

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.

Report No.: SUCR250500042209

Rev.: 01 1 of 10 Page:

Appendix B

Detailed Test Results

1. WIFI
WIFI 2.4G
WIFI 5G
WIFI 6E
Hyper WIFI
2. BT
BT
3. NFC
NFC

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at egs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at Terms-and-Conditions/Terms-e-Document. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing / inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com

Wireless Laboratory

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd. South of No. 6 Plant, No. 1, RunSheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 215000

t (86-512) 6229 2980 www.sgsgroup.com.cn

Test Laboratory: SGS-SAR Lab

TFB1A WIFI2.4G 802.11n 11CH Back side 0mm

DUT: TFB1A; Type: Wireless Data Terminal; Serial: LF03E53N00017

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2462 MHz; Duty Cycle: 1:1.172

Medium: HSL2450; Medium parameters used: f = 2462 MHz; $\sigma = 1.868$ S/m; $\varepsilon_r = 37.962$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(7.98, 7.98, 7.98); Calibrated: 2024/11/04

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1245; Calibrated: 2024/06/05

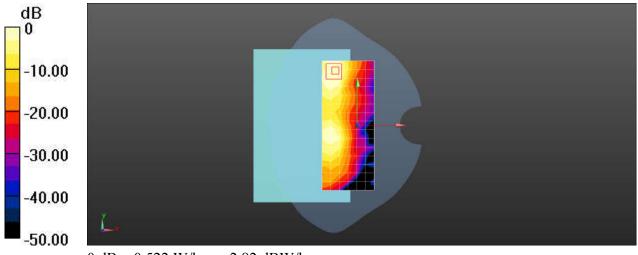
• Phantom: SAM 7; Type: SAM; Serial: 1702

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (7x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.522 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.312 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 0.921 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.167 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 38.6%

Maximum value of SAR (measured) = 0.701 W/kg

0 dB = 0.522 W/kg = -2.82 dBW/kg

Test Laboratory: SGS-SAR Lab

TFB1A WIFI5G 802.11a 64CH Top side 0mm

DUT: TFB1A; Type: Wireless Data Terminal; Serial: LF03E53N00017

Communication System: UID 0, WI-FI(5GHz) (0); Frequency: 5320 MHz; Duty Cycle: 1:1.053

Medium: HSL5G; Medium parameters used: f = 5320 MHz; $\sigma = 4.851$ S/m; $\varepsilon_r = 35.762$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(5.6, 5.6, 5.6); Calibrated: 2024/11/04

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1245; Calibrated: 2024/06/05

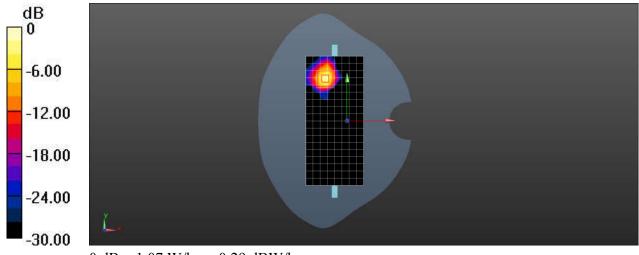
• Phantom: SAM 7; Type: SAM; Serial: 1702

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (9x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.887 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = -0.10 dB


Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.398 W/kg; SAR(10 g) = 0.099 W/kg

Smallest distance from peaks to all points 3 dB below = 6.1 mm

Ratio of SAR at M2 to SAR at M1 = 63.7%

Maximum value of SAR (measured) = 1.07 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

Test Laboratory: SGS-SAR Lab

TFB1A WIFI5G 802.11n-HT40 110CH Top side 0mm

DUT: TFB1A; Type: Wireless Data Terminal; Serial: LF03E53N00017

Communication System: UID 0, WI-FI(5GHz) (0); Frequency: 5550 MHz; Duty Cycle: 1:1.117

Medium: HSL5G; Medium parameters used: f = 5550 MHz; $\sigma = 5.102$ S/m; $\varepsilon_r = 35.157$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(5, 5, 5); Calibrated: 2024/11/04

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1245; Calibrated: 2024/06/05

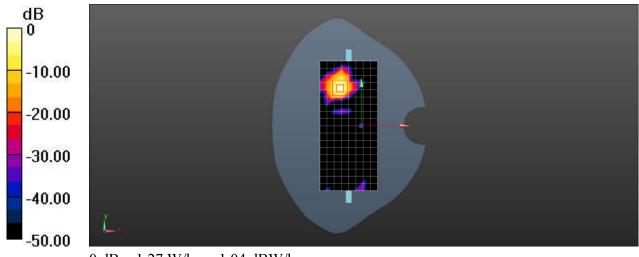
• Phantom: SAM 7; Type: SAM; Serial: 1702

