

FCC PART 15.407

TEST REPORT

For

Shanghai Sunmi Technology Co.,Ltd.

Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai, China

FCC ID: 2AH25T5940

Report Type: CIIPC Report	Product Type: Wireless data POS System
Report Number: <u>RKSA240109002-00E</u>	
Report Date:	<u>2024-09-25</u>
Reviewed By:	<u>Bard Liu</u>
Approved By:	<u>Kyle Xu</u>
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-512-86175000 Fax: +86-512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, or any agency of the U.S. Government.

TABLE OF CONTENTS

DOCUMENT HISTORY	3
FILING DESCRIPTION	4
GENERAL INFORMATION.....	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	5
OBJECTIVE	6
TEST METHODOLOGY	6
MEASUREMENT UNCERTAINTY	6
TEST FACILITY	6
SYSTEM TEST CONFIGURATION.....	7
DESCRIPTION OF TEST CONFIGURATION	7
EUT EXERCISE SOFTWARE	7
EQUIPMENT MODIFICATIONS	8
SUPPORT EQUIPMENT LIST AND DETAILS	8
EXTERNAL I/O CABLE.....	8
BLOCK DIAGRAM OF TEST SETUP	9
SUMMARY OF TEST RESULTS	10
FCC §1.1307(b) & §2.1093 - RF EXPOSURE INFORMATION	11
TEST RESULT	11
FCC §15.203 – ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	12
ANTENNA CONNECTOR CONSTRUCTION	12
TEST EQUIPMENT LIST	13
§15.407 (b) (9) §15.207 (a) – AC POWER LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	14
TEST SYSTEM SETUP	14
EMI TEST RECEIVER SETUP.....	14
TEST PROCEDURE	15
TEST RESULTS SUMMARY	15
§15.205 & §15.209 & §15.407(B) (1), (4), (8), (9), (10) – UNDESIRABLE EMISSION.....	16
APPLICABLE STANDARD	16
TEST SYSTEM SETUP	16
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	18
TEST PROCEDURE	18
FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST DATA: SEE APPENDIX	19
EUT PHOTOGRAPHS	20
TEST SETUP PHOTOGRAPHS	21
Appendix - TEST DATA.....	22
ENVIRONMENTAL CONDITIONS & TEST INFORMATION	22
AC POWER-LINE CONDUCTED EMISSIONS LIMITS	23
UNWANTED EMISSIONS & RESTRICTED FREQUENCY BANDS	25
SPOT CHECK WITH MAXIMUM CONDUCTED OUTPUT POWER	26

DOCUMENT HISTORY

Revision	Release Date	Description of Revision	Report Number
R1V1	2021-05-28	Original Report	RKSA210422002-00C
R1V2	2024-09-25	CIIPC Report	RKSA240109002-00E

FILING DESCRIPTION

Report Number	Information about Changes
RKSA210422002-00C	First Release
RKSA240109002-00E	Adapter, LCD, Stepping Motor, Scan Engine, Modify part of the circuit

Note:

This is a CIIPC report application based on RKSA210422002-00C, grant date: 7/20/2021, the details as below:

For version B-B:

1. Delete an adapter: UC13US.
2. Add an LCD, its model is HS55ET16T6F, the supplier is Huashi Opto-Electronic Co., Ltd. and the specification is 5.45inch.
3. Add a stepping motor, its model is 15BY25-098, the supplier is SHENZHEN YOFON ELECTRONIC CO., LTD and the specification is 5Vdc.
4. Add a scan engine, its model is NG004, the supplier is shanghai Sunmi Technology Co.,Ltd. and the specification is 3.3Vdc.
5. Modify part of the circuit which not affect RF performance

For above differences, we tested “Conducted Output Power”, “Conducted Emissions” and “Radiated Emissions below 1GHz”, updated relate photos, other data and photos should referred to the original report RKSA210422002-00C that issued on 2021-05-28 by BACL (Kunshan).

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Shanghai Sunmi Technology Co.,Ltd.	
Test Model	Wireless data POS System	
Product Type:	T5940	
Power Supply:	DC 7.7 V from battery and DC 5.0V from adapter	
Maximum Average Output Power:	5G Wi-Fi B1:	5G Wi-Fi B4:
	802.11a:11.49 dBm	13.28 dBm
	802.11ac20:11.36 dBm	13.05 dBm
	802.11n-HT20:11.39 dBm	13.03 dBm
	802.11ac40:10.43 dBm	13.24 dBm
	802.11n-HT40:10.44 dBm	12.99 dBm
	802.11ac80:8.63 dBm	12.95 dBm
RF Function:	5G Wi-Fi	
Operating Band/Frequency:	Band 1: 5150~5250 MHz, Band 4: 5725~5850 MHz	
Channel Number:	Band 1: 7, Band 4: 8	
Channel Separation:	802.11a/ac20/n20: 20MHz; 802.11n40/ac40:40 MHz; 802.11ac80:80 MHz	
Modulation Type:	OFDM	
Antenna Type:	FPC Antenna	
★Maximum Antenna Gain:	2.0 dBi	

Adapter-1 Information:

Model: TPA-23A050200UU01

Input: AC100-240V 50/60Hz 0.3A

Output: DC5.0V, 2000mA

Note: The maximum antenna gain was declared by the manufacturer.

