

# Industrial Internet Innovation Center (Shanghai) Co.,Ltd.

## **RF TEST REPORT**

**PRODUCT** Smart POS system

BRAND SUNMI

MODEL T6831

APPLICANT Shanghai Sunmi Technology Co.,Ltd.

FCC ID 2AH25T6831

**ISSUE DATE** June 6, 2024

**STANDARD(S)** FCC Part 2, FCC Part 22H, FCC Part 24E,FCC Part 27

Prepared by: Fan Yuhang Reviewed by: Yang Fan Approved by: Zhang Min

范宇航 杨帆

#### **CAUTION:**

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.





# **CONTENTS**

| 1. SU | JMMARY OF TEST REPORT                              |    |
|-------|----------------------------------------------------|----|
| 1.1   | Test Standard (s)                                  |    |
| 1.2   | REFERENCE DOCUMENTS                                |    |
| 1.3   | SUMSMARY OF TEST RESULTS                           |    |
| 1.4   | DATA PROVIDED BY APPLICANT                         |    |
| 2. GE | ENERAL INFORMATION OF THE LABORATORY               |    |
| 2.1   | Testing Laboratory                                 |    |
| 2.2   | LABORATORY ENVIRONMENTAL REQUIREMENTS              |    |
| 2.3   | Project Information                                |    |
| 3. GE | ENERAL INFORMATION OF THE CUSTOMER                 | 9  |
| 3.1   | Applicant                                          |    |
| 3.2   | Manufacturer                                       |    |
| 4. GE | ENERAL INFORMATION OF THE PRODUCT                  | 10 |
| 4.1   | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 10 |
| 4.2   | DESCRIPTION FOR AUXILIARY EQUIPMENT (AE)           | 10 |
| 4.3   | Additional Information                             | 11 |
| 5. TE | ST CONFIGURATION INFORMATION                       | 13 |
| 5.1   | LABORATORY ENVIRONMENTAL CONDITIONS                | 13 |
| 5.2   | TEST EQUIPMENTS UTILIZED                           | 13 |
| 5.3   | MEASUREMENT UNCERTAINTY                            | 14 |
| 6. TE | ST RESULTS                                         | 16 |
| 6.1   | Output Power                                       | 16 |
| 6.2   | EMISSION LIMT                                      | 19 |
| 6.3   | Frequency Stability                                | 32 |
| 6.4   | Occupied Bandwidth                                 | 34 |
| 6.5   | EMISSION BANDWIDTH                                 | 36 |
| 6.6   | BAND EDGE COMPLIANCE                               | 3  |
| 6.7   | CONDUCTED SPURIOUS EMISSION                        | 40 |
| 6.8   | PEAK-TO-AVERAGE POWER RATIO                        | 43 |
|       | A: REVISED HISTORY                                 |    |
| ANNEX | B: ACCREDITATION CERTIFICATE                       | Δi |



# 1. Summary of Test Report

## 1.1 Test Standard (s)

| No. | Test Standard | Title                                                                         | Version |
|-----|---------------|-------------------------------------------------------------------------------|---------|
| 1   | FCC Part 2    | FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS | A N     |
| 2   | FCC Part 22H  | CELLULAR RADIOTELEPHONE SERVICE                                               |         |
| 3   | FCC Part 24E  | BROADBAND PCS                                                                 |         |
| 4   | FCC Part 27   | MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES                                |         |

## 1.2 Reference Documents

| No. | Test Standard                                                                                                    | Title                                                                               | Version |
|-----|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|
| 1   | ANSI/TIA-603-E                                                                                                   | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards | 2016    |
| 2   | American National Standard of Procedure ANSI C63.26 Compliance Testing of Licensed Transmitter in Licensed Radio |                                                                                     | 2015    |
| 3   | KDB 971168 D01 Power<br>Meas License Digital<br>Systems                                                          | Measurement Guidance for Certification of<br>Licensed Digital Transmitters          | v03r01  |
| 4   | KDB 484596 D01<br>Referencing Test Data                                                                          | Test Reductions Via Data Referencing                                                | v02r03  |

Note: KDB 971168 D01 Power Meas License Digital Systems and KDB 484596 D01 Referencing Test Data have not been accredited by A2LA.

## 1.3 Sumsmary of Test Results

#### LTE Band 2

| Items          | Test Name                   | Clause in FCC rules | Verdict               |
|----------------|-----------------------------|---------------------|-----------------------|
| 1 Output Power |                             | 2.1046/24.232(c)    | Pass Note 2           |
| 2              | Emission Limit              | 2.1053/24.238(a)    | Pass                  |
| 3              | Frequency Stability         | 2.1055/24.235       | Pass <sup>Note3</sup> |
| 4              | Occupied Bandwidth          | 2.1049              | Pass <sup>Note3</sup> |
| 5              | Emission Bandwidth          | 2.1049              | Pass <sup>Note3</sup> |
| 6              | Band Edge Compliance        | 2.1051/24.238(a)    | Pass <sup>Note3</sup> |
| 7              | Conducted Spurious Emission | 2.1051/24.238(a)    | Pass <sup>Note3</sup> |





| 8             | Peak to Average Power Ratio | 24.232 (d)                            | Pass <sup>Note3</sup> |
|---------------|-----------------------------|---------------------------------------|-----------------------|
| E Band 4      |                             |                                       |                       |
| Items         | Test Name                   | Clause in FCC rules                   | Verdict               |
| 1             | Output Power                | 2.1046/27.50(d)(4)                    | Pass Note 2           |
| 2             | Emission Limit              | 2.1053/27.53(h)                       | Pass                  |
| 3             | Frequency Stability         | 2.1055/27.54                          | Pass <sup>Note3</sup> |
| 4             | Occupied Bandwidth          | 2.1049                                | Pass <sup>Note3</sup> |
| 5             | Emission Bandwidth          | 2.1049                                | Pass <sup>Note3</sup> |
| 6             | Band Edge Compliance        | 2.1051/27.53(h)                       | Pass <sup>Note3</sup> |
| 7             | Conducted Spurious Emission | 2.1051/27.53(h)                       | Pass <sup>Note3</sup> |
| 8             | Peak to Average Power Ratio | 27.50(d)(5)                           | Pass <sup>Note3</sup> |
| TE Band 5     |                             |                                       | A SHE                 |
| Items         | Test Name                   | Clause in FCC rules                   | Verdict               |
| 1             | Output Power                | 2.1046/22.913(a)                      | Pass Note 2           |
| 2             | Emission Limit              | 2.1053/22.917(a)                      | Pass                  |
| 3             | Frequency Stability         | 2.1055/22.355                         | Pass <sup>Note3</sup> |
| 4             | Occupied Bandwidth          | 2.1049                                | Pass <sup>Note3</sup> |
| 5             | Emission Bandwidth          | 2.1049                                | Pass <sup>Note3</sup> |
| 6             | Band Edge Compliance        | 2.1051/22.917(a)                      | Pass <sup>Note3</sup> |
| 7             | Conducted Spurious Emission | 2.1051/22.917(a)                      | Pass <sup>Note3</sup> |
| 8             | Peak to Average Power Ratio | N/A                                   | Pass <sup>Note3</sup> |
| ΓE Band 7     |                             |                                       |                       |
| Items         | Test Name                   | Clause in FCC rules                   | Verdict               |
| 1             | Output Power                | 2.1046/27.50(h)                       | Pass Note 2           |
| 2             | Emission Limit              | 2.1053/27.53(m)                       | Pass                  |
| 3             | Frequency Stability         | 2.1055/27.54                          | Pass <sup>Note3</sup> |
| 4             | Occupied Bandwidth          | 2.1049                                | Pass <sup>Note3</sup> |
| 5             | Emission Bandwidth          | 2.1049                                | Pass <sup>Note3</sup> |
| 6             | Band Edge Compliance        | 2.1051/27.53(m)                       | Pass <sup>Note3</sup> |
| 7             | Conducted Spurious Emission | 2.1051/27.53(m)                       | Pass <sup>Note3</sup> |
| E Band 26(Par | t 22) 824-849MHz            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                       |
| Items         | Test Name                   | Clause in FCC rules                   | Verdict               |
| 1             | Output Power/ERP            | 2.1046/22.913(a)                      | Pass Note 2           |





| 2                             | Emission Limit                        | 2.1053/22.917(a) | Pass                  |
|-------------------------------|---------------------------------------|------------------|-----------------------|
| 3                             | Frequency Stability                   | 2.1055/22.355    | Pass <sup>Note3</sup> |
| 4                             | Occupied Bandwidth                    | 2.1049           | Pass <sup>Note3</sup> |
| 5                             | Emission Bandwidth                    | 2.1049           | Pass <sup>Note3</sup> |
| 6                             | Band Edge Compliance 2.1051/22.917(a) |                  | Pass <sup>Note3</sup> |
| 7                             | Conducted Spurious Emission           | 2.1051/22.917(a) | Pass <sup>Note3</sup> |
| 8 Peak to Average Power Ratio |                                       | N/A              | Pass <sup>Note3</sup> |

