

LTE B66 20MHz 1RB 50offset Bottom Mode High 5mm

Date/Time: 2023/10/31 Electronics: DAE4 Sn1244

Medium parameters used: f = 1770 MHz; $\sigma = 1.336$ S/m; $\varepsilon_r = 38.783$; $\rho = 1000$ kg/m³

Ambient Temperature:21.4°C Liquid Temperature:20.4°C

Communication System: LTE Band 66 Professional 1750MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7633ConvF(8.96, 8.96, 8.96) @ 1770 MHz

LTE B66 20MHz 1RB 50offset Bottom Mode High 5mm/Area Scan (5x7x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.29 W/kg

LTE B66 20MHz 1RB 50offset Bottom Mode High 5mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.93 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 0.901 W/kg; SAR(10 g) = 0.440 W/kgMaximum value of SAR (measured) = 1.45 W/kg

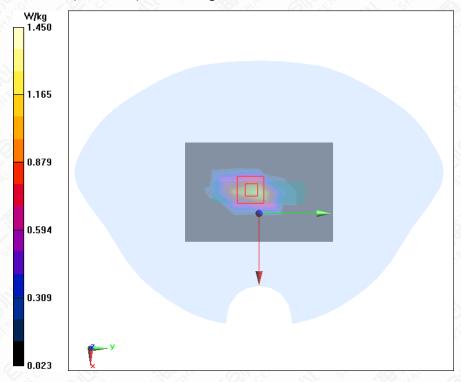


Figure A.1-7 LTE B66 20MHz 1RB 50offset Bottom Mode High 5mm

LTE B66 20MHz 1RB 50offset Bottom Mode High 0mm

Date/Time: 2023/10/31 Electronics: DAE4 Sn1244

Medium parameters used: f = 1770 MHz; $\sigma = 1.336$ S/m; $\varepsilon_r = 38.783$; $\rho = 1000$ kg/m³

Ambient Temperature:21.4°C Liquid Temperature:20.4°C

Communication System: LTE Band 66 Professional 1750MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7633ConvF(8.96, 8.96, 8.96) @ 1770 MHz

LTE B66 20MHz 1RB 50offset Bottom Mode High 0mm/Area Scan (5x7x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 3.37 W/kg

LTE B66 20MHz 1RB 50offset Bottom Mode High 0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.32 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.45 W/kg

SAR(1 g) = 1.98 W/kg; SAR(10 g) = 0.861 W/kgMaximum of SAR (measured) = 3.62 W/kg

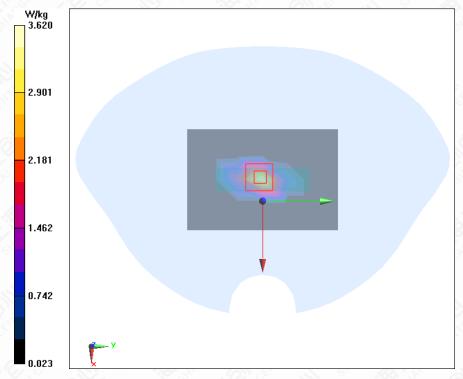


Figure A.1-8 LTE B66 20MHz 1RB 50offset Bottom Mode High 0mm

A.2 System Check Graph Results

System Check Head 750MHz

Date/Time: 2023/10/26 Electronics: DAE4 Sn1244

Medium parameters used: f = 750 MHz; σ = 0.889 S/m; ε_r = 42.207; ρ = 1000 kg/m³

Ambient Temperature:21.5°C Liquid Temperature:20.4°C

Communication System: CW 900MHz; Frequency: 750 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7633ConvF(11.03, 11.03, 11.03) @ 750 MHz

System Check Head 750MHz/Area Scan (7x13x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 2.45 W/kg

System Check Head 750MHz/Zoom Scan (7x7x7) (5x5x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.28 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.29 W/kg

SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.32 W/kgMaximum value of SAR (measured) = 2.82 W/kg

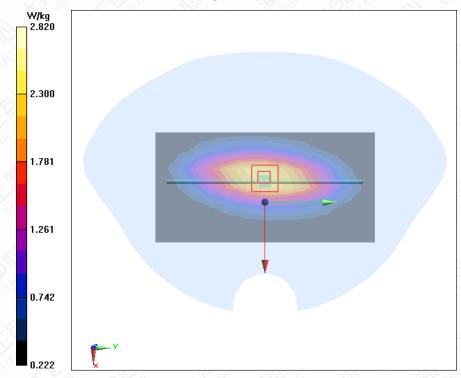


Figure A.2-1 System Check Head 750MHz

System Check Head 835MHz

Date/Time: 2023/11/8 Electronics: DAE4 Sn1244

Medium parameters used: f = 835 MHz; σ = 0.921 S/m; ε_r = 41.865; ρ = 1000 kg/m³

Ambient Temperature:21.5°C Liquid Temperature:20.3°C

Communication System: CW 900MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7633ConvF(10.66, 10.66, 10.66) @ 835 MHz