All measurement and test data in this report was gathered from production sample serial number: RKSA240109002-1 (Assigned by the BACL (Kunshan). The EUT supplied by the applicant was received on 2024-01-09.)

Objective

This type approval report is prepared for *Shanghai Sunmi Technology Co.,Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions' rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan).

Measurement Uncertainty

Item	Uncertainty	
AC Power Lines Conducted Emissions	3.19dB	
RF conducted test with spectrum	0.9dB	
RF Output Power with Power meter	0.5dB	
Radiated emission	9 kHz~150 kHz	3.8dB
	150 kHz~30 MHz	3.4dB
	30MHz~1GHz	6.11dB
	1GHz~6GHz	4.45dB
	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occupied Bandwidth	0.5kHz	
Temperature	1.0°C	
Humidity	6%	

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu Province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) is accredited in accordance with ISO/IEC 17025:2017 by NVLAP (Lab code: 600338-0), and the lab has been recognized as the FCC accredited lab under the KDB 974614 D01, the FCC Designation No. : CN5055.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

For **5150~5250 MHz** band, test channel list is as below,

802.11a/802.11ac20/n20 mode Channel 36, 40, 48 were tested.

802.11n40/802.11ac40 mode Channel 38, 46 were tested.

802.11ac80 mode Channel 42 was tested.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240
42	5210	/	/

For **5725~5850 MHz** band, test channel list is as below,

802.11a/802.11ac20/n20 mode Channel 149, 157, 165 were tested.

802.11n40/802.11ac40 mode Channel 151, 159 were tested.

802.11ac80 mode Channel 155 was tested.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	159	5795
151	5755	161	5805
153	5765	165	5825
155	5775	/	/
157	5785	/	/

EUT Exercise Software

RF test tool: The EUT tested in engineering mode.

The worst case was performed under:

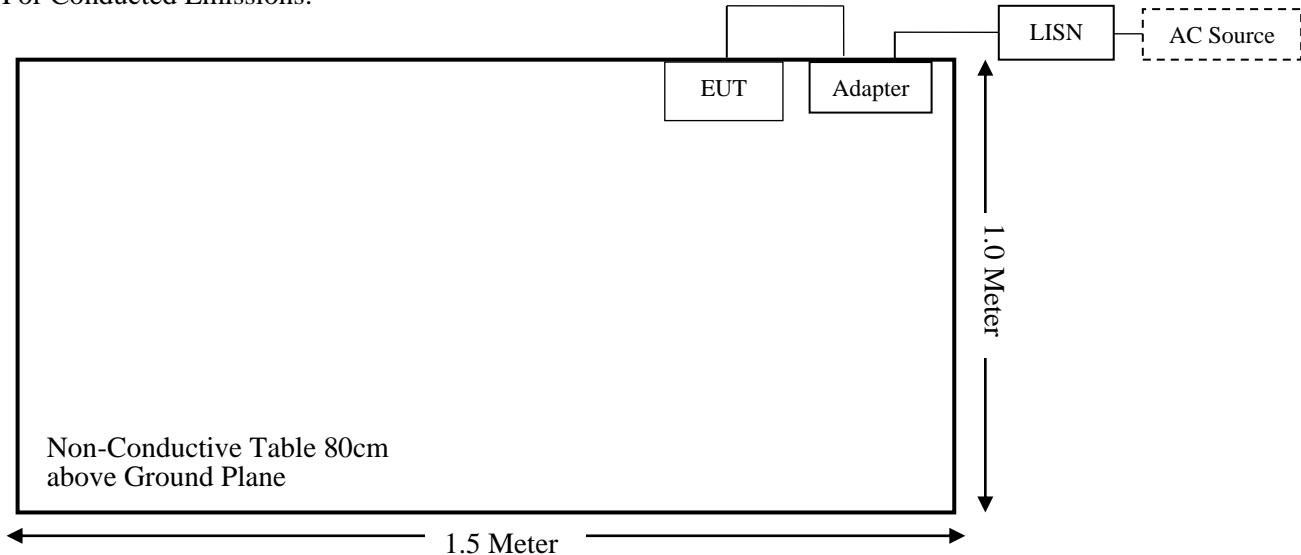
Mode	Data rate	★Power Level setting	
		5150-5250 Band	5725-5850 Band
802.11a	6 Mbps	15	17
802.11ac20	MCS0	15	17
802.11n-HT20	MCS0	15	18
802.11ac40	MCS0	15	20
802.11n-HT40	MCS0	15	17
802.11ac80	MCS0	15	18

Note: The power level setting was declared by the applicant.

