

Report No.: SUCR250300025504

Rev.: 01 1 of 36 Page:

TEST REPORT

Application No.: SUCR2503000255AT

Applicant: Shanghai Sunmi Technology Co.,Ltd.

Address of Applicant: Room 505, No. 388, Song Hu Road, Yang Pu District, Shanghai, China

Shanghai Sunmi Technology Co.,Ltd. Manufacturer:

Room 505, No. 388, Song Hu Road, Yang Pu District, Shanghai, China Address of Manufacturer:

EUT Description: Wireless Data Terminal

Model No.: TFB1B Trade Mark: **SUNMI** FCC ID: 2AH25M3L

Standards: FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

March 28, 2025 **Date of Receipt:**

May 23, 2025 to May 26, 2025 **Date of Test:**

Date of Issue: June 11, 2025

Test Result: PASS *

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing / inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@sgs.com

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd. South of No. 6 Plant, No. 1, RunSheng Road, Suzhou Industrial Park, Wireless Laboratory

Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 215000

t (86-512) 6229 2980 www.sgsgroup.com.cn

In the configuration tested, the EUT detailed in this report complied with the standards specified

Report No.: SUCR250300025504

Rev.: 01 Page: 2 of 36

Version

Revision Record						
Version Description Date Remark						
01	Original	June 11, 2025	/			

Hayley Zhang	
Hayley Zhang / Project Manager	
Cloud Peng	
	Hayley Zhang / Project Manager

Report No.: SUCR250300025504

Rev.: 01 Page: 3 of 36

Contents

Ver	sion		2
1	T	est Summary	4
2	G	General Information	5
	2.1	Details of Client	5
	2.2	Test Location	5
	2.3	Test Facility	
	2.4	General Description of EUT	6
	2.5	Test Environment and Mode	8
	2.6	Description of Support Units	8
	2.7	Worst-case configuration and mode	8
3	Е	quipment List	9
4		leasurement Uncertainty (95% confidence levels, k=2)	
5	T	est results and Measurement Data	
	5.1	Antenna Requirement	
	5.2	AC Power Line Conducted Emissions	13
	5.3	Duty Cycle	
	5.4	Conducted Output Power	
	5.5	DTS (6 dB) Bandwidth & 99% Occupied Bandwidth	19
	5.6	Power Spectral Density	
	5.7	Band-edge for RF Conducted Emissions	
	5.8	RF Conducted Spurious Emissions	22
	5.9	Radiated Spurious Emissions	
	5.10	Restricted bands around fundamental frequency	
6	Р	hotographs - Setup Photos	28
7	Α	nnendix	29

Report No.: SUCR250300025504

Rev.: 01 Page: 4 of 36

1 Test Summary

Test Item	FCC Rule No.	Test Method	Test Result	Result
Antenna Requirement	15.203/15.247(b)	-	Clause 3.1	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 2013 Section 6.2	Clause 3.2	PASS
Duty Cycle		ANSI C63.10 2013 Section 11.6	Clause 3.3	
Conducted Output Power	15.247 (b)(3)	ANSI C63.10 2013 Section11.9.1.3	Clause 3.4	
DTS (6 dB) Bandwidth & 99% Occupied Bandwidth	15.247 (a)(2)	ANSI C63.10 2013 Section 11.8 Option 2 / 6.9.3	Clause 3.5	Reference report
Power Spectral Density	15.247 (e)	ANSI C63.10 2013 Section 11.10.2	Clause 3.6	30CR230100002104
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 2013 Section 11.11	Clause 3.7	
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 2013 Section 11.11	Clause 3.8	
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10	Clause 3.10	PASS

Remark:

This test report (Report No.: SUCR250300025504 issue on 2025/06/11) is based on the original test report (Report No.: SUCR250100002104 issue on 2025/06/09).

Review this report and original report, this report just changing the parts according to the declaration letter from client.

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report only the ac power line conducted emission and radiated spurious emissions based on the worst case of the original report with report number SUCR250100002104 issue on 2025/06/09 and other test data in this report are based on the previous report with report number SUCR250100002104 issue on 2025/06/09.