System Check Head 835MHz/Area Scan (7x13x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.96 W/kg

System Check Head 835MHz/Zoom Scan (7x7x7) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.64 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.84 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kgMaximum value of SAR (measured) = 3.34 W/kg

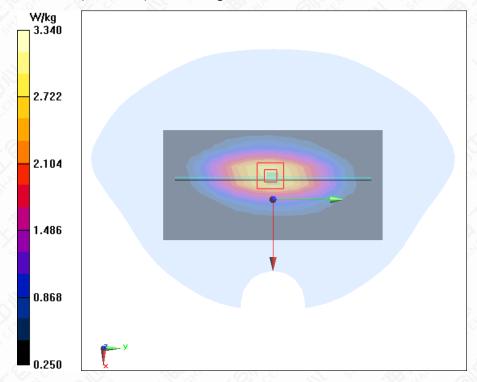


Figure A.2-2 System Check Head 835MHz

System Check Head 1750MHz

Date/Time: 2023/10/31 Electronics: DAE4 Sn1244

Medium parameters used: f = 1750 MHz; $\sigma = 1.324$ S/m; $\epsilon_r = 38.81$; $\rho = 1000$ kg/m³

Ambient Temperature:21.3°C Liquid Temperature:20.4°C

Communication System: CW 1750MHz; Frequency: 1750 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7633ConvF(8.96, 8.96, 8.96) @ 1750 MHz

System Check Head 1750MHz/Area Scan (8x7x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 10.6 W/kg

System Check Head 1750MHz/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 8.82 W/kg; SAR(10 g) = 4.68 W/kgMaximum value of SAR (measured) = 13.7 W/kg

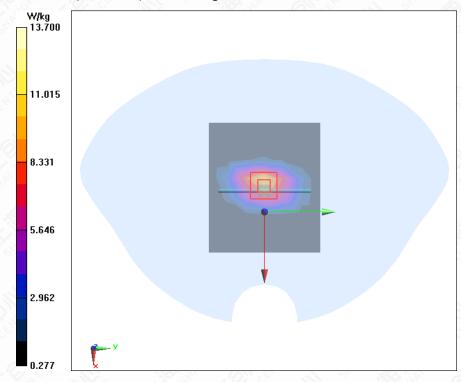


Figure A.2-3 System Check Head 1750MHz

System Check Head 1900MHz

Date/Time: 2023/11/14 Electronics: DAE4 Sn1244

Medium parameters used: f = 1900 MHz; σ = 1.391 S/m; ε_r = 40.006; ρ = 1000 kg/m³

Ambient Temperature:21.4°C Liquid Temperature:20.3°C

Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7633ConvF(8.67, 8.67, 8.67) @ 1900 MHz

System Check Head 1900MHz/Area Scan (8x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 12.9 W/kg

System Check Head 1900MHz/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 104.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.03 W/kgMaximum value of SAR (measured) = 15.3 W/kg

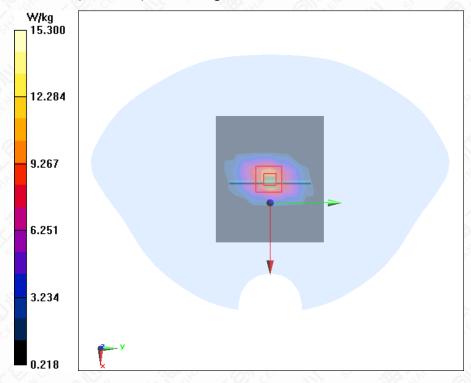


Figure A.2-4 System Check Head 1900MHz

Annex B: Calibration Certificate

3in Client:

Certificate No: J23Z60207

Object	DAE4 - SN: 1244
- Contract	
Calibration Procedure(s)	FF-Z11-002-01
	Calibration Procedure for the Data Acquisition Electronics
	(DAEx)
Calibration date:	April 10, 2023

measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

F	Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
F	Process Calibrator 753	1971018	14-Jun-22 (CTTL, No.J22X04180)	Jun-23	