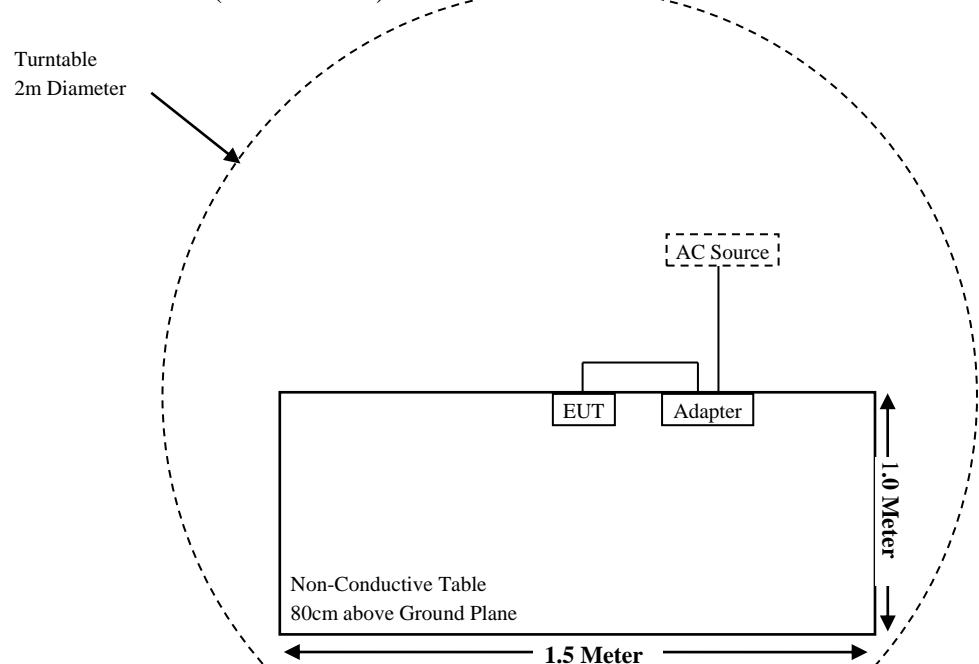
Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	Earphone	/	/

External I/O Cable


Cable Description	Length (m)	From Port	To
Power cable1	1.0	EUT	Adapter
Power cable2	1.0	Adapter	LISN/AC Source

Block Diagram of Test Setup

For Conducted Emissions:

For Radiated Emissions (Below 1GHz):

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b)(1) & §2.1093	RF Exposure Information	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 & §15.407(b) (8)	AC Power Line Conducted Emissions	Compliant
§15.205 & §15.209 & §15.407(b)(1)(4)(8)(9)	Undesirable Emission below 1GHz	Compliant
§15.205 & §15.209 & §15.407(b)(1)(4)(8)(9)	Undesirable Emission above 1GHz	Compliant*
§15.407(a) & §15.407 (e)	Emission Bandwidth	Compliant*
§15.407(a) (1) (3)	Conducted Transmitter Output Power	Reporting
§15.407(a) (1) (3)	Power Spectral Density	Compliant*

Compliant*: The changes will not affect test data, the data refer to the original report RKSA210422002-00C that issued on 2021-05-28 by BACL (Kunshan).

FCC §1.1307(b) & §2.1093 - RF EXPOSURE INFORMATION

Applicable Standard

FCC§1.1307, §2.1093.

Test Result

Compliance, please refer to the SAR report: RKSA240109002-20B.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407, if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