## LTE Band 38

| Items | Test Name                   | Clause in FCC rules | Verdict               |  |
|-------|-----------------------------|---------------------|-----------------------|--|
| 1     | Output Power                | 2.1046/27.50(h)     | Pass Note 2           |  |
| 2     | Emission Limit              | 2.1053/27.53(m)     | Pass                  |  |
| 3     | Frequency Stability         | 2.1055/27.54        | Pass <sup>Note3</sup> |  |
| 4     | Occupied Bandwidth          | 2.1049              | Pass <sup>Note3</sup> |  |
| 5     | Emission Bandwidth          | 2.1049              | Pass <sup>Note3</sup> |  |
| 6     | Band Edge Compliance        | 2.1051/27.53(m)     | Pass <sup>Note3</sup> |  |
| 7     | Conducted Spurious Emission | 2.1051/27.53(m)     | Pass <sup>Note3</sup> |  |
| 8     | Peak to Average Power Ratio | N/A                 | Pass <sup>Note3</sup> |  |

## LTE Band 40 (2305-2315MHz and 2350-2360MHz)

| Items | Test Name                            | Clause in FCC rules | Verdict               |  |
|-------|--------------------------------------|---------------------|-----------------------|--|
| 1     | Output Power                         | 2.1046/27.50(a)     | Pass Note 2           |  |
| 2     | Emission Limit                       | 2.1053/27.53(a)     | Pass                  |  |
| 3     | Frequency Stability                  | 2.1055/27.54        | Pass <sup>Note3</sup> |  |
| 4     | Occupied Bandwidth 2.1               |                     | Pass <sup>Note3</sup> |  |
| 5     | Emission Bandwidth                   | 2.1049              | Pass <sup>Note3</sup> |  |
| 6     | Band Edge Compliance 2.1051/27.53(a) |                     | Pass <sup>Note3</sup> |  |
| 7     | Conducted Spurious Emission          | 2.1051/27.53(a)     | Pass <sup>Note3</sup> |  |
| 8     | Peak to Average Power Ratio          | 27.50               | Pass <sup>Note3</sup> |  |
| 9     | Duty Cycle                           | 27.50(a)            | Pass Note 3           |  |

## LTE Band 41

| Items          | Test Name           | Clause in FCC rules | Verdict               |
|----------------|---------------------|---------------------|-----------------------|
| 1 Output Power |                     | 2.1046/27.50(h)     | Pass Note 2           |
| 2              | Emission Limit      | 2.1053/27.53(m)     | Pass                  |
| 3              | Frequency Stability | 2.1055/27.54        | Pass <sup>Note3</sup> |





| 4 | Occupied Bandwidth                     | 2.1049          | Pass <sup>Note3</sup> |
|---|----------------------------------------|-----------------|-----------------------|
| 5 | Emission Bandwidth                     | 2.1049          | Pass <sup>Note3</sup> |
| 6 | Band Edge Compliance                   | 2.1051/27.53(m) | Pass <sup>Note3</sup> |
| 7 | 7 Conducted Spurious Emission 2.1051/2 |                 | Pass <sup>Note3</sup> |
| 8 | Peak to Average Power Ratio            | 27.50           | Pass <sup>Note3</sup> |

#### Note1:

The T6831, manufactured by Shanghai Sunmi Technology Co.,Ltd. is a variant product for testing. This project is a variant project based on the 23T04I30131-RF03-V02,original FCC ID 2AH25T6F10 with below changes:

#### **SOFTWARE MODIFICATIONS:**

Other changes detailed: Optimize functions, solve bugs, and iterate software versions. Iterative software upgrades do not affect RF performance.

HARDWARE MODIFICATIONS: Components on PCB changes: Yes

Camera changes: Please refer to the following difference chart LCD changes: Please refer to the following difference chart

| Type of<br>Service | Model<br>Name | Scanner | Rear Camera | Flash Lamp | LCD (Just different manufacturers)                                                                                                                                                                                                                                              |
|--------------------|---------------|---------|-------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original           | T6F10         | Yes     | 5M AF+flash | Yes        | SHENZHEN DJN PHOTOELECTRIC<br>TECHNOLOGY CO., LTD<br>(9A-3R067-7026A)                                                                                                                                                                                                           |
| Variant            | T6831         | NO      | 2M FF       | NO         | SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD (98-31050-7084A) S06aa/S10aa/S23aa (Mainly Supply) SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD (98-31050-7084A-H) S12aa (Secondary Supply) GUANGDONG SUPERVIEW OPTOELECTRONICS CO.,LTD. (G499BHA085A0) S16aa (Thirdly Supply) |

Other changes: PCBA Change: The difference between the original and the variant of PCBA

MECHANICAL MODIFICATIONS:

Use new metal front/back cover or keypad: YES

Mechanical shell changes: YES

Other changes detailed:

- 1.No scanner.
- 2. The position of the front camera is different.
- 3.Add keyboard.

## **ACCESSORY MODIFICATIONS:**

According to the Product Change Description, we tested all modes of radiated spurious emission and the worst mode of rest test cases in the original report, and the test data was recorded in this report.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with





Pass/Fail/Inc result in section 1.3.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 5.3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 6 of this test report.

#### Note 2:

The test data refer to the original report, and the data in this report is spot check data. The verification data meets the KDB484596 requirements within 3dB.

#### Note 3:

The test data refer to the original report, and the data in this report is spot check data.

## 1.4 Data Provided by Applicant

| No. | Item(s)     | Data  |
|-----|-------------|-------|
| 1   | LTE band 2  | 0.46  |
| 2   | LTE band 4  | -0.42 |
| 3   | LTE band 5  | -1.63 |
| 4   | LTE band 7  | 0.39  |
| 5   | LTE band 26 | -1.63 |
| 6   | LTE band 38 | 1.54  |
| 7   | LTE band 40 | 1.01  |
| 8   | LTE band 41 | 2.41  |

Note: The data of antenna gain is provided by Antenna specification may affect the validity of the test results in this report, and the impact and consequences of this shall be undertaken by the customer.





## 2. General Information of The Laboratory

2.1 Testing Laboratory

| TIT TESTING LUBORATORY |                                                            |  |  |  |  |
|------------------------|------------------------------------------------------------|--|--|--|--|
| Lab Name               | Industrial Internet Innovation Center (Shanghai) Co.,Ltd.  |  |  |  |  |
| Address                | Building 4, No. 766, Jingang Road, Pudong, Shanghai, China |  |  |  |  |
| Telephone              | 021-68866880                                               |  |  |  |  |
| FCC Registration No.   | 708870                                                     |  |  |  |  |
| FCC Designation No.    | CN1364                                                     |  |  |  |  |

2.2 Laboratory Environmental Requirements

| Temperature          | 15℃~35℃      |
|----------------------|--------------|
| Relative Humidity    | 25%RH~75%RH  |
| Atmospheric Pressure | 86kPa~106kPa |

2.3 Project Information

| Project Manager | Gao Hongning                   |
|-----------------|--------------------------------|
| Test Date       | April 20, 2024 to May 31, 2024 |





## 3. General Information of The Customer

# 3.1 Applicant

| Company   | Shanghai Sunmi Technology Co.,Ltd.                                |
|-----------|-------------------------------------------------------------------|
| Address   | Room 505, No.388, Song Hu Road, Yang Pu District, Shanghai, China |
| Telephone | 18826519551                                                       |

# 3.2 Manufacturer

| Company   | Shanghai Sunmi Technology Co.,Ltd.                               |
|-----------|------------------------------------------------------------------|
| Address   | Room 505, No.388,Song Hu Road, Yang Pu District, Shanghai, China |
| Telephone | 18826519551                                                      |





## 4. General Information of The Product

4.1 Product Description for Equipment under Test (EUT)

| Product              | Smart POS system                                     |  |  |  |  |
|----------------------|------------------------------------------------------|--|--|--|--|
| Model                | T6831                                                |  |  |  |  |
| Data of Dansint      | S10aa/ S12aa/S16aa/S04aa/S06aa: April 15, 2024       |  |  |  |  |
| Date of Receipt      | S23aa: April 29, 2024                                |  |  |  |  |
| EUT ID*              | S04aa/S06aa/S10aa/S12aa/S16aa/S23aa                  |  |  |  |  |
| YES AND N            | S04aa: 860104070000517'860104070005516               |  |  |  |  |
| S                    | S06aa: 860104070000061'860104070005060               |  |  |  |  |
| SN/IMEI              | S10aa: 860104070000897'860104070005896               |  |  |  |  |
| SIN/ IIVILI          | S12aa: 860104070001424'86010407006423                |  |  |  |  |
|                      | S16aa: 860104070002166'86010407007165                |  |  |  |  |
|                      | S23aa: 860104070000178'860104070005177               |  |  |  |  |
|                      | GSM850/GSM900/DCS1800/PCS1900                        |  |  |  |  |
|                      | WCDMA Band I/II/IV/V/VI/VIII/XIX                     |  |  |  |  |
|                      | LTE Band 1/2/3/4/5/7/8/18/19/20/26/28/34/38/39/40/41 |  |  |  |  |
| Supported Radio      | BT 5.0 BLE/BR/EDR                                    |  |  |  |  |
| Technology and Bands | WLAN 802.11b/g/n                                     |  |  |  |  |
|                      | WLAN 802.11a/n/ac                                    |  |  |  |  |
|                      | GPS/GLONASS/BDS/Galileo                              |  |  |  |  |
| Yes Alexander        | NFC                                                  |  |  |  |  |
| Hardware Version     | V1.0                                                 |  |  |  |  |
| Software Version     | V3.0.4                                               |  |  |  |  |
| FCC ID               | 2AH25T6831                                           |  |  |  |  |

NOTE1: EUT ID is the internal identification code of the laboratory.