Report No.: SUCR250300025504

Rev.: 01 Page: 5 of 36

2 General Information

2.1 Details of Client

Applicant:	Shanghai Sunmi Technology Co.,Ltd.
Address of Applicant:	Room 505,No.388,Song Hu Road,Yang Pu District,Shanghai,China
Manufacturer:	Shanghai Sunmi Technology Co.,Ltd.
Address of Manufacturer:	Room 505,No.388,Song Hu Road,Yang Pu District,Shanghai,China

2.2 Test Location

Company:	SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.
Address:	South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone
Post code:	215000
Test engineer:	Ives Cheng, King-p Li

2.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 6336.01)

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 6336.01.

• Innovation, Science and Economic Development Canada

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0120.

IC#: 27594.

• FCC –Designation Number: CN1312

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized as an

accredited testing laboratory. Designation Number: CN1312.

Test Firm Registration Number: 717327

Report No.: SUCR250300025504

Rev.: 01 Page: 6 of 36

2.4 General Description of EUT

EUT Description:	Wireless Data	Wireless Data Terminal			
Model No.:	TFB1B				
Trade Mark:	SUNMI				
Hardware Version:	V1.2				
Software Version:	T602AA_EVT	_14.0_SUNMI_20250	3131820.00-00		
Power Supply:	3.87V from ba	attery			
Operation Frequency:	802.11b/g/n(l	HT20)/ax(HE20):	2412MHz to 2462MHz		
	802.11b:	DSSS (DBPSK, DQF	PSK, CCK)		
Modulation Type:	802.11g/n:	OFDM (BPSK, QPSK, 16QAM, 64QAM)			
	802.11ax:	OFDM/OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)			
Number of Channels:	802.11b/g/n(l	HT20)/ax(HE20): 11			
Channel Spacing:	5MHz				
Compart Cycatamy	⊠ SISO	802.11b/g			
Smart System:	⊠ MIMO	802.11n/ax: 2Tx & 2Rx			
Antenna Type:	FPC Antenna				
	-1.19dBi(Ant3); 2.01dBi(Ant2)				
Antenna Gain:	Note: The antenna manufacturer		the gain information report provided by the		

Remark:

^{1.}As above information is provided and confirmed by the applicant. SGS is not liable to the accuracy, suitability, reliability or/and integrity of the information.

^{2.} The device does not support 802.11ax OFDMA Partial RU tones (26T, 52T, 106T, etc.)

Report No.: SUCR250300025504

Rev.: 01 Page: 7 of 36

	Operation Frequency of each channel (802.11b/g/n HT20 /ax HE20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency for 802.11 b/g/n (HT20) /ax (HE20)
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

Report No.: SUCR250300025504

Rev.: 01 Page: 8 of 36

2.5 Test Environment and Mode

Environment Parameter	101 kPa Selected Values During Tests				
Relative Humidity	44-46 % RH Ambient				
Value	Temperature(°C)	Voltage(V)			
NTNV	22~23	3.87			
Remark:					

NV: Normal VoltageNT: Normal Temperature

2.6 Description of Support Units

The EUT has been tested as an independent unit.

2.7 Worst-case configuration and mode

Low data rate was used to test on antenna port conducted tests and radiated spurious emissions since it has the highest maximum power. Following are the worst-case data rates set for test:

Modulation Type	SISO - Data Rate	CDD/MIMO - Data Rate
802.11b	1 Mbps	/
802.11g	6 Mbps	/
802.11n (HT 20)	/	MCS0 (13 Mbps)
802.11ax (HE 20)	/	MCS0 (16 Mbps)

Report No.: SUCR250300025504

Rev.: 01 Page: 9 of 36

3 Equipment List

CE Test System							
Test Equipment Manufacturer		Model No.	Inventory No.	Cal. date (yyyy/mm/dd)	Cal.Due date (yyyy/mm/dd)		
Test receiver	ROHDE&SCHWARZ	ESR7	SUWI-01-10-01	2025/01/15	2026/01/14		
Temperature and humidity meter	MingGao	TH101B	SUWI-01-01-06	2025/02/13	2026/02/12		
Artificial network	ROHDE&SCHWARZ	ENV216	SUWI-01-19-03	2025/05/08	2026/05/07		
Artificial network	ROHDE&SCHWARZ	ENV216	SUWI-01-19-04	2025/05/08	2026/05/07		
Measurement Software	Tonscend	JS32-CE 4.0.0.2	SUWI-02-09-05	NCR	NCR		