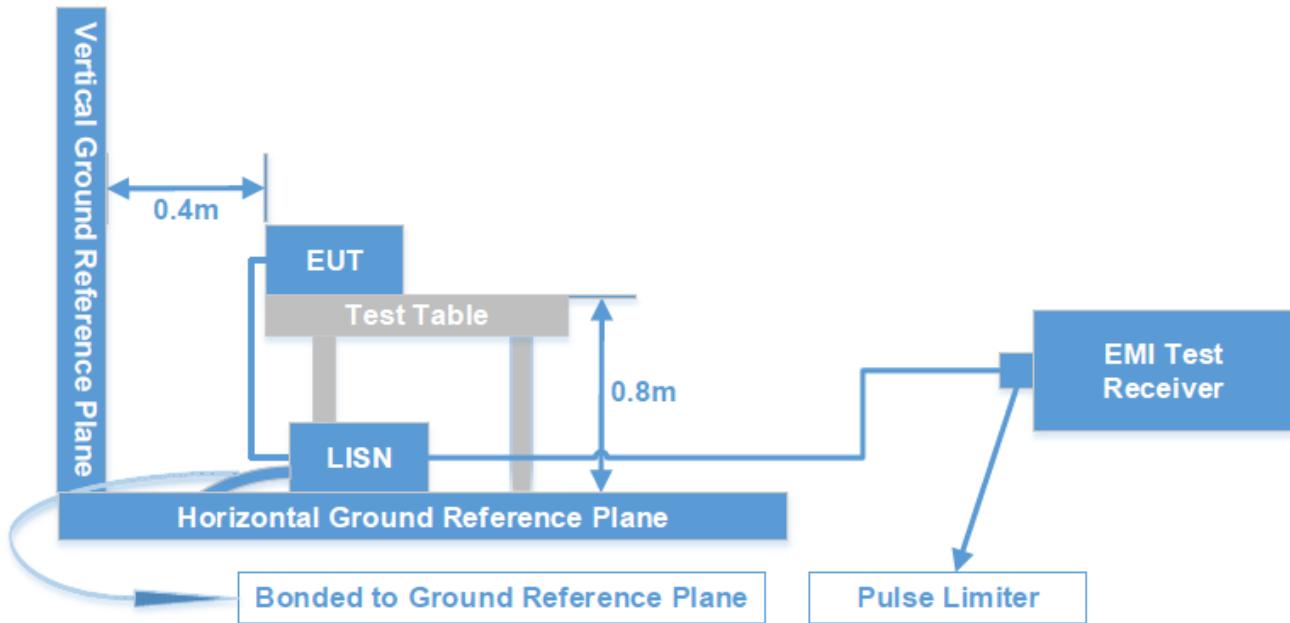
Antenna Connector Construction

The EUT has an FPC antenna for 5G Wi-Fi which the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test (Chamber #1)					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2023-05-23	2024-05-22
Sunol Sciences	Hybrid Antenna	JB3	A090314-1	2023-11-11	2024-11-10
Sonoma Instrument	Amplifier	310N	171205	2023-05-23	2024-05-22
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A
Narda	6 dB Attenuator	773-6	10690812-2-1	2023-11-11	2024-11-10
ETS-LINDGREN	Loop Antenna	6512	108100	2023-11-09	2024-11-08
MICRO-COAX	Coaxial Cable	Cable-8	008	2023-05-23	2024-05-22
MICRO-COAX	Coaxial Cable	Cable-9	009	2023-05-23	2024-05-22
MICRO-COAX	Coaxial Cable	Cable-10	010	2023-05-23	2024-05-22
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESR	101746	2023-05-23	2024-05-22
Rohde & Schwarz	LISN	ENV216	101115	2023-05-23	2024-05-22
Audix	Test Software	e3	V9	N/A	N/A
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	0357.8810.54	2023-05-23	2024-05-22
MICRO-COAX	Coaxial Cable	Cable-15	015	2023-05-23	2024-05-22
RF Conducted Test					
Anritsu	Power Sensor	MA24418A	12621	2024-04-23	2025-04-22
Narda	Attenuator	10dB	010	2024-04-23	2025-04-22
Unknown	RF Cable	RF Cable C01	C01	Each Time	N/A


Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

§15.407 (b) (9) §15.207 (a) – AC POWER LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), §15.407(b) (9)

Test System Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	VBW
150 kHz - 30 MHz	9 kHz	30 kHz

Test Procedure

During the conducted emission test, the EUT or adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

If the maximum peak value of the emissions is below the average limit, the QP value and average value measurement will not need to be performed and only record the maximum peak measured value to meet the requirements.

Level & Over Limit Calculation

The Level is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation from the Meter Reading. The basic equation is as follows:

$$\begin{aligned} \text{Factor (dB)} &= \text{LISN VDF (dB)} + \text{Cable Loss (dB)} + \text{Transient Limiter Attenuation (dB)} \\ \text{Level (dB}\mu\text{V)} &= \text{Read level (dB}\mu\text{V)} + \text{Factor (dB)} \end{aligned}$$

The “**Over Limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

$$\text{Over Limit (dB)} = \text{Level (dB}\mu\text{V)} - \text{Limit (dB}\mu\text{V)}$$