NOTE2: Samples in the test report are provided by the customer. The test results are only applicable to the samples received by the laboratory.

## 4.2 Description for Auxiliary Equipment (AE)

| AE ID* | Description | Model              | SN/Remark<br>N/A                                         |  |
|--------|-------------|--------------------|----------------------------------------------------------|--|
| AE1    | RF Cable    | N/A                |                                                          |  |
| CA01   | Adapter     | TPA-141A050200UU01 | N/A                                                      |  |
| CD01   | Adapter     | UC13US             | N/A                                                      |  |
| UA02   | AC Cable    | N/A                | N/A                                                      |  |
| BA10   | Battery     | НРРА               | Guangdong Highpower<br>NewEnergy Technology<br>Co., Ltd. |  |

NOTE1: AE ID is the internal identification code of the laboratory.

NOTE2: By verifying that CA01+BA10 is the worst battery and adapter combination, this battery and adapter are used in all tests.





## 4.3 Additional Information

Modulation:

| Type of modulation | QPSK/16QAM |
|--------------------|------------|
|                    |            |

Band Frequency Range:

| Band    | Frequency Range                     |  |  |  |
|---------|-------------------------------------|--|--|--|
| Band 2  | 1850 - 1910 MHz                     |  |  |  |
| Band 4  | 1710 - 1755 MHz                     |  |  |  |
| Band 5  | 824 - 849 MHz                       |  |  |  |
| Band 7  | 2500 - 2570 MHz                     |  |  |  |
| Band 26 | 824 - 849 MHz                       |  |  |  |
| Band 38 | 2570 - 2620 MHz                     |  |  |  |
| Band 40 | 2305 - 2315 MHz and 2350 - 2360 MHz |  |  |  |
| Band 41 | 2496-2690 MHz                       |  |  |  |

Band List:

| Band         | BW<br>(MHz) | Low<br>Channel | Low Freq.<br>(MHz) | Mid<br>Channel | Mid Freq.<br>(MHz) | High<br>Channel | High Freq.<br>(MHz) |
|--------------|-------------|----------------|--------------------|----------------|--------------------|-----------------|---------------------|
|              | 1.4         | 18607          | 1850.7             | 18900          | 1880               | 19193           | 1909.3              |
|              | 3           | 18615          | 1851.5             | 18900          | 1880               | 19185           | 1908.5              |
| 20012        | 5           | 18625          | 1852.5             | 18900          | 1880               | 19175           | 1907.5              |
| Band 2       | 10          | 18650          | 1855               | 18900          | 1880               | 19150           | 1905                |
|              | 15          | 18675          | 1857.5             | 18900          | 1880               | 19125           | 1902.5              |
|              | 20          | 18700          | 1860               | 18900          | 1880               | 19100           | 1900                |
| XX. X        | 1.4         | 19957          | 1710.7             | 20175          | 1732.5             | 20393           | 1754.3              |
|              | 3           | 19965          | 1711.5             | 20175          | 1732.5             | 20385           | 1753.5              |
| David 4      | 5           | 19975          | 1712.5             | 20175          | 1732.5             | 20375           | 1752.5              |
| Band 4       | 10          | 20000          | 1715               | 20175          | 1732.5             | 20350           | 1750                |
|              | 15          | 20025          | 1717.5             | 20175          | 1732.5             | 20325           | 1747.5              |
|              | 20          | 20050          | 1720               | 20175          | 1732.5             | 20300           | 1745                |
| 19 x         | 1.4         | 20407          | 824.7              | 20525          | 836.5              | 20643           | 848.3               |
| D. J.        | 3           | 20415          | 825.5              | 20525          | 836.5              | 20635           | 847.5               |
| Band 5       | 5           | 20425          | 826.5              | 20525          | 836.5              | 20625           | 846.5               |
| A Y A        | 10          | 20450          | 829                | 20525          | 836.5              | 20600           | 844                 |
| 11 2         | 5           | 20775          | 2502.5             | 21100          | 2535               | 21425           | 2567.5              |
| David 7      | 10          | 20800          | 2505               | 21100          | 2535               | 21400           | 2565                |
| Band 7       | 15          | 20825          | 2507.5             | 21100          | 2535               | 21375           | 2562.5              |
|              | 20          | 20850          | 2510               | 21100          | 2535               | 21350           | 2560                |
| 1000         | 1.4         | 26797          | 824.7              | 26915          | 836.5              | 27033           | 848.3               |
|              | 3           | 26805          | 825.5              | 26915          | 836.5              | 27025           | 847.5               |
| Band 26      | 5           | 26815          | 826.5              | 26915          | 836.5              | 27015           | 846.5               |
| (824-849MHz) | 10          | 26840          | 829                | 26915          | 836.5              | 26990           | 844                 |
|              | 15          | 26865          | 831.5              | 26915          | 836.5              | 26965           | 841.5               |
| Band 38      | 5           | 37775          | 2572.5             | 38000          | 2595               | 38225           | 2617.5              |





| Band                       | BW<br>(MHz) | Low<br>Channel | Low Freq.<br>(MHz) | Mid<br>Channel | Mid Freq.<br>(MHz) | High<br>Channel | High Freq.<br>(MHz) |
|----------------------------|-------------|----------------|--------------------|----------------|--------------------|-----------------|---------------------|
| 1 6 10                     | 10          | 37800          | 2575               | 38000          | 2595               | 38200           | 2615                |
|                            | 15          | 37825          | 2577.5             | 38000          | 2595               | 38175           | 2612.5              |
| Carl 11 Carl               | 20          | 37850          | 2580               | 38000          | 2595               | 38150           | 2610                |
| Band 40A<br>(2305–2315MHz) | 5           | 38725          | 2307.5             | 38750          | 2310               | 38775           | 2312.5              |
|                            | 10          | 8/             | 6                  | 38750          | 2310               |                 | 1                   |
| Band 40B                   | 5           | 39175          | 2352.5             | 38750          | 2355               | 39225           | 2357.5              |
| (2350–2360MHz)             | 10          | 18             | 10                 | 38750          | 2355               | N /             | X / /               |
| Band 41                    | 5           | 39675          | 2498.5             | 40620          | 2593               | 41565           | 2687.5              |
|                            | 10          | 39700          | 2501               | 40620          | 2593               | 41540           | 2685                |
|                            | 15          | 39725          | 2503.5             | 40620          | 2593               | 41515           | 2682.5              |
|                            | 20          | 39750          | 2506               | 40620          | 2593               | 41490           | 2680                |



# 5. Test Configuration Information

## **5.1 Laboratory Environmental Conditions**

#### **5.1.1** Permanent Facilities

| Relative Humidity      |        |         |         |  |  |
|------------------------|--------|---------|---------|--|--|
| Atmospheric Pressure   |        |         |         |  |  |
| Temperature            | Normal | Minimum | Maximum |  |  |
|                        | 25℃    | -10℃    | 50℃     |  |  |
| Working Voltage of EUT | Normal | Minimum | Maximum |  |  |
|                        | 7.7V   | 6.0V    | 8.8 V   |  |  |

## 5.2 Test Equipments Utilized

Conduction test system

| No. | Name                                          | Model             | S/N           | SW<br>Version | HW<br>Versio<br>n | Manufac<br>turer | Cal. Date  | Cal.<br>Interva |
|-----|-----------------------------------------------|-------------------|---------------|---------------|-------------------|------------------|------------|-----------------|
| 1   | Software                                      | Eagle<br>V3.3     | N/A           | V3.3          | N/A               | 3IN              | N/A        | N/A             |
| 2   | Frequency<br>spectrum<br>analyzer             | FSQ               | 101091        | V4.75         | V11.00            | R&S              | 2023-07-26 | 1 Year          |
| 3   | Wideband<br>Radio<br>Communicati<br>on Tester | CMW<br>500        | 148874        | V3.5.136      | N/A               | R&S              | 2023-07-27 | 1 Year          |
| 4   | Temperature<br>Chamber                        | B-TF-<br>107C     | 2018041<br>07 | N/A           | N/A               | BoYi             | 2023-06-28 | 1 Year          |
| 5   | Programmabl<br>e power<br>supply              | Keithle<br>y 2303 | 4039070       | N/A           | N/A               | Keithley         | 2023-06-23 | 1 Year          |
| 6   | RF Test<br>Automation<br>Box                  | RF<br>2021B       | 2001          | V3.3          | N/A               | RANATE<br>C      | N/A        | N/A             |