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	and the
Reviewed by:	Lin Hao	SAR Test Engineer	林地
Approved by:	Qi Dianyuan	SAR Project Leader	500

Issued: April 11, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60207

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

DAE

data acquisition electronics

information used in DASY system to align probe sensor X Connector angle

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J23Z60207 Page 2 of 3

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	z	
High Range	403.859 ± 0.15% (k=2)	403.585 ± 0.15% (k=2)	404.504 ± 0.15% (k=2)	
Low Range	3.95256 ± 0.7% (k=2)	3.97026 ± 0.7% (k=2)	3.97966 ± 0.7% (k=2)	

Connector Angle

Connector Angle to be used in DASY system 23.5° ± 1 °

Certificate No: J23Z60207 Page 3 of 3

Client

Report No: I23I30114-SAR01-V01

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

3-mail: emf@caict.ac.cn http://www.caict.ac.cn

caict.ac.en http://www.caict.ac.en

Certificate No: J23Z60208

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 7633

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: April 28, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	
SignalGenerator MG3700A	6201052605	14-Jun-22(CTTL, No.J22X04182)	Jun-23 Jan-24
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
DAE4	SN 1555	25-Aug-22(SPEAG, No.DAE4-1555_Aug22)	Aug-23
Reference Probe EX3DV4	SN 3846	20-May-22(SPEAG, No.EX3-3846_May22)	May-23
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_,	Jan23) Jan-24
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Power sensor NRP-Z91	101548	14-Jun-22(CTTL, No.J22X04181)	Jun-23
Power sensor NRP-Z91	101547	14-Jun-22(CTTL, No.J22X04181)	Jun-23
Power Meter NRP2	101919	14-Jun-22(CTTL, No.J22X04181)	Jun-23
Primary Standards	ID# Cal Da	ate(Calibrated by, Certificate No.) Scheduled	Calibration

Name Function Signature

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: May 01, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60208 Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP

crest factor (1/duty_cycle) of the RF signal CF A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ

 θ =0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60208

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7633

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) A	0.66	0.64	0.68	±10.0%
DCP(mV) ^B	109.8	112.6	114.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	cw	Х	0.0	0.0	1.0	0.00	210.8	±2.2%
		Υ	0.0	0.0	1.0		210.6	
		Z	0.0	0.0	1.0		218.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:J23Z60208

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn

E-mail: emf@caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7633

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	11.03	11.03	11.03	0.13	1.45	±12.7%
835	41.5	0.90	10.66	10.66	10.66	0.16	1.41	±12.7%
900	41.5	0.97	10.62	10.62	10.62	0.19	1.29	±12.7%
1750	40.1	1.37	8.96	8.96	8.96	0.21	1.17	±12.7%
1900	40.0	1.40	8.67	8.67	8.67	0.26	0.99	±12.7%
2000	40.0	1.40	8.72	8.72	8.72	0.27	0.99	±12.7%
2300	39.5	1.67	8.32	8.32	8.32	0.64	0.66	±12.7%
2450	39.2	1.80	8.07	8.07	8.07	0.64	0.66	±12.7%
2600	39.0	1.96	7.86	7.86	7.86	0.48	0.78	±12.7%
3300	38.2	2.71	7.45	7.45	7.45	0.41	1.03	±13.9%
3500	37.9	2.91	7.21	7.21	7.21	0.40	1.04	±13.9%
3700	37.7	3.12	7.00	7.00	7.00	0.43	1.03	±13.9%
3900	37.5	3.32	6.91	6.91	6.91	0.40	1.25	±13.9%
4100	37.2	3.53	6.85	6.85	6.85	0.40	1.15	±13.9%
4200	37.1	3.63	6.75	6.75	6.75	0.35	1.35	±13.9%
4400	36.9	3.84	6.65	6.65	6.65	0.35	1.35	±13.9%
4600	36.7	4.04	6.55	6.55	6.55	0.40	1.30	±13.9%
4800	36.4	4.25	6.50	6.50	6.50	0.40	1.35	±13.9%
4950	36.3	4.40	6.22	6.22	6.22	0.40	1.35	±13.9%
5250	35.9	4.71	5.72	5.72	5.72	0.40	1.50	±13.9%
5600	35.5	5.07	5.17	5.17	5.17	0.55	1.20	±13.9%
5750	35.4	5.22	5.22	5.22	5.22	0.50	1.30	±13.9%