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

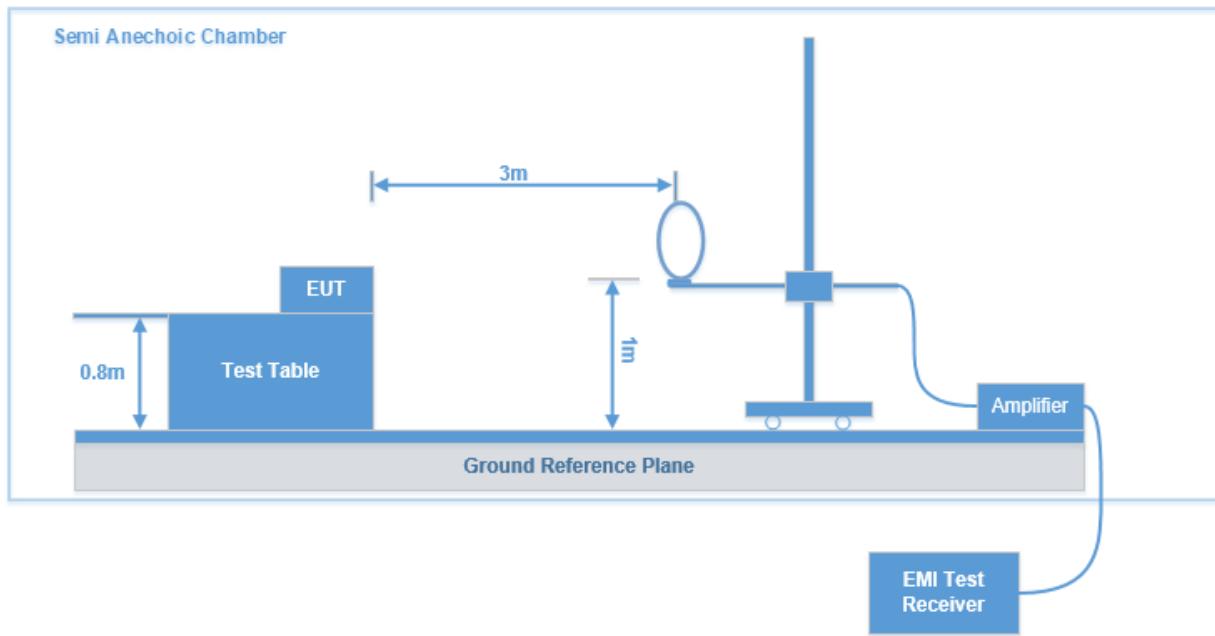
Test Data: See Appendix

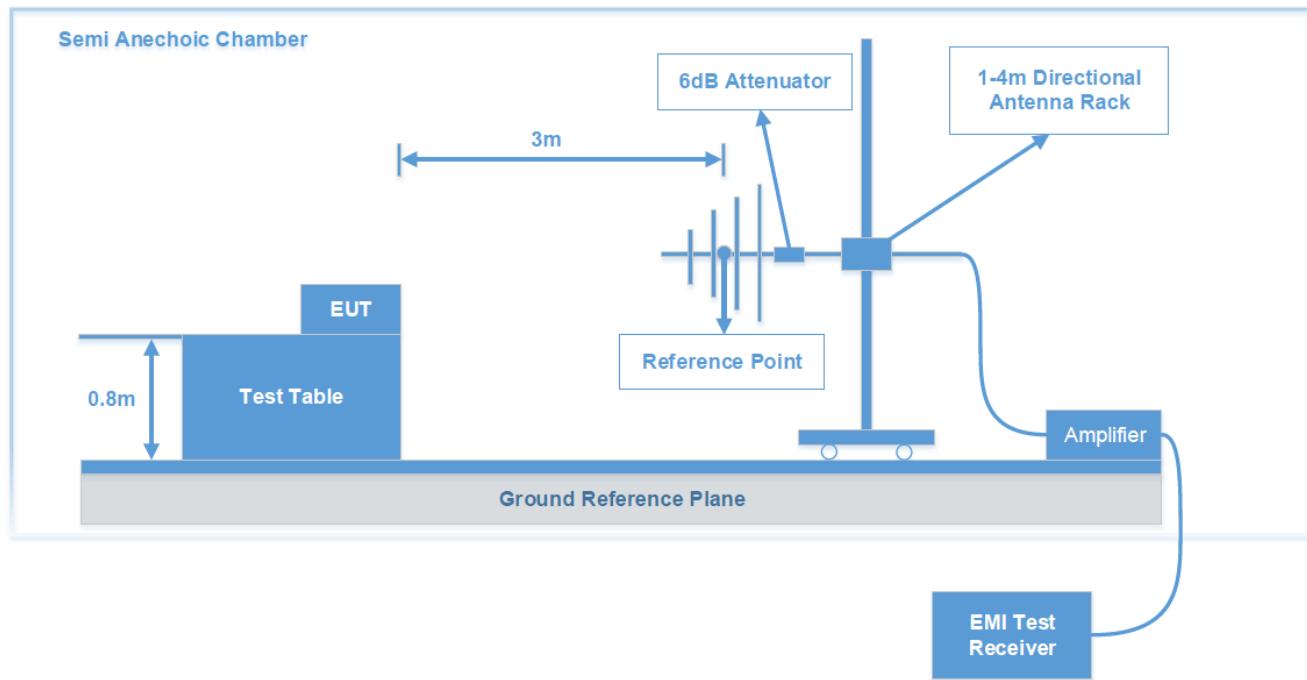
§15.205 & §15.209 & §15.407(B) (1), (4), (8), (9), (10) – UNDESIRABLE EMISSION

Applicable Standard

FCC §15.407 (b) (1), (4), (8), (9); §15.209; §15.205;

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.


For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.