RSE Test Equipment									
Test Equipment	Manutacturer		Inventory No.	Cal. date (yyyy/mm/dd)	Cal.Due date (yyyy/mm/dd)				
Semi-Anechoic Chamber	Brilliant-emc	N/A	SUWI-04-02-01	2023/06/03	2026/06/02				
Temperature and humidity meter	MingGao	TH101B	SUWI-01-01-05	2025/02/13	2026/02/12				
Signal Analyzer	ROHDE &SCHWARZ	FSW43	SUWI-01-02-04	2025/01/20	2026/01/19				
Signal Analyzer	KEYSIGHT	N9020A	SUWI-01-02-07	2024/11/21	2025/11/20				
Test receiver	ROHDE &SCHWARZ	ESR7	SUWI-01-10-01	2025/01/15	2026/01/14				
Receiving antenna	SCHWRZBECK MESS- ELEKTRONIK	VULB 9168	SUWI-01-11-04	2024/08/22	2026/08/21				
Receiving antenna	Receiving SCHWRZBECK MESS-		SUWI-01-11-02	2025/05/07	2027/05/06				
Receiving antenna	SCHWRZBECK MESS- ELEKTRONIK	BBHA 9170	SUWI-01-11-03	2025/05/07	2027/05/06				
Active Loop Antenna	SCHWRZBECK MESS- ELEKTRONIK	FMZB 1519B	SUWI-01-21-01	2025/05/07	2027/05/06				
Amplifier	Tonscend	TAP9K3G40	SUWI-01-14-01	2025/01/16	2026/01/15				
Amplifier	Tonscend	TAP01018050	SUWI-01-14-02	2025/01/16	2026/01/15				
Amplifier	Tonscend	TAP18040048	SUWI-01-14-03	2025/01/20	2026/01/19				
Measurement Software	Tonscend	JS32-RE V4.0.0.0	SUWI-02-09-04	NCR	NCR				

Remark: NCR=No Calibration Requirement.

Report No.: SUCR250300025504

Rev.: 01 Page: 10 of 36

4 Measurement Uncertainty (95% confidence levels, k=2)

		, ,		
No.	ltem	Measurement Uncertainty		
1	Conduction Emission	± 2.90dB (150kHz to 30MHz)		
		± 3.13dB (9k -30MHz)		
2	Dedicted Emission	± 4.8dB (30M -1GHz)		
2	Radiated Emission	± 4.8dB (1GHz to 18GHz)		
		± 4.80dB (Above 18GHz)		

Remark:

The U_{lab} (lab Uncertainty) is less than U_{clspr/ETSI} (CISPR/ETSI Uncertainty), so the test results
– compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
– non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

Report No.: SUCR250300025504

Rev.: 01 Page: 11 of 36

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is FPC Antenna and no consideration of replacement.

The best case gain of the antenna is -1.19dBi(Ant3); 2.01dBi(Ant2).

Note:

The antenna gain are derived from the gain information report provided by the manufacturer. Remark:

As above information is provided and confirmed by the applicant. SGS is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Report No.: SUCR250300025504

Rev.: 01 Page: 12 of 36

Cyclic Delay Diversity (CDD) System:

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

 For power spectral density (PSD) measurements on all devices, Array Gain = 10 log(N_{ANT}/N_{SS} = 1) dB.

For power measurements on IEEE 802.11 devices:
 Array Gain = 0 dB (i.e., no array gain) for N_{ANT} ≤ 4;

For power, the directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain.

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The Power and PSD limit should be modified if the directional gain of eut is over 6dbi.

The EUT supports CDD System.