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (9x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.27 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.507 W/kg; SAR(10 g) = 0.101 W/kg

Smallest distance from peaks to all points 3 dB below = 5.4 mm

Ratio of SAR at M2 to SAR at M1 = 64.5%

Maximum value of SAR (measured) = 1.38 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

Test Laboratory: SGS-SAR Lab

TFB1A WIFI5G 802.11n-HT40 151CH Top side 0mm

DUT: TFB1A; Type: Wireless Data Terminal; Serial: LF03E53N00017

Communication System: UID 0, WI-FI(5GHz) (0); Frequency: 5755 MHz; Duty Cycle: 1:1.117

Medium: HSL5G; Medium parameters used: f = 5755 MHz; $\sigma = 5.352$ S/m; $\varepsilon_r = 34.626$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(5.06, 5.06, 5.06); Calibrated: 2024/11/04

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1245; Calibrated: 2024/06/05

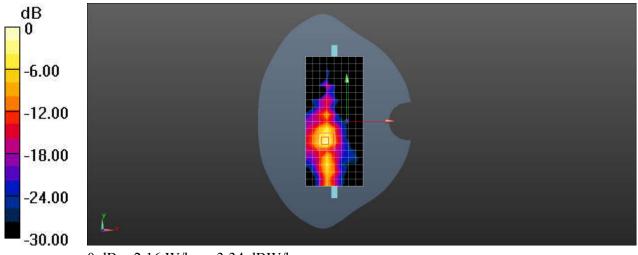
• Phantom: SAM 7; Type: SAM; Serial: 1702

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (9x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.83 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.375 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 0.843 W/kg; SAR(10 g) = 0.214 W/kg

Smallest distance from peaks to all points 3 dB below = 6.1 mm

Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 2.16 W/kg

0 dB = 2.16 W/kg = 3.34 dBW/kg

Test Laboratory: SGS-SAR Lab

TFB1A Hyper WIFI 802.11ah-2M 5CH Back side 0mm

DUT: TFB1A; Type: Wireless Data Terminal; Serial: LF03E53N00017

Communication System: UID 0, Hyper WIFI (0); Frequency: 925 MHz; Duty Cycle: 1:1.35

Medium: HSL835; Medium parameters used: f = 925 MHz; $\sigma = 0.963$ S/m; $\epsilon_r = 41.332$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(10.19, 10.19, 10.19); Calibrated: 2024/11/04

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1245; Calibrated: 2024/06/05

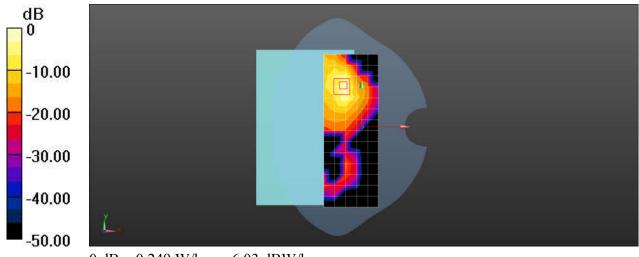
• Phantom: SAM 7; Type: SAM; Serial: 1702

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.249 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.404 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.050 W/kg

Smallest distance from peaks to all points 3 dB below = 8.1 mm

Ratio of SAR at M2 to SAR at M1 = 36%

Maximum value of SAR (measured) = 0.293 W/kg

0 dB = 0.249 W/kg = -6.03 dBW/kg

Test Laboratory: SGS-SAR Lab Date: 2025-05-19

WIFI6G 802.11ax 80M 215CH Top side 0mm

Communication System: U-NII-6; Frequency: 7025.000

Medium: Head Simulating Liquid. Medium parameters used: f= 7025.000 MHz; σ = 6.85 S/m; ϵ_r = 32.5

DASY8 Configuration:

- Probe: EX3DV4 - SN7735; ConvF(5.4, 5.62, 5.52); Calibrated: 2025-01-29

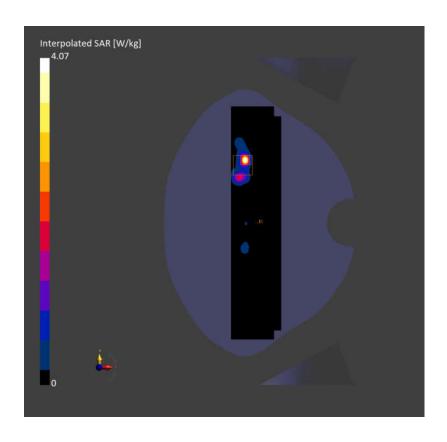
- Sensor-Surface: 1.4 mm

- Electronics: DAE4ip Sn1826; Calibrated: 2025-02-17

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 2155

- Measurement Software: cDASY8 V16.2.0.1425

Area Scan (48.0 mm x 153.0 mm): Measurement Grid: 8.0 mm x 8.5 mm SAR (1g) = 0.205 W/kg; SAR (8g) = 0.042 W/kg; SAR (10g) = 0.031 W/kg;


