF Power at Antenna Input Port (P _T):	70.00	(mW)
Antenna Gain:	1.80	(dBi)
Numeric Antenna Gain (G _N):	1.51	(numeric)
Cable or Other Loss:	0.00	(dB)
Duty Cycle/Loss Adjusted Power (P _A):	70.00	(mW)

S _L =	0.611	(mW/cm ²)
S ₂₀ at 20cm =	0.021	(mW/cm ²)
R _C =	3.7	(cm)
S _C =	0.61	(mW/cm ²)

RESULT PASS

Art Voss

Senior Engineer

Celltech Labs Inc.