All antennas have the Unequal antenna gain:

ANT Gain0	ANT Gain1	Power DG	PSD DG	Power Limit	PSD Limit
(dBi)	(dBi)	(dBi)	(dBi)	Reduction(dB)	Reduction(dB)
2.01	-1.19	2.01	3.57	0	0

Power Limit Reduction = Directional gain – 6dBi, (Directional gain < 6dBi) = 0 PSD Limit Reduction = Directional gain – 6dBi, (Directional gain < 6dBi) = 0

Report No.: SUCR250300025504

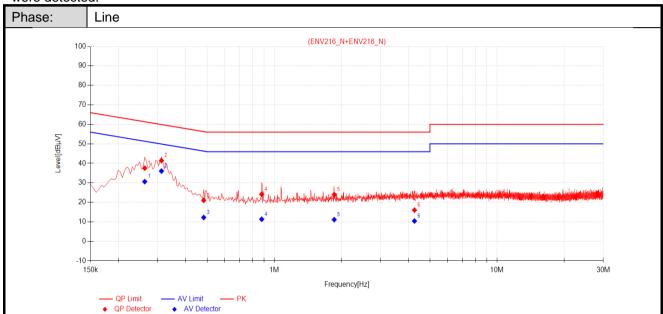
Rev.: 01 Page: 13 of 36

5.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.207						
Test Method:	ANSI C63.10: 2013 Section 6.2							
Test Frequency Range:	150kHz to 30MHz							
Receiver Setup:	RBW = 9kHz, VBW = 30	kHz						
Limit:		Limit (d	BuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the log	arithm of the frequency.						
Test Procedure:	room. 2) The EUT was connect Impedance Stabilization impedance. The power of a second LISN 2, which plane in the same way a multiple socket outlet straingle LISN provided the	isturbance voltage test was content to AC power source through the content of the was bonded to the ground refuse the LISN 1 for the unit being the was used to connect multiple rating of the LISN was not explaced upon a non-metallic	ugh a LISN 1 (Line ΩΩ/50μΗ + 5Ω linear EUT were connected to ference g measured. A ole power cables to a exceeded.					
	placed on the horizontal 4) The test was perform of the EUT shall be 0.4 r vertical ground reference reference plane. The LIS unit under test and bond mounted on top of the gr between the closest poir the EUT and associated In order to find the maxir	ed with a vertical ground refern from the vertical ground refere plane was bonded to the host 1 was placed 0.8 m from the doto a ground reference plane. This dots of the LISN 1 and the EUT equipment was at least 0.8 m mum emission, the relative pointerface cables must be cha	erence plane. The rear erence plane. The rizontal ground he boundary of the he for LISNs istance was T. All other units of he from the LISN 2. estitions of					

Report No.: SUCR250300025504

Rev.: 01 Page: 14 of 36


Report No.: SUCR250300025504

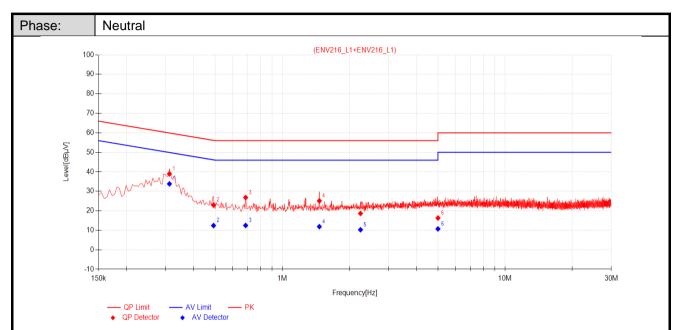
Rev.: 01 Page: 15 of 36

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Final	Final Data List										
NO.	Frequency [MHz]	Factor [dB]	QP Reading [dBµV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.2625	10.08	27.44	37.52	61.35	23.83	20.55	30.63	51.35	20.72	PASS
2	0.3120	10.07	31.35	41.42	59.92	18.50	25.98	36.05	49.92	13.87	PASS
3	0.4830	10.06	10.95	21.01	56.29	35.28	2.16	12.22	46.29	34.07	PASS
4	0.8790	10.01	14.12	24.13	56.00	31.87	1.32	11.33	46.00	34.67	PASS
5	1.8600	9.91	14.07	23.98	56.00	32.02	1.21	11.12	46.00	34.88	PASS
6	4.2630	9.85	6.15	16.00	56.00	40.00	0.56	10.41	46.00	35.59	PASS
3 4 5	0.4830 0.8790 1.8600	10.06 10.01 9.91	10.95 14.12 14.07	21.01 24.13 23.98	56.29 56.00 56.00	35.28 31.87 32.02	2.16 1.32 1.21	12.22 11.33 11.12	46.29 46.00 46.00	34.07 34.67 34.88	PAS PAS