## Radiated emission test system

| No. | Name                                       | Model  | S/N    | SW<br>Version | HW<br>Version    | Manuf<br>acturer | Cal.<br>Date   | Cal.<br>Interva |
|-----|--------------------------------------------|--------|--------|---------------|------------------|------------------|----------------|-----------------|
| 1   | Universal Radio<br>Communication<br>Tester | CMU200 | 123126 | V5.2.1        | B12              | R&S              | 2023-<br>10-16 | 1 Year          |
| 2   | Universal Radio<br>Communication<br>Tester | CMW500 | 104178 | V3.7.20       | 1206.06<br>00.00 | R&S              | 2023-<br>10-16 | 1 Year          |





| 3  | EMI Test Receiver                      | ESU40                | 100307       | V5.1-24-3       | 01    | R&S             | 2023-<br>12-19 | 1 Year  |
|----|----------------------------------------|----------------------|--------------|-----------------|-------|-----------------|----------------|---------|
| 4  | TRILOG Broadband<br>Antenna            | VULB9163             | 01345        | N/A             | N/A   | Schwar<br>zbeck | 2024<br>03-23  | 1 Year  |
| 5  | Double- ridged<br>Waveguide<br>Antenna | ETS-3117             | 0013589<br>0 | N/A             | N/A   | ETS             | 2023-<br>07-28 | 2 Years |
| 6  | EMI Test Software                      | EMC32<br>V10.35.02   | N/A          | N/A             | N/A   | R&S             | N/A            | N/A     |
| 7  | Preamplifier                           | SCU08F1              | 8320024      | N/A             | N/A   | R&S             | 2023-<br>10-16 | 1 year  |
| 8  | Preamplifier                           | SCU18                | 10155        | N/A             | N/A   | R&S             | 2023-<br>10-16 | 1 year  |
| 9  | Antenna                                | SWB-<br>VUBA<br>9117 | 9117-<br>266 | N/A             | N/A   | Schwar<br>zbeck | 2023-<br>9-8   | 1 year  |
| 10 | Antenna                                | BBHA9120<br>D        | 02112        | N/A             | N/A   | Schwar<br>zbeck | 2023-<br>7-28  | 1 year  |
| 11 | Signal Generator                       | SMF100A              | 102314       | 3.20.390.2<br>4 | 05.10 | R&S             | 2023-<br>10-16 | 1 year  |

Anechoic chamber

Fully anechoic chamber by ETS.

## 5.3 Measurement Uncertainty

## **Measurement Uncertainty of Radiation test**

| Frequency Range   | Uncertainty(dB) |  |  |
|-------------------|-----------------|--|--|
| 30MHz ≤ f ≤ 1GHz  | ±5.10           |  |  |
| 1GHz ≤ f ≤ 18GHz  | ±5.66           |  |  |
| 18GHz ≤ f ≤ 40GHz | ±5.22           |  |  |

## Measurement Uncertainty of Conduction test

| No   | Item                | Extended uncertainty (k=2) |         |  |  |  |  |
|------|---------------------|----------------------------|---------|--|--|--|--|
| 1    | Frequency Tolerance | 23Hz                       |         |  |  |  |  |
| 2    | RF Output Power     | 0.7dB                      |         |  |  |  |  |
|      |                     | 9kHz∼3.6GHz                | 1.5dB   |  |  |  |  |
| 3    | conducted spurious  | 3.6GHz∼8.4GHz              | 2.8dB   |  |  |  |  |
|      |                     | 8.4GHz~12.75GHz            | 3.4dB   |  |  |  |  |
| 4    | EVM                 | 2.1%                       |         |  |  |  |  |
| 3/17 |                     | Bandwidth 1.4MHz           | 0.03MHz |  |  |  |  |
| /0   |                     | Bandwidth 3MHz             | 0.03MHz |  |  |  |  |
| 82   |                     | Bandwidth 5MHz             | 0.03MHz |  |  |  |  |
| 5    | Occupied Bandwidth  | Bandwidth 10MHz            | 0.05MHz |  |  |  |  |
| .48  | Jan College 11 2    | Bandwidth 15MHz            | 0.06MHz |  |  |  |  |
| Y    |                     | Bandwidth 20MHz            | 0.08MHz |  |  |  |  |





| 9 | 6 Emission intermodulation | Adjacent channel  | 1.4dB          |
|---|----------------------------|-------------------|----------------|
| 0 | Emission intermodulation   | Alternate channel | 1.4dB          |
| 7 | Range of frequency         | 0.08MHz           | (1 6 . (B) (B) |





#### 6. Test Results

#### **6.1 Output Power**

#### 6.1.1 Measurement Limit

FCC §22.913(a) (5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts. FCC §24.232(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

FCC §27.50(a) For mobile and portable stations transmitting in the 2305–2315 MHz band or the 2350–2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. (EIRP ≤24dBm/5MHz) FCC §27.50(d) (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band is limited to 1 watt EIRP.

FCC §27.50(h):Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

#### 6.1.2 Method of Measurements

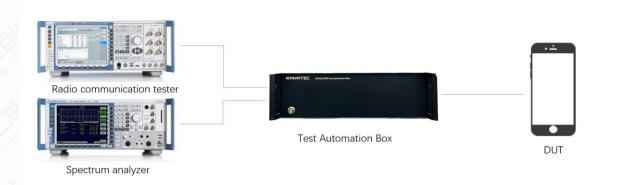
Method of measurements please refer to KDB971168 D01 v03 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz base station CMW500.

These measurements were done at 3 frequencies.(bottom, middle and top of operational frequency range).

- 1. The transmitter output port was connected to base station.
- 2. Set the EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record maximum average power for other modulation signal.
- 5. During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio.
- 6. Communication tester to ensure max power transmission and proper modulation.
- 7. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.


EIRP= Conducted power+Gain, ERP = EIRP -2.15dBi.

#### 6.1.3 Test procedures

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the base station reading.



## 6.1.4 Test Setup



## 6.1.5 Output Power Measurement result

| BAND                | Mode | Origina data(dBm) | Verified power(dBm) | $d_{dB}^{Note3}$ |
|---------------------|------|-------------------|---------------------|------------------|
| Band2               | QPSK | 22.36             | 22.61               | 0.25             |
| Band 4              | QPSK | 22.16             | 22.9                | 0.74             |
| Band 5              | QPSK | 22.45             | 22.21               | 0.24             |
| Band 7              | QPSK | 22.57             | 22.63               | 0.06             |
| Band 26 (824-849)   | QPSK | 22.41             | 22.73               | 0.32             |
| Band 38             | QPSK | 22.65             | 22.77               | 0.12             |
| Band 40 (2305-2315) | QPSK | 22.83             | 22.58               | 0.25             |
| Band 40 (2350-2360) | QPSK | 22.99             | 22.96               | 0.03             |
| Band 41             | QPSK | 23.17             | 22.94               | 0.23             |

Note1: The power of the worst part is verified to meet the requirements.

Note2: The difference between Original and verified power is less than 3dB and meets the requirements of KDB484596 D01 data reference. The power listed in the original certificate still applies to this case.

Note3: d<sub>dB</sub>=|Verified<sub>dB</sub>-original<sub>dB</sub>|

## 6.1.6 EIRP/ERP results

| BAND   | BAND Mode EIRF (dBm |       | ERP<br>(dBm) |
|--------|---------------------|-------|--------------|
| Band2  | QPSK                | 23.07 | 20.92        |
| Band 4 | QPSK                | 22.48 | 20.33        |
| Band 5 | QPSK                | 20.58 | 18.43        |





| Band 7              | QPSK | 23.02 | 20.87 |
|---------------------|------|-------|-------|
| Band 26 (824-849)   | QPSK | 21.1  | 18.95 |
| Band 38             | QPSK | 24.31 | 22.16 |
| Band 40 (2305-2315) | QPSK | 23.59 | 21.44 |
| Band 40 (2350-2360) | QPSK | 23.97 | 21.82 |
| Band 41             | QPSK | 25.35 | 23.2  |





#### **6.2 Emission Limt**

#### 6.1.1 Measurement Limit

According to KDB 971168, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

FCC §22.917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

FCC  $\S24.238(a)$  Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

FCC §27.53(a) For mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands:

- (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $55 + 10 \log (P) dB$  on all frequencies between 2296 and 2300 MHz,  $61 + 10 \log (P) dB$  on all frequencies between 2292 and 2296 MHz,  $67 + 10 \log (P) dB$  on all frequencies between 2288 and 2292 MHz, and  $70 + 10 \log (P) dB$  below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

FCC §27.53(h) (1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

FCC §27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

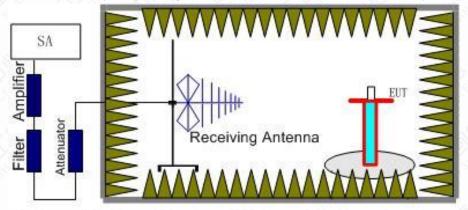




#### FCC §27.53(h):

AWS emission limits —

- (1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
- (2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:
- (i) Operations in the 2180–2200 MHz band are subject to the out-of-band emission requirements set forth in § 27.1134 for the protection of federal government operations operating in the 2200–2290 MHz band.
- (ii) For operations in the 2000–2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.
- (iii) For operations in the 1915–1920 MHz band, the power of any emission between 1930–1995 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.
- (iv) For operations in the 1995–2000 MHz band, the power of any emission between 2005–2020 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.

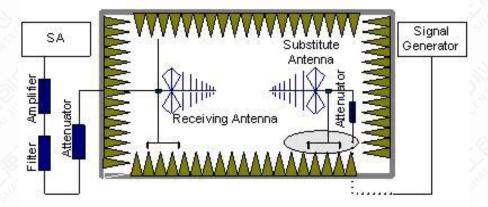

#### 6.1.2 Method of Measurement

The measurements procedures in TIA-603E-2016 are used. This measurement is carried out in fully-anechoic chamber FAC-3.

The spectrum was scanned from 30 MHz to the  $10^{th}$  harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in Part 22.917(a)/24.238(a)/27.53(g)/27.53(h)/27.53(m)(4). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands 2/4/5/7/38/41.

#### The procedure of radiated spurious emissions is as follows:

Below 1 GHz, EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.








2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).

3.The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.