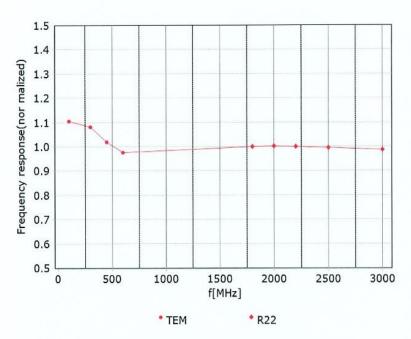
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:J23Z60208

Page 4 of 9

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



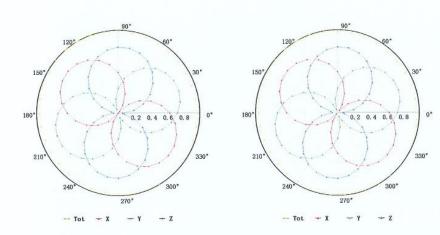
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

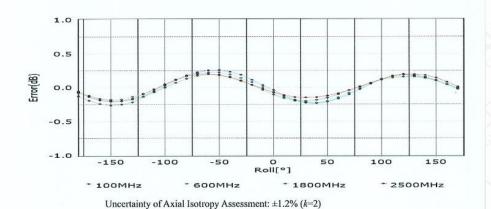
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:J23Z60208

Page 5 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

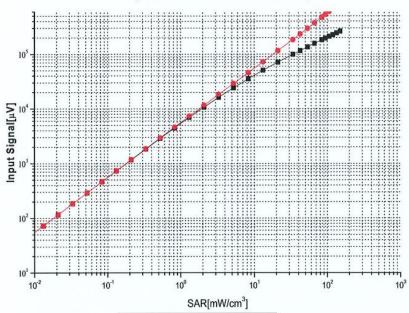
Receiving Pattern (Φ), θ=0°

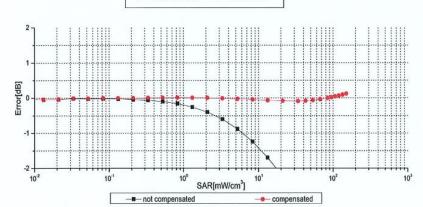
f=600 MHz, TEM

f=1800 MHz, R22

Certificate No:J23Z60208

Page 6 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

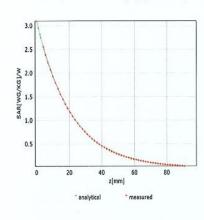
http://www.caict.ac.cn E-mail: emf@caict.ac.cn

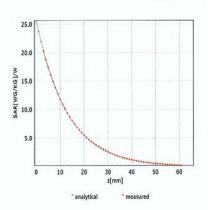
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

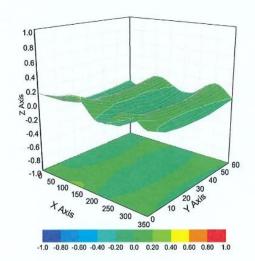
Certificate No:J23Z60208

Page 7 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60208

Page 8 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7633

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	24.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60208

Page 9 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Client 3in Certificate No: 23J02Z80031

CALIBRATION CERTIFICATE

Object D750V3 - SN: 1144

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: September 12, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

106277		
1002//	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24
	SN 3617 SN 1556 ID # MY49071430	SN 3617 31-Mar-23(CTTL-SPEAG,No.Z23-60161) SN 1556 11-Jan-23(CTTL-SPEAG,No.Z23-60034) ID# Cal Date (Calibrated by, Certificate No.) MY49071430 05-Jan-23 (CTTL, No. J23X00107)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	22
Reviewed by:	Lin Hao	SAR Test Engineer	献物
Approved by:	Qi Dianyuan	SAR Project Leader	2

Issued: September 16, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 23J02Z80031

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 23J02Z80031 Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

http://www.caict.ac.cn E-mail: emf@caict.ac.cn

Measurement Conditions
DASY system configuration, as far as not given on page 1.