Remark:

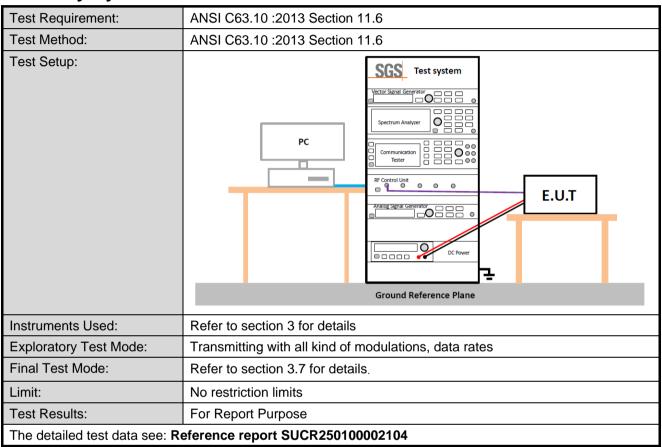
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Value = Reading[dB μ V] + Factor(Lisn factor[dB] + cable loss[dB]).
- 3. Margin = Limit[$dB\mu V$] Value[$dB\mu V$]

Report No.: SUCR250300025504

Rev.: 01 Page: 16 of 36

Final	Final Data List											
NO.	Frequency [MHz]	Factor [dB]	QP Reading [dBµV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.3120	10.07	28.89	38.96	59.92	20.96	23.74	33.81	49.92	16.11	PASS	
2	0.4920	10.07	12.88	22.95	56.13	33.18	2.35	12.42	46.13	33.71	PASS	
3	0.6855	10.06	16.75	26.81	56.00	29.19	2.43	12.49	46.00	33.51	PASS	
4	1.4685	9.91	15.18	25.09	56.00	30.91	1.96	11.87	46.00	34.13	PASS	
5	2.2470	9.83	8.82	18.65	56.00	37.35	0.44	10.27	46.00	35.73	PASS	
6	5.0010	9.83	6.45	16.28	60.00	43.72	0.87	10.70	50.00	39.30	PASS	

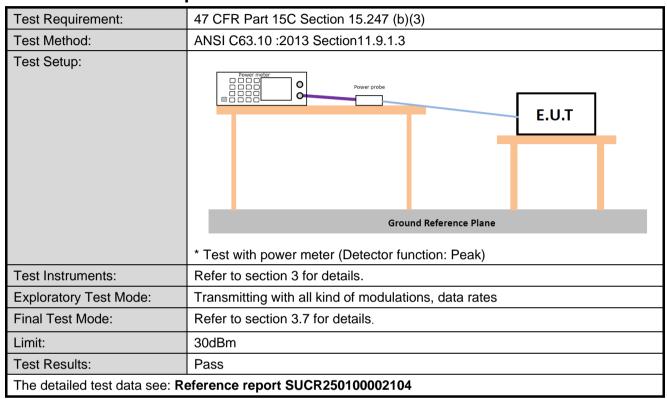
Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Value =Reading[dB μ V] + Factor(Lisn factor[dB] + cable loss[dB]).
- 3. Margin = Limit[dBµV] Value[dBµV]