In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (Pmea) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4.The Path loss (Pcl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test.

An amplifier should be connected in for the test.

The Path loss (PcI) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power (EIRP) = Pmea - Pcl + Ga

5.This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power.

6.ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

#### 6.1.3 Measurement Results

Radiated emissions measurements were made at the upper, middle, and lower carrier frequencies of the LTE Bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Bands. Into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to ten times the main frequency signal. The final data result takes the worst pattern data and places it in the report.

Test Frequency range: 30M-26G





# Only the worst mode data is provided Mainly Supply

## RSE-LTE2-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 3701.2             | -51.63        | 6.6       | 7.9      | -50.33                  | -13        | 37.33       | V            |
| 5552.4             | -44.24        | 8.2       | 9.8      | -42.64                  | -13        | 29.64       | Н            |
| 7402.0             | -41.98        | 9.7       | 11.6     | -40.08                  | -13        | 27.08       | V            |
| 9253.2             | -49.46        | 10.7      | 12.7     | -47.46                  | -13        | 34.46       | V            |
| 11105.0            | -47.69        | 12.1      | 12.3     | -47.49                  | -13        | 34.49       | V            |
| 12953.0            | -44.93        | 13.2      | 12.3     | -45.83                  | -13        | 32.83       | Н            |

#### RSE-LTE2-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 3760.0             | -45.27        | 6.6       | 7.9      | -43.97                  | -13        | 30.97       | V            |
| 5640.0             | -44.36        | 8.3       | 10.2     | -42.46                  | -13        | 29.46       | Z v          |
| 7520.0             | -36.94        | 9.7       | 11.6     | -35.04                  | -13        | 22.04       | V O          |
| 9400.0             | -49.82        | 10.7      | 12.7     | -47.82                  | -13        | 34.82       | V            |
| 11280.0            | -48.79        | 12.1      | 12.3     | -48.59                  | -13        | 35.59       | V            |
| 13161.6            | -45.67        | 13.0      | 12.3     | -46.37                  | -13        | 33.37       | V            |
| 15039.0            | -41.6         | 14.4      | 12.3     | -43.7                   | -13        | 30.70       | V            |

## RSE-LTE2-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 3818.4             | -44.23        | 6.7       | 7.9      | -43.03                  | -13        | 30.03       | V            |
| 5727.6             | -42.43        | 8.5       | 10.2     | -40.73                  | -13        | 27.73       | V            |
| 7637.2             | -34.48        | 9.7       | 11.8     | -32.38                  | -13        | 19.38       | V            |
| 9546.4             | -46.42        | 10.7      | 12.7     | -44.42                  | -13        | 31.42       | V            |
| 11456.4            | -47.04        | 12.3      | 12.3     | -47.04                  | -13        | 34.04       | V            |
| 13364.6            | -41.17        | 13.7      | 12.3     | -42.57                  | -13        | 29.57       | V            |





## RSE-LTE4-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 3421.2             | -46.74        | 6.3       | 7.8      | -45.24                  | -13        | 32.24       | V            |
| 5132.8             | -50.6         | 7.9       | 9.4      | -49.1                   | -13        | 36.10       | V            |
| 6842.8             | -44.21        | 9.2       | 10.9     | -42.51                  | -13        | 29.51       | V            |
| 8554.0             | -43.3         | 10.3      | 12.6     | -41                     | -13        | 28.00       | V            |
| 10264.4            | -48.53        | 11.5      | 12.3     | -47.73                  | -13        | 34.73       | v            |
| 11974.4            | -47.64        | 12.6      | 12.3     | -47.94                  | -13        | 34.94       | V            |

#### **RSE-LTE4-M**

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 3464.4             | -50.58        | 6.4       | 7.8      | -49.18                  | -13        | 36.18       | Н            |
| 5197.6             | -49.22        | 8.0       | 9.4      | -47.82                  | -13        | 34.82       | Н            |
| 6930.4             | -42.34        | 9.3       | 11.1     | -40.54                  | -13        | 27.54       | V            |
| 8662.4             | -45.9         | 10.3      | 12.7     | -43.5                   | -13        | 30.50       | V            |
| 10395.2            | -48.35        | 11.6      | 12.3     | -47.65                  | -13        | 34.65       | V            |
| 12128.4            | -46.94        | 12.6      | 12.3     | -47.24                  | -13        | 34.24       | Н            |

## RSE-LTE4-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 3508.0             | -49.53        | 6.4       | 7.8      | -48.13                  | -13        | 35.13       | V            |
| 5263.2             | -49.24        | 8.0       | 9.4      | -47.84                  | -13        | 34.84       | Н            |
| 7016.8             | -45           | 9.3       | 11.1     | -43.2                   | -13        | 30.20       | Н            |
| 8771.6             | -44.6         | 10.4      | 12.7     | -42.3                   | -13        | 29.30       | V            |
| 10525.6            | -47.58        | 11.6      | 12.3     | -46.88                  | -13        | 33.88       | V            |

## RSE-LTE5-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|





|        | 7 10   |     |      |        |     |       |   |
|--------|--------|-----|------|--------|-----|-------|---|
| 1649.7 | -49.33 | 4.2 | 4.7  | -48.83 | -13 | 35.83 | V |
| 2473.8 | -39.74 | 5.4 | 5.6  | -39.54 | -13 | 26.54 | V |
| 3298.8 | -54.03 | 6.2 | 6.9  | -53.33 | -13 | 40.33 | V |
| 4124.0 | -54.25 | 7.0 | 8.6  | -52.65 | -13 | 39.65 | V |
| 4924.4 | -53.63 | 7.7 | 9.6  | -51.73 | -13 | 38.73 | H |
| 5765.6 | -54.1  | 8.5 | 10.2 | -52.4  | -13 | 39.40 | V |
|        |        |     |      |        |     |       |   |

## RSE-LTE5-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 1672.9             | -50.47        | 4.5       | 4.7      | -50.27                  | -13        | 37.27       | V            |
| 2508.5             | -44.84        | 5.4       | 5.6      | -44.64                  | -13        | 31.64       | V            |
| 3345.2             | -54.2         | 6.2       | 6.9      | -53.5                   | -13        | 40.50       | V            |
| 4182.8             | -54.93        | 7.0       | 8.9      | -53.03                  | -13        | 40.03       | V            |
| 5019.2             | -54.14        | 7.8       | 9.6      | -52.34                  | -13        | 39.34       | H            |
| 5856.0             | -54.29        | 8.4       | 10.2     | -52.49                  | -13        | 39.49       | Н            |

## RSE-LTE5-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 1696.4             | -49.87        | 4.5       | 4.7      | -49.67                  | -13        | 36.67       | V            |
| 2543.8             | -39.64        | 5.4       | 5.6      | -39.44                  | -13        | 26.44       | V            |
| 3384.4             | -55.04        | 6.3       | 7.8      | -53.54                  | -13        | 40.54       | Н            |
| 4241.2             | -50.34        | 7.1       | 8.9      | -48.54                  | -13        | 35.54       | V            |
| 5090.8             | -52.06        | 7.9       | 9.6      | -50.36                  | -13        | 37.36       | V            |
| 5901.2             | -52.72        | 8.5       | 10.2     | -51.02                  | -13        | 38.02       | H            |

#### RSF-ITF7-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5003.2             | -47.37        | 7.8       | 9.6      | -45.57                  | -25        | 20.57       | V            |
| 7506.8             | -31.21        | 9.7       | 11.6     | -29.31                  | -25        | 4.31        | V            |





| 10014.8 | -46.28 | 11.2 | 12.5 | -44.98 | -25 | 19.98 | V |
|---------|--------|------|------|--------|-----|-------|---|
| 12550.5 | -41.52 | 12.8 | 12.3 | -42.02 | -25 | 17.02 | Н |
| 15014.5 | -35.84 | 14.4 | 12.3 | -37.94 | -25 | 12.94 | V |
| 17711.2 | -30.85 | 15.8 | 12.3 | -34.35 | -25 | 9.35  | V |

## RSE-LTE7-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5068.4             | -46.25        | 7.8       | 9.6      | -44.45                  | -25        | 19.45       | V            |
| 7604.8             | -31.99        | 9.7       | 11.6     | -30.09                  | -25        | 5.09        | V            |
| 10111.6            | -45.58        | 11.3      | 12.5     | -44.38                  | -25        | 19.38       | V            |
| 12802.5            | -40.45        | 12.5      | 12.3     | -40.65                  | -25        | 15.65       | н            |
| 15936.8            | -32.2         | 15.0      | 12.3     | -34.9                   | -25        | 9.90        | H            |
| 17931.8            | -29.98        | 16.2      | 12.3     | -33.88                  | -25        | 8.88        | V            |

## RSE-LTE7-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5132.4             | -46           | 7.9       | 9.4      | -44.5                   | -25        | 19.50       | Н            |
| 7702.4             | -28.32        | 9.8       | 11.8     | -26.32                  | -25        | 1.32        | н 🦑          |
| 10270.0            | -44.94        | 11.5      | 12.3     | -44.14                  | -25        | 19.14       | V            |
| 12837.5            | -40.84        | 12.5      | 12.3     | -41.04                  | -25        | 16.04       | V            |
| 15404.8            | -29.31        | 14.4      | 12.3     | -31.41                  | -25        | 6.42        | Н            |