DASY52	V52.10.4
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
15 mm	with Spacer
dx, dy, dz = 5 mm	
750 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 15 mm dx, dy, dz = 5 mm

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	42.0	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.43 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.48 W/kg ± 18.7 % (k=2)

Certificate No: 23J02Z80031 Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0Ω- 0.59jΩ	
Return Loss	- 30.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.938 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: 23J02Z80031

Page 4 of 6

Date: 2023-09-12

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144

Communication System: UID 0, CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.901$ S/m; $\epsilon_r = 41.74$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

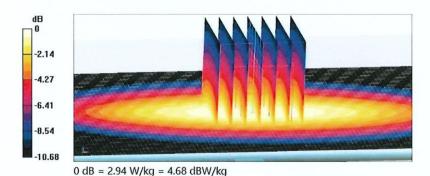
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.1, 10.1, 10.1) @ 750 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 54.99 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 3.44 W/kg

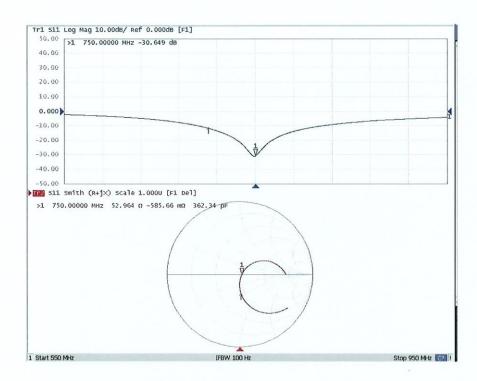
SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.38 W/kg

Smallest distance from peaks to all points 3 dB below = 16.6 mm

Ratio of SAR at M2 to SAR at M1 = 62.3%

Maximum value of SAR (measured) = 2.94 W/kg

Certificate No: 23J02Z80031 Page 5 of 6



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Certificate No: 23J02Z80031

Page 6 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

http://www.caict.ac.cn

Client 3in

Certificate No: 23J02Z80032

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d112

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: September 6, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	张色
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	200

Issued: September 16, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 23J02Z80032 Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 23J02Z80032 Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions
DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.67 W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.24 W/kg ± 18.7 % (k=2)

Certificate No: 23J02Z80032 Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4Ω- 0.55jΩ	
Return Loss	- 36.5dB	

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.303 ns
-1	Licentical Polary (one all collen)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: 23J02Z80032

Page 4 of 6

Date: 2023-09-06

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: UID 0, CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ S/m; $\varepsilon_r = 41.24$; $\rho = 1000$ kg/m³

Phantom section: Right Section

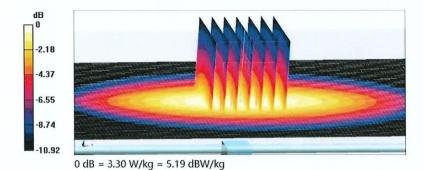
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.1, 10.1, 10.1) @ 835 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.67 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.85 W/kg

SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.54 W/kg

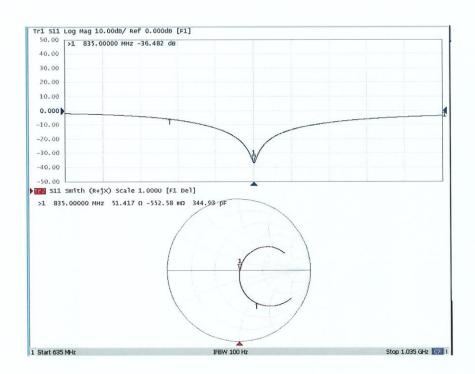
Smallest distance from peaks to all points 3 dB below = 17.1 mm

Ratio of SAR at M2 to SAR at M1 = 62.4%

Maximum value of SAR (measured) = 3.30 W/kg

Certificate No: 23J02Z80032

Page 5 of 6



Add: No.52 HuaYuan
Bei Road, Haidian District, Beijing, 100191, China Tel
: +86-10-62304633-2117

http://www.caict.ac.cn E-mail: emf@caict.ac.cn

Impedance Measurement Plot for Head TSL

Certificate No: 23J02Z80032

Page 6 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E mail: em@egiet ac en

n http://www.caict.ac.cn

Client 3in Certificate No: 23J02Z80034

CALIBRATION CERTIFICATE

Object D1750V2 - SN: 1044

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: September 8, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23	
Power sensor NRP8S 104291		22-Sep-22 (CTTL, No.J22X09561)	Sep-23	
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24	
DAE4 SN 1556		11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24	
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24	
Network Analyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24	
	Name	Function	Signature	
Calibrated by:	Zhao Jing	SAR Test Engineer	23	
Reviewed by:	Lin Hao	SAR Test Engineer	मिन्छ	
Approved by:	Qi Dianyuan	SAR Project Leader	and m	

Issued: September 16, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 23J02Z80034

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 23J02Z80034 Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.7 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.4 W/kg ± 18.7 % (k=2)

Certificate No: 23J02Z80034 Page 3 of 6