Zoom Scan (23.4 mm x 23.4 mm x 25.0 mm): Measurement Grid: 2.6 mm x 2.6 mm x 1.2 mm Power Drift = 0.09 dB

SAR(1g) = 0.211 W/kg; SAR(8g) = 0.047 W/kg; SAR(10g) = 0.038 W/kg;

psAPD (4.0cm2, sq) [W/m2]

M2/M1 [%]

Dist 3dB Peak [mm]

Test Laboratory: SGS-SAR Lab

TFB1A Bluetooth DH5 0CH Back side 0mm

DUT: TFB1A; Type: Wireless Data Terminal; Serial: LF03E53N00017

Communication System: UID 0, Bluetooth (0); Frequency: 2402 MHz; Duty Cycle: 1:1.3

Medium: HSL2450; Medium parameters used: f = 2402 MHz; $\sigma = 1.809$ S/m; $\varepsilon_r = 38.179$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(7.98, 7.98, 7.98); Calibrated: 2024/11/04

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1245; Calibrated: 2024/06/05

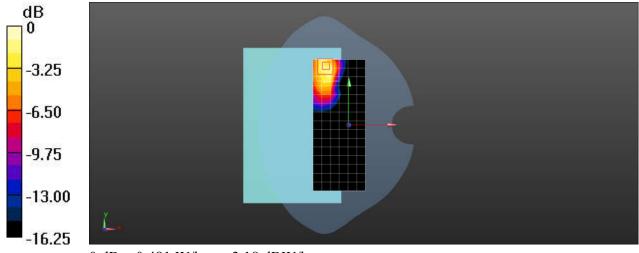
• Phantom: SAM 7; Type: SAM; Serial: 1702

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (7x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.374 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.083 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 0.625 W/kg

SAR(1 g) = 0.301 W/kg; SAR(10 g) = 0.136 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 49.8%

Maximum value of SAR (measured) = 0.481 W/kg

0 dB = 0.481 W/kg = -3.18 dBW/kg

Test Laboratory: SGS-SAR Lab Date: 2025-05-20

NFC 13.56MHz Back side 0mm

Communication System: Custom Band; Frequency: 13.600

Medium: HSL. Medium parameters used: f= 13.600 MHz; σ = 0.726 S/m; ϵ_r = 54.5

DASY8 Configuration:

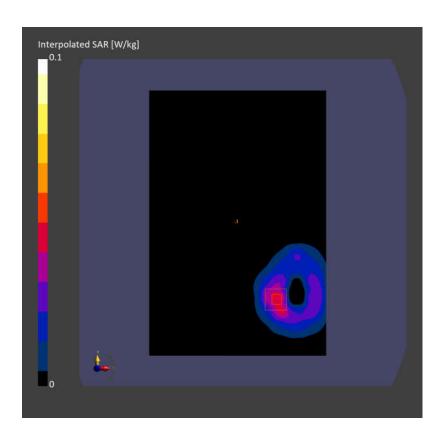
- Probe: EX3DV4 - SN7735; ConvF(13.68, 13.51, 13.73); Calibrated: 2025-01-29

- Sensor-Surface: 1.4 mm

- Electronics: DAE4ip Sn1826; Calibrated: 2025-02-17

- Phantom: ELI V8.0 (20deg probe tilt); Serial: 2217

- Measurement Software: cDASY8 V16.4.0.5005


Area Scan (180.0 mm x 270.0 mm): Measurement Grid: 15.0 mm x 15.0 mm SAR (1g) = 0.053 W/kg; SAR (10g) = 0.029 W/kg;

Zoom Scan (32.0 mm x 32.0 mm x 30.0 mm): Measurement Grid: 6.0 mm x 6.0 mm x 1.5 mm Power Drift = 0.17 dB

SAR (1g) = 0.052 W/kg; SAR (10g) = 0.027 W/kg;

M2/M1 [%] 65.7

Dist 3dB Peak [mm] 9.8

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.

Report No.: SUCR250500042209

Rev.: 01

Page: 10 of 10

- End of the Appendix -