As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000MHz shall be performed using a minimum resolution bandwidth of 1MHz.

According to 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [\text{dB}\mu\text{V}/\text{m}] = \text{EIRP} [\text{dBm}] + 95.2$, for $d = 3$ meters.

Test System Setup

9 kHz-30MHz:

30MHz-1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 1 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	VBW	IF B/W	Measurement
9 kHz - 150 kHz	200 Hz	1 kHz	200 Hz	QP/Average
150 kHz - 30 MHz	9 kHz	30 kHz	9 kHz	QP/ Average
30 MHz - 1000 MHz	100 kHz	300 kHz	/	Peak
	/	/	120 kHz	QP

Test Procedure

During the radiated emission test, the adapter was connected to AC floor outlet. Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

For 9 kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude (dB}\mu\text{V/m)} = \text{Meter Reading (dB}\mu\text{V)} + \text{Corrected factor (dB/m)}$$

$$\text{Corrected factor (dB/m)} = \text{Antenna Factor (dB/m)} + \text{Cable Loss (dB)} - \text{Amplifier Gain (dB)}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin (dB)} = \text{Limit (dB}\mu\text{V/m)} - \text{Corrected Amplitude (dB}\mu\text{V/m)}$$

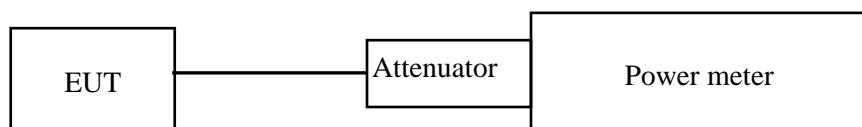
Test Data: See Appendix

FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER**Applicable Standard**

According to §15.407(a)(1)

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to §15.407(a) (3)


For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to ANSI C63.10-2013 sub-clause 12.3.3.2

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

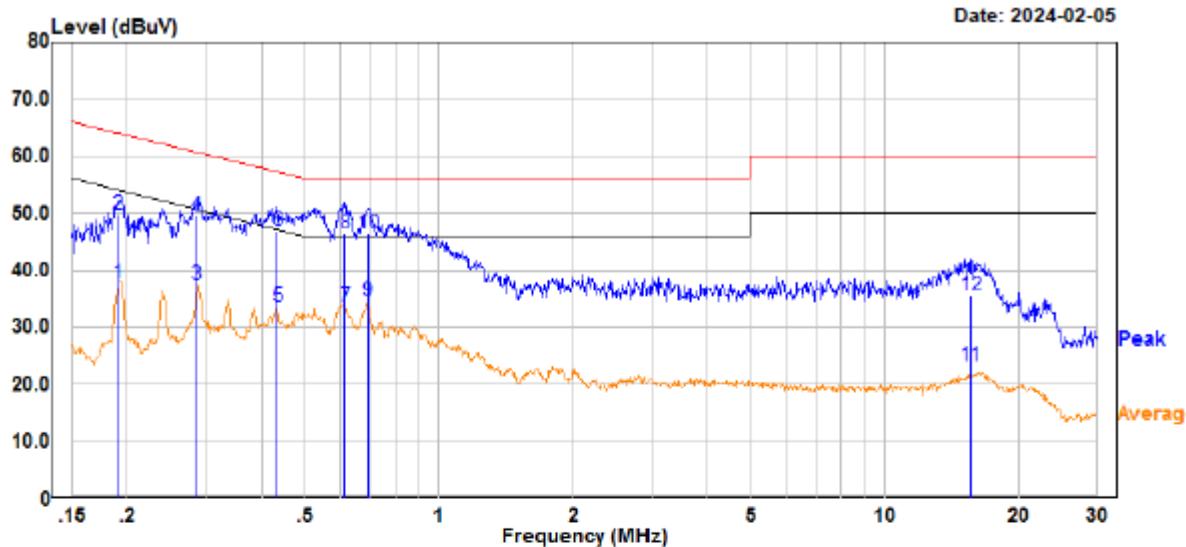
Test Data: See Appendix

EUT PHOTOGRAPHS

Please refer to the attachment EXHIBIT B-EUT EXTERNAL PHOTOGRAPHS and EXHIBIT C-EUT INTERNAL PHOTOGRAPHS.