## RSE-LTE26-L-830.3

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 1662.2             | -52.22        | 4.5       | 4.7      | -52.02                  | -13        | 39.02       | H            |
| 2490.8             | -45.5         | 5.4       | 5.6      | -45.3                   | -13        | 32.30       | V            |
| 3322.0             | -55.1         | 6.2       | 6.9      | -54.4                   | -13        | 41.40       | Н            |
| 4146.8             | -56.36        | 7.0       | 8.9      | -54.46                  | -13        | 41.46       | o v          |
| 4993.2             | -54.36        | 7.8       | 9.6      | -52.56                  | -13        | 39.56       | V            |





| 5812.8 | -55.45 | 8.4 | 10.2 | -53.65 | -13 | 40.65 | Н |
|--------|--------|-----|------|--------|-----|-------|---|
|--------|--------|-----|------|--------|-----|-------|---|

## RSE-LTE26-M-836.5

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 1676.3             | -52.84        | 4.5       | 4.7      | -52.64                  | -13        | 39.64       | V            |
| 2505.0             | -45.75        | 5.4       | 5.6      | -45.55                  | -13        | 32.55       | V            |
| 3348.0             | -54.91        | 6.2       | 6.9      | -54.21                  | -13        | 41.21       | Н            |
| 4186.4             | -56.05        | 7.0       | 8.9      | -54.15                  | -13        | 41.15       | Н            |
| 5023.6             | -55.85        | 7.8       | 9.6      | -54.05                  | -13        | 41.05       | H            |
| 5854.8             | -54.62        | 8.4       | 10.2     | -52.82                  | -13        | 39.82       | Н            |

#### RSE-LTE26-H-842.8

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 1685.7             | -53.53        | 4.5       | 4.7      | -53.33                  | -13        | 40.33       | H            |
| 2528.8             | -44.89        | 5.4       | 5.6      | -44.69                  | -13        | 31.69       | V            |
| 3372.8             | -55.02        | 6.2       | 6.9      | -54.32                  | -13        | 41.32       | н            |
| 4214.8             | -55.85        | 7.0       | 8.9      | -53.95                  | -13        | 40.95       | Н            |
| 5056.8             | -54.5         | 7.8       | 9.6      | -52.7                   | -13        | 39.70       | V            |
| 5898.8             | -54.31        | 8.5       | 10.2     | -52.61                  | -13        | 39.61       | Н            |

## RSE-LTE38-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5144.8             | -43.85        | 7.9       | 9.4      | -42.35                  | -25        | 17.35       | V            |
| 7717.6             | -28.85        | 9.8       | 11.8     | -26.85                  | -25        | 1.85        | V            |
| 10268.4            | -45.31        | 11.5      | 12.3     | -44.51                  | -25        | 19.51       | Ĥ            |
| 12834.0            | -40.72        | 12.5      | 12.3     | -40.92                  | -25        | 15.92       | Н            |
| 15894.8            | -31.2         | 15.0      | 12.3     | -33.9                   | -25        | 8.90        | Н            |
| 17823.2            | -30.51        | 16.0      | 12.3     | -34.21                  | -25        | 9.21        | V            |





## RSE-LTE38-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5190.0             | -44.16        | 8.0       | 9.4      | -42.76                  | -25        | 17.76       | V            |
| 6361.2             | -49.58        | 8.8       | 10.3     | -48.08                  | -25        | 23.08       | Н            |
| 7785.2             | -29.95        | 9.9       | 11.8     | -28.05                  | -25        | 3.05        | V            |
| 10379.6            | -41.67        | 11.6      | 12.3     | -40.97                  | -25        | 15.97       | Н            |
| 13301.2            | -38.63        | 13.6      | 12.3     | -39.93                  | -25        | 14.93       | V            |
| 15571.0            | -26.63        | 14.6      | 12.3     | -28.93                  | -25        | 3.93        | V            |

#### RSE-LTE38-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5234.4             | -45.49        | 8.0       | 9.4      | -44.09                  | -25        | 18.10       | Н            |
| 6308.0             | -49.39        | 8.8       | 10.3     | -47.89                  | -25        | 22.89       | V            |
| 7852.0             | -28.18        | 9.9       | 11.8     | -26.28                  | -25        | 1.28        | Н            |
| 10469.6            | -41.89        | 11.6      | 12.3     | -41.19                  | -25        | 16.19       | V            |
| 13338.0            | -38.44        | 13.6      | 12.3     | -39.74                  | -25        | 14.74       | Н            |
| 15705.8            | -27.52        | 14.5      | 12.3     | -29.72                  | -25        | 4.72        | V            |

#### RSE-LTE40-L-2307.5

| Frequency<br>(MHz) | PMea (dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP<br>(dBm) | Limit(dBm) | Polarization |
|--------------------|------------|-----------|----------|-------------------|------------|--------------|
| 4612.4             | -51.89     | 7.4       | 8.7      | -50.59            | -40        | 1000.000     |
| 6928.4             | -49.32     | 9.3       | 11.1     | -47.52            | -40        | 1000.000     |
| 9222.8             | -49.38     | 10.5      | 12.6     | -47.28            | -40        | 1000.000     |
| 11544.2            | -44.06     | 12.3      | 12.3     | -44.06            | -40        | 1000.000     |
| 13835.0            | -41.23     | 13.8      | 12.3     | -42.73            | -40        | 1000.000     |

## RSE-LTE40-M-2310

| Frequency<br>(MHz) | PMea (dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP<br>(dBm) | Limit(dBm) | Polarization |
|--------------------|------------|-----------|----------|-------------------|------------|--------------|
| 4625.2             | -52.5      | 7.5       | 9.0      | -51               | -40        | 1000.000     |
| 6938.0             | -52.29     | 9.3       | 11.1     | -50.49            | -40        | 1000.000     |





|         | V V V V V | 7 (7) |      |        |     |          |
|---------|-----------|-------|------|--------|-----|----------|
| 9237.2  | -48.56    | 10.5  | 12.6 | -46.46 | -40 | 1000.000 |
| 11556.5 | -44.27    | 12.2  | 12.3 | -44.17 | -40 | 1000.000 |
| 13875.2 | -41.95    | 13.5  | 12.3 | -43.15 | -40 | 1000.000 |

## RSE-LTE40-H-2312.5

| Frequency<br>(MHz) | PMea (dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP<br>(dBm) | Limit(dBm) | Polarization |
|--------------------|------------|-----------|----------|-------------------|------------|--------------|
| 4624.4             | -51.39     | 7.4       | 8.7      | -50.09            | -40        | 1000.000     |
| 6938.8             | -47.07     | 9.3       | 11.1     | -45.27            | -40        | 1000.000     |
| 9250.8             | -48.72     | 10.7      | 12.7     | -46.72            | -40        | 1000.000     |
| 11563.5            | -43.82     | 12.2      | 12.3     | -43.72            | -40        | 1000.000     |
| 13875.2            | -41.44     | 13.5      | 12.3     | -42.64            | -40        | 1000.000     |

#### RSE-LTE40-L-2352.5

| Frequency<br>(MHz) | PMea (dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP<br>(dBm) | Limit(dBm) | Polarization |
|--------------------|------------|-----------|----------|-------------------|------------|--------------|
| 4704.8             | -50.52     | 7.5       | 9.0      | -49.02            | -40        | 1000.000     |
| 7058.4             | -51.76     | 9.4       | 11.1     | -50.06            | -40        | 1000.000     |
| 9414.8             | -49.18     | 10.7      | 12.7     | -47.18            | -40        | 1000.000     |
| 11782.2            | -44.72     | 12.5      | 12.3     | -44.92            | -40        | 1000.000     |
| 14108.0            | -40.59     | 14.0      | 12.3     | -42.29            | -40        | 1000.000     |

## RSE-LTE40-M-2355

| Frequency<br>(MHz) | PMea (dBm) | Pcl (dBm) | Ga (dBd) | Peak ERP<br>(dBm) | Limit(dBm) | Polarization |
|--------------------|------------|-----------|----------|-------------------|------------|--------------|
| 4714.4             | -52.38     | 7.5       | 9.0      | -50.88            | -40        | 1000.000     |
| 7062.0             | -51.18     | 9.4       | 11.1     | -49.48            | -40        | 1000.000     |
| 9429.2             | -49.11     | 10.7      | 12.7     | -47.11            | -40        | 1000.000     |
| 11780.5            | -44.08     | 12.5      | 12.3     | -44.28            | -40        | 1000.000     |
| 14127.2            | -40.37     | 14.0      | 12.3     | -42.07            | -40        | 1000.000     |

## RSE-LTE40-H-2357.5

| Frequency<br>(MHz) | ' ' I PIMea (dBm) |     | Ga (dBd) | Peak ERP<br>(dBm) | Limit(dBm) | Polarization |
|--------------------|-------------------|-----|----------|-------------------|------------|--------------|
| 4719.2             | -52.44            | 7.5 | 9.0      | -50.94            | -40        | 1000.000     |





|         |        | V    |      |        |     |          |
|---------|--------|------|------|--------|-----|----------|
| 7082.8  | -51.94 | 9.4  | 11.1 | -50.24 | -40 | 1000.000 |
| 9428.4  | -48.48 | 10.7 | 12.7 | -46.48 | -40 | 1000.000 |
| 11780.5 | -43.57 | 12.5 | 12.3 | -43.77 | -40 | 1000.000 |
| 14146.5 | -41.69 | 14.0 | 12.3 | -43.39 | -40 | 1000.000 |