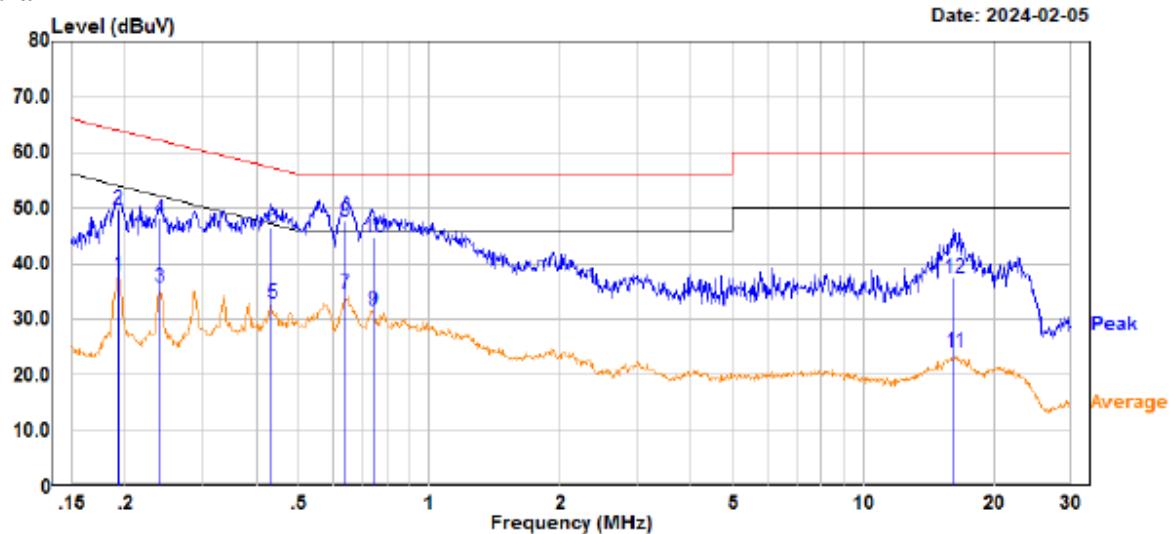
TEST SETUP PHOTOGRAPHS

Please refer to the attachment EXHIBIT D-TEST SETUP PHOTOGRAPHS.


Appendix - TEST DATA

Environmental Conditions & Test Information

Test Item:	AC power-line conducted emissions limits	UNWANTED EMISSIONS 9kHz - 1GHz	Maximum Conducted Output Power
Test Date:	2024-02-05	2024-04-13	2024-09-25
Temperature:	23.1 °C	19.8 °C	21.8 °C
Relative Humidity:	33 %	61 %	51 %
ATM Pressure:	102.1kPa	101.5kPa	101.8kPa
Test Result:	Pass	Pass	Pass
Test Engineer:	Aaron Sun	Leah Li	Bard Liu


AC power-line conducted emissions limits

EUT operation mode: Transmitting in 802.11a mode high channel of 5725~5850MHz (maximum output power)
Line

Site : CE
 Condition : FCC part 15.207
 : DET:Peak
 Project No : RKSA240109002
 Phase : L
 Voltage : 120V/60Hz
 Mode : 5G WIFI
 Test Equipment : ENV216, ESR
 Temperature : 23.1°C
 Humidity : 33%
 Atmospheric pressure: 102.1kPa
 Test Engineer : Aaron

Freq	Read			Limit Line	Over Limit	Remark
	MHz	dBuV	dB			
1	0.191	17.80	19.94	37.74	54.01	-16.27 Average
2	0.191	29.90	19.94	49.84	64.01	-14.17 QP
3	0.287	17.40	20.01	37.41	50.62	-13.21 Average
4	0.287	29.50	20.01	49.51	60.62	-11.11 QP
5	0.434	13.60	20.08	33.68	47.18	-13.50 Average
6	0.434	26.90	20.08	46.98	57.18	-10.20 QP
7	0.615	13.60	20.08	33.68	46.00	-12.32 Average
8	0.615	26.30	20.08	46.38	56.00	-9.62 QP
9	0.693	14.50	20.07	34.57	46.00	-11.43 Average
10	0.693	26.40	20.07	46.47	56.00	-9.53 QP
11	15.538	3.30	19.80	23.10	50.00	-26.90 Average
12	15.538	15.80	19.80	35.60	60.00	-24.40 QP

Neutral

Site : CE
 Condition : FCC part 15.207
 : DET:Peak
 Project No : RKSA240109002
 Phase : N
 Voltage : 120V/60Hz
 Mode : 5G WIFI
 Test Equipment : ENV216, ESR
 Temperature : 23.1°C
 Humidity : 33%
 Atmospheric pressure: 102.1kPa
 Test Engineer : Aaron

Freq	Read		Limit	Over	Remark
	Level	Factor			
1	0.192	17.90	19.94	37.84	53.93 -16.09 Average
2	0.192	29.90	19.94	49.84	63.93 -14.09 QP
3	0.240	15.90	19.98	35.88	52.11 -16.23 Average
4	0.240	28.10	19.98	48.08	62.11 -14.03 QP
5	0.434	12.80	20.08	32.88	47.18 -14.30 Average
6	0.434	26.40	20.08	46.48	57.18 -10.70 QP
7	0.640	14.40	20.08	34.48	46.00 -11.52 Average
8	0.640	27.60	20.08	47.68	56.00 -8.32 QP
9	0.743	11.70	20.01	31.71	46.00 -14.29 Average
10	0.743	24.70	20.01	44.71	56.00 -11.29 QP
11	16.170	4.40	19.81	24.21	50.00 -25.79 Average
12	16.170	17.60	19.81	37.41	60.00 -22.59 QP

UNWANTED EMISSIONS & RESTRICTED FREQUENCY BANDS

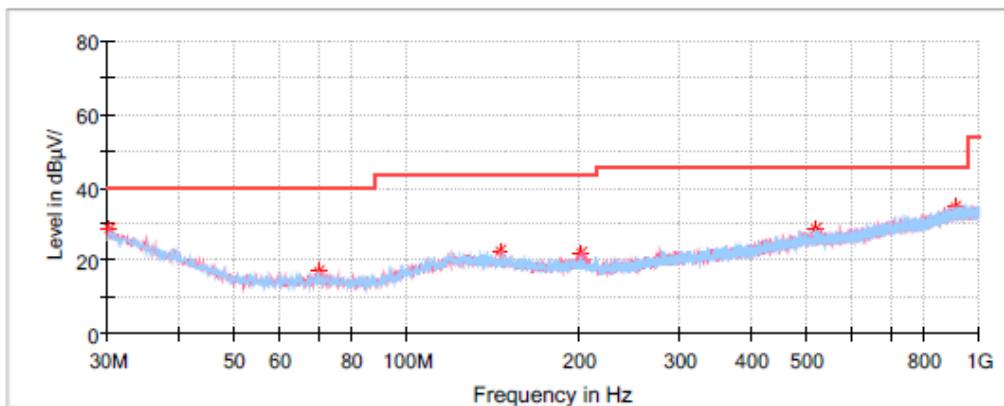
Test Result: Compliant

EUT operation mode: Transmitting

After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

9 kHz-30MHz: (Transmitting in maximum output power mode and channel)

The amplitude of spurious emissions attenuated more than 20 dB below the limit was not be recorded.


For Wi-Fi Mode:

30MHz-1GHz (Transmitter in maximum output mode 802.11a high channel) :

5825MHz

Common Information

Project No:	RKSA240109002
EUT Model:	T5940
Test Mode:	5G WIFI
Standard:	FCC Part 15.205 & FCC Part 15.209 & FCC Part 15.407
Test Equipment:	ESCI, JB3, 310N
Temperature:	19.8°C
Humidity:	61%
Barometric Pressure:	101.5kPa
Test Engineer:	Leah Li
Test Date:	2024/4/13

Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Corr. (dB/m)
30.121250	28.44	40.00	11.56	V	-4.5
69.891250	17.03	40.00	22.97	H	-16.8
146.157500	22.54	43.50	20.96	V	-11.9
200.841250	22.13	43.50	21.37	V	-12.6
517.667500	28.45	46.00	17.55	H	-5.6
908.335000	34.91	46.00	11.09	V	1.3

Spot Check With Maximum Conducted Output Power

Test mode	Band	Frequency (MHz)	Average Conducted Output Power (dBm)	Limit (dBm)	Result
802.11a	5150-5250 MHz	5180	11.42	24	PASS
		5200	11.49	24	PASS
		5240	11.45	24	PASS
802.11ac20	5150-5250 MHz	5180	11.35	24	PASS
		5200	11.36	24	PASS
		5240	11.32	24	PASS
802.11n-HT20	5150-5250 MHz	5180	11.25	24	PASS
		5200	11.35	24	PASS
		5240	11.39	24	PASS
802.11ac40	5150-5250 MHz	5190	10.43	24	PASS
		5230	10.32	24	PASS
802.11n-HT40	5150-5250 MHz	5190	10.44	24	PASS
		5230	10.23	24	PASS
802.11ac80	/	5210	8.63	24	PASS

Test mode	Band	Frequency (MHz)	Average Conducted Output Power (dBm)	Limit (dBm)	Result
802.11a	5725-5850 MHz	5745	12.95	30	PASS
		5785	12.98	30	PASS
		5825	13.28	30	PASS
802.11ac20	5725-5850 MHz	5745	12.75	30	PASS
		5785	12.78	30	PASS
		5825	13.05	30	PASS
802.11n-HT20	5725-5850 MHz	5745	12.91	30	PASS
		5785	12.78	30	PASS
		5825	13.03	30	PASS
802.11ac40	5725-5850 MHz	5755	12.95	30	PASS
		5795	13.24	30	PASS
802.11n-HT40	5725-5850 MHz	5755	12.96	30	PASS
		5795	12.99	30	PASS
802.11ac80	/	5775	12.95	30	PASS

Declarations

1. The laboratory is not responsible for the authenticity of any information provided by the applicant. Information from the applicant that may affect test results is marked with “★”.
2. The test data was only valid for the test sample(s).
3. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.
4. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
5. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor $k=2$ with the 95.45% confidence interval.

*****END OF REPORT*****