#### RSE-LTE41-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 4994.0             | -46.97        | 7.8       | 9.6      | -45.17                  | -25        | 20.17       | V            |
| 7496.0             | -32.98        | 9.7       | 11.6     | -31.08                  | -25        | 6.08        | V            |
| 10000.4            | -45.72        | 11.2      | 12.5     | -44.42                  | -25        | 19.42       | Н            |
| 12498.0            | -43.01        | 12.7      | 12.3     | -43.41                  | -25        | 18.41       | н            |
| 14993.5            | -35.71        | 14.4      | 12.3     | -37.81                  | -25        | 12.81       | V            |
| 17769.0            | -30.72        | 16.0      | 12.3     | -34.42                  | -25        | 9.42        | V            |

## RSE-LTE41-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5185.2             | -44.92        | 8.0       | 9.4      | -43.52                  | -25        | 18.52       | V            |
| 6334.8             | -50.14        | 8.8       | 10.3     | -48.64                  | -25        | 23.64       | н 🦑          |
| 7779.2             | -30.35        | 9.9       | 11.8     | -28.45                  | -25        | 3.45        | V            |
| 10371.6            | -42.8         | 11.6      | 12.3     | -42.1                   | -25        | 17.10       | Н            |
| 12895.2            | -40.27        | 13.0      | 12.3     | -40.97                  | -25        | 15.97       | V            |
| 15557.0            | -28.43        | 14.6      | 12.3     | -30.73                  | -25        | 5.73        | V            |

## RSE-LTE41-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5304.4             | -46.85        | 8.0       | 9.4      | -45.45                  | -25        | 20.45       | V            |
| 6550.8             | -49.45        | 9.0       | 10.6     | -47.85                  | -25        | 22.85       | V            |
| 7957.6             | -30.02        | 9.8       | 12.2     | -27.62                  | -25        | 2.62        | V            |
| 10610.0            | -41.68        | 11.6      | 12.3     | -40.98                  | -25        | 15.98       | V            |





| : | 13353.8 | -38.71 | 13.7 | 12.3 | -40.11 | -25 | 15.11 | Н |
|---|---------|--------|------|------|--------|-----|-------|---|
|   | 15915.8 | -23.92 | 15.0 | 12.3 | -26.62 | -25 | 1.62  | V |

## **Secondary Supply**

## RSE-LTE41-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 4994.4             | -47.03        | 7.8       | 9.6      | -45.23                  | -25        | 20.23       | V            |
| 7494.4             | -42.63        | 9.7       | 11.6     | -40.73                  | -25        | 15.73       | V            |
| 9995.2             | -44.8         | 11.2      | 12.5     | -43.5                   | -25        | 18.50       | н            |
| 12494.5            | -42.41        | 12.7      | 12.3     | -42.81                  | -25        | 17.81       | V            |
| 14993.5            | -32.41        | 14.4      | 12.3     | -34.51                  | -25        | 9.51        | V .          |

## RSE-LTE41-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5188.8             | -45.37        | 8.0       | 9.4      | -43.97                  | -25        | 18.97       | V            |
| 7778.0             | -42.02        | 9.9       | 11.8     | -40.12                  | -25        | 15.12       | V O          |
| 10371.6            | -39           | 11.6      | 12.3     | -38.3                   | -25        | 13.30       | V            |
| 12932.0            | -40.41        | 13.0      | 12.3     | -41.11                  | -25        | 16.11       | H            |
| 15560.5            | -32.67        | 14.6      | 12.3     | -34.97                  | -25        | 9.97        | V            |

## RSE-LTE41-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5374.8             | -43.52        | 8.1       | 9.4      | -42.22                  | -25        | 17.22       | Н            |
| 6479.2             | -48.72        | 9.0       | 10.6     | -47.12                  | -25        | 22.12       | Н            |
| 8061.6             | -39.91        | 9.9       | 12.2     | -37.61                  | -25        | 12.61       | V            |
| 10750.4            | -33.54        | 11.7      | 12.3     | -32.94                  | -25        | 7.94        | Н            |
| 13432.5            | -39.57        | 13.7      | 12.3     | -40.97                  | -25        | 15.97       | Н            |
| 16124.0            | -26.95        | 15.0      | 12.3     | -29.65                  | -25        | 4.65        | Н            |





## **Third Supply**

## RSE-LTE41-L

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 4994.0             | -46.05        | 7.8       | 9.6      | -44.25                  | -25        | 19.25       | V            |
| 7494.0             | -35.77        | 9.7       | 11.6     | -33.87                  | -25        | 8.87        | V            |
| 9992.4             | -47.18        | 11.2      | 12.5     | -45.88                  | -25        | 20.88       | H            |
| 12492.8            | -42.49        | 12.7      | 12.3     | -42.89                  | -25        | 17.89       | Н            |
| 14993.5            | -32.06        | 14.4      | 12.3     | -34.16                  | -25        | 9.16        | V            |
| 17517.0            | -31.27        | 15.1      | 12.3     | -34.07                  | -25        | 9.07        | V            |

## RSE-LTE41-M

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5188.8             | -42.73        | 8.0       | 9.4      | -41.33                  | -25        | 16.33       | V            |
| 7778.4             | -34.57        | 9.9       | 11.8     | -32.67                  | -25        | 7.67        | V            |
| 10376.0            | -45.52        | 11.6      | 12.3     | -44.82                  | -25        | 19.82       | Н            |
| 12960.0            | -39.81        | 13.2      | 12.3     | -40.71                  | -25        | 15.71       | Н            |
| 15571.0            | -33.9         | 14.6      | 12.3     | -36.2                   | -25        | 11.20       | Н            |

#### RSE-LTE41-H

| Frequency<br>(MHz) | PMea<br>(dBm) | Pcl (dBm) | Ga (dBd) | Test<br>Result<br>(dBm) | Limit(dBm) | Margin(dBm) | Polarization |
|--------------------|---------------|-----------|----------|-------------------------|------------|-------------|--------------|
| 5372.8             | -42.87        | 8.1       | 9.4      | -41.57                  | -25        | 16.57       | V            |
| 8062.4             | -29.37        | 9.9       | 12.2     | -27.07                  | -25        | 2.07        | V            |
| 10750.4            | -43.53        | 11.7      | 12.3     | -42.93                  | -25        | 17.93       | V            |
| 13460.5            | -38.72        | 13.7      | 12.3     | -40.12                  | -25        | 15.12       | V            |
| 16124.0            | -31.09        | 15.0      | 12.3     | -33.79                  | -25        | 8.79        | V            |



#### 6.3 Frequency Stability

#### 6.3.1 Measurement Limit

FCC  $\S 2.1055$  The frequency stability shall be measured with variation of ambient temperature as follows: (1) From  $-30^{\circ}$  to  $+50^{\circ}$  centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

(2) From –20° to + 50° centigrade for equipment to be licensed for use in the Maritime Services under part 80 of this chapter, except for Class A, B, and S Emergency Position Indicating Radiobeacons (EPIRBS), and equipment to be licensed for use above 952 MHz at operational fixed stations in all services, stations in the Local Television Transmission Service and Point-to-Point Microwave Radio Service under part 21 of this chapter, equipment licensed for use aboard aircraft in the Aviation Services under part 87 of this chapter, and equipment authorized for use in the Family Radio Service under part 95 of this chapter. FCC §24.235 Frequency stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

FCC §22.355 Frequency tolerance. Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C–1 of this section

FCC §27.54 The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

#### 6.3.2 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30  $^{\circ}$ C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 7. Measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4.Repeat the above measurements at  $10^{\circ}$ C increments from  $-30^{\circ}$ C to  $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5.Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at  $+50^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8.Repeat the above measurements at 10  $^{\circ}$ C decrements from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9.At all temperature levels hold the temperature to +/- 0.5  $^{\circ}\mathrm{C}$  during the measurement procedure.





## 6.3.3 Test Setup



## 6.3.4 Measurement results

| Tempera<br>ture | Voltage | Band  | Band<br>Width<br>(MHz) | Chann<br>el | Rb<br>Mode | QPSK<br>(Hz) | Q16<br>(Hz) | QPSK<br>(ppm | Q16<br>(ppm<br>) |
|-----------------|---------|-------|------------------------|-------------|------------|--------------|-------------|--------------|------------------|
| Normal          | Low     | FDD02 | 5                      | fullRB      | -17.166    | 12.002       | 0.009       | 0.006        | Norm<br>al       |
| Normal          | Normal  | FDD02 | 5                      | fullRB      | -13.061    | -21.944      | 0.007       | 0.012        | Norm<br>al       |
| Normal          | High    | FDD02 | 5                      | fullRB      | -15.864    | -16.837      | 0.008       | 0.009        | Norm<br>al       |
| 50              | Normal  | FDD02 | 5                      | fullRB      | -20.843    | -17.409      | 0.011       | 0.009        | 50               |
| 40              | Normal  | FDD02 | 5                      | fullRB      | -21.672    | 16.351       | 0.012       | 0.009        | 40               |
| 30              | Normal  | FDD02 | 5                      | fullRB      | -15.206    | -21.4        | 0.008       | 0.011        | 30               |
| 20              | Normal  | FDD02 | 5                      | fullRB      | 14.276     | -18.754      | 0.008       | 0.01         | 20               |
| 10              | Normal  | FDD02 | 5                      | fullRB      | -17.853    | -15.035      | 0.009       | 0.008        | 10               |
| 0               | Normal  | FDD02 | 5                      | fullRB      | 8.597      | -21.429      | 0.005       | 0.011        | 0                |
| -10             | Normal  | FDD02 | 5                      | fullRB      | -11.215    | -19.727      | 0.006       | 0.01         | -10              |
| -20             | Normal  | FDD02 | 5                      | fullRB      | -14.276    | -17.638      | 0.008       | 0.009        | -20              |
| -30             | Normal  | FDD02 | 5                      | fullRB      | -18.868    | 11.415       | 0.01        | 0.006        | -30              |





## 6.4 Occupied Bandwidth

#### 6.4.1 Summary

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated.

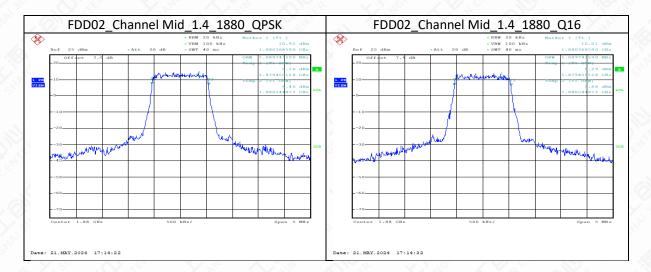
#### 6.4.2 Method of Measurement

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

The measurement method is from KDB 9711684:

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) Set the detection mode to peak, and the trace mode to max hold.
- e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

#### 6.4.3 Test Setup





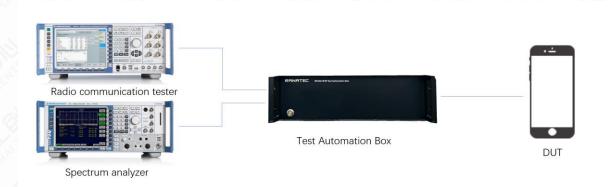



#### 6.4.4 Measurement Results

| Band  | Channel | BandWidth | Frequency(MHz) | QPSK(MHz) | Q16(MHz) |
|-------|---------|-----------|----------------|-----------|----------|
| FDD02 | Mid     | 1.4       | 1880           | 1.09      | 1.09     |

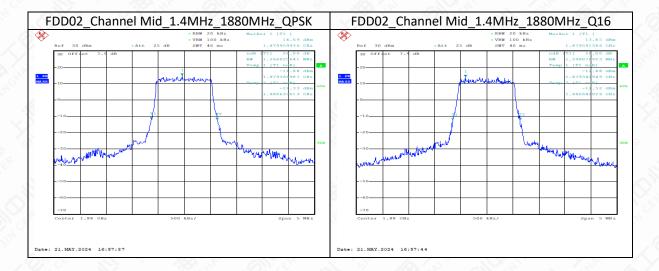







#### 6.5 Emission Bandwidth

#### 6.5.1 Method of Measurement


The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the followinag pages.

#### 6.5.2 Test Setup



#### 6.5.3 Measurement results

| Band  | Channel | BandWidth | Frequency(MHz) | QPSK(MHz) | Q16(MHz) |
|-------|---------|-----------|----------------|-----------|----------|
| FDD02 | Mid     | 1.4       | 1880           | 1.27      | 1.30     |







#### 6.6 Band Edge Compliance

#### 6.6.1 Measurement Limit

FCC §22.917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

FCC  $\S24.238(a)$  Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

FCC §27.53(a) For mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands:

- (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $55 + 10 \log (P) dB$  on all frequencies between 2296 and 2300 MHz,  $61 + 10 \log (P) dB$  on all frequencies between 2292 and 2296 MHz,  $67 + 10 \log (P) dB$  on all frequencies between 2288 and 2292 MHz, and  $70 + 10 \log (P) dB$  below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

FCC §27.53(h) (1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

FCC §27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

FCC §27.53(h):

AWS emission limits —

(1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block





shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

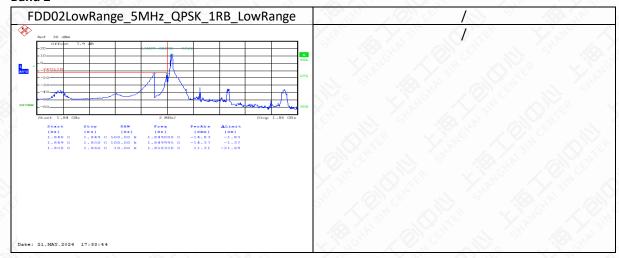

- (2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:
- (i) Operations in the 2180–2200 MHz band are subject to the out-of-band emission requirements set forth in § 27.1134 for the protection of federal government operations operating in the 2200–2290 MHz band.
- (ii) For operations in the 2000–2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.
- (iii) For operations in the 1915–1920 MHz band, the power of any emission between 1930–1995 MHz shall be attenuated below the transmitter power (P) in watts by at least  $70 + 10 \log_{10}(P)$  dB.
- (iv) For operations in the 1995–2000 MHz band, the power of any emission between 2005–2020 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.

#### 6.6.2 Method of Measurement

Measurement Procedure: FCC KDB 971168 D01 V03r01 Section 6.0

The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyzer. the other end of which was connected to a Base Station Simulator, The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at two frequencies (low channel and high channel).in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of 100kHz or 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed. The EUT emission bandwidth is measured as the width of the signal between two points. Outside of which all emission are attenuated at east 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to RMS.

#### 6.6.3 Test Setup








#### 6.6.4 Measurement result

## Band 2







#### 6.7 Conducted Spurious Emission

#### 6.7.1 Measurement Limit

FCC §22.917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

FCC  $\S24.238(a)$  Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

FCC §27.53(a) For mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands:

- (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $55 + 10 \log (P) dB$  on all frequencies between 2296 and 2300 MHz,  $61 + 10 \log (P) dB$  on all frequencies between 2292 and 2296 MHz,  $67 + 10 \log (P) dB$  on all frequencies between 2288 and 2292 MHz, and  $70 + 10 \log (P) dB$  below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

FCC §27.53(h) (1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

FCC §27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

FCC §27.53(h):

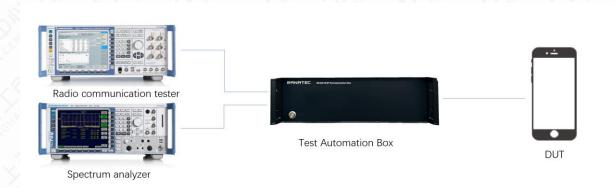
AWS emission limits -

(1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block





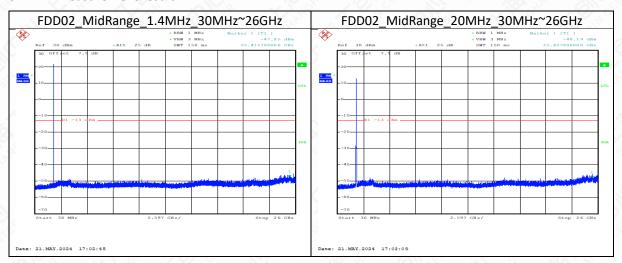
shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.


- (2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:
- (i) Operations in the 2180–2200 MHz band are subject to the out-of-band emission requirements set forth in § 27.1134 for the protection of federal government operations operating in the 2200–2290 MHz band.
- (ii) For operations in the 2000–2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.
- (iii) For operations in the 1915–1920 MHz band, the power of any emission between 1930–1995 MHz shall be attenuated below the transmitter power (P) in watts by at least  $70 + 10 \log_{10}(P)$  dB.
- (iv) For operations in the 1995–2000 MHz band, the power of any emission between 2005–2020 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log10(P) dB.

#### 6.7.2 Method of Measurement

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1.Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2.Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is set to 30001 which is greater than span/RBW.


#### 6.7.3 Test Setup







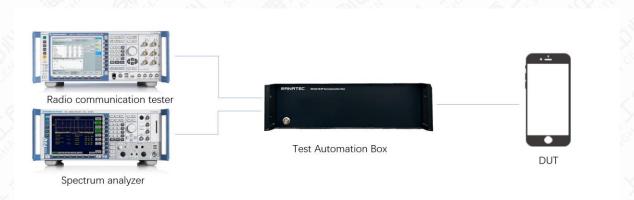
#### 6.7.4 Measurement result





## 6.8 Peak-To-Average Power Ratio

#### 6.8.1 Measurement Limit


CFR Part 22.913(d)/24.232(d)/27.50 :The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB

#### 6.8.2 Method of Measurement

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission. According to KDB 971168 5.7:

- a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval to 1 ms
- e) Record the maximum PAPR level associated with a probability of 0.1%

#### 6.8.3 Test Setup



## 6.8.4 Measurement results

| Band  | Channel | BandWidth | RbMode | QPSK(dBm) | Q16(dBm) |
|-------|---------|-----------|--------|-----------|----------|
| FDD02 | Low     | 20        | fullRB | 4.97      | 6.28     |





# **Annex A: Revised History**

| Version | Revised Content |
|---------|-----------------|
| VO      | Initial         |





## **Annex B: Accreditation Certificate**



# **Accredited Laboratory**

A2LA has accredited

# INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD. Shanghai, People's Republic of China

for technical competence in the field of

## **Electrical Testing**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 20th day of September 2023.

Valid to February 28, 2025

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

**END OF REPORT**