Report No.: SUCR250300025504

Rev.: 01 Page: 17 of 36

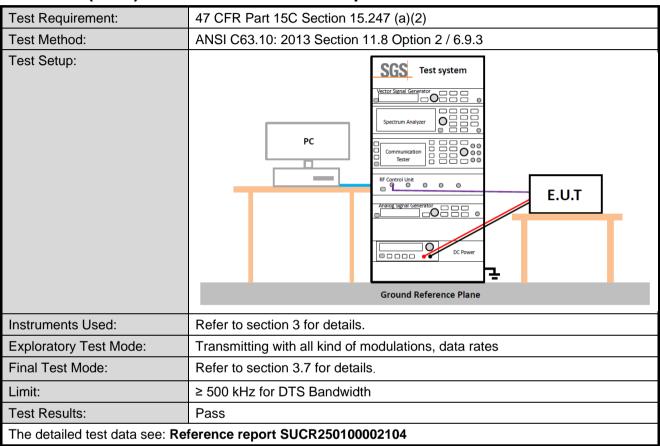
5.3 Duty Cycle



Report No.: SUCR250300025504

Rev.: 01 Page: 18 of 36

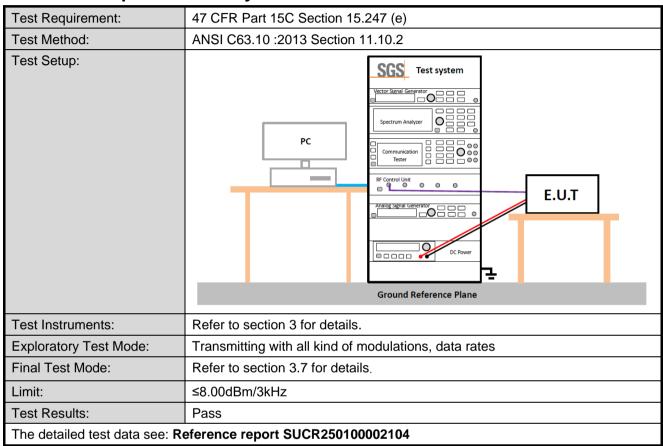
5.4 Conducted Output Power



Report No.: SUCR250300025504

Rev.: 01 Page: 19 of 36

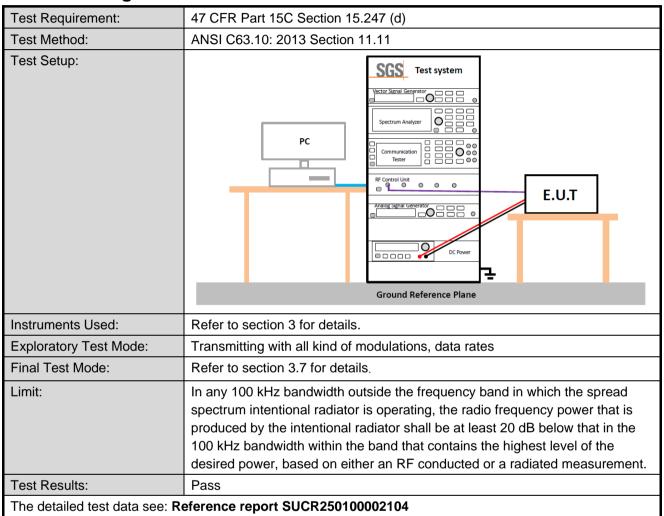
5.5 DTS (6 dB) Bandwidth & 99% Occupied Bandwidth



Report No.: SUCR250300025504

Rev.: 01 Page: 20 of 36

5.6 Power Spectral Density



Report No.: SUCR250300025504

Rev.: 01 Page: 21 of 36

5.7 Band-edge for RF Conducted Emissions

Report No.: SUCR250300025504

Rev.: 01 Page: 22 of 36

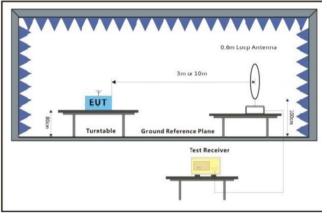
5.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10: 2013 Section 11.11						
Test Setup:	PC Communication						
Instruments Used:	Refer to section 3 for details.						
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates						
Final Test Mode:	Refer to section 3.7 for details.						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test Results:	Pass						
The detailed test data see: R	eference report SUCR250100002104						

Report No.: SUCR250300025504

Rev.: 01 Page: 23 of 36

5.9 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 :2013 Section 11.12								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Test Frequency:	9kHz ~ 25GHz								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGnz	Peak	1MHz	3MHz	Peak				
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz 500 54.0 Average 3								
	Remark: 15.35(b),Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No.: SUCR250300025504

Rev.: 01 Page: 24 of 36

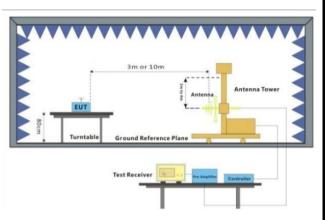


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

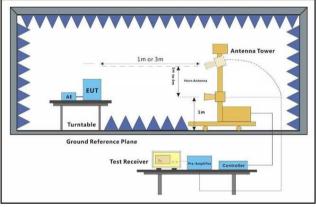


Figure 3. Above 1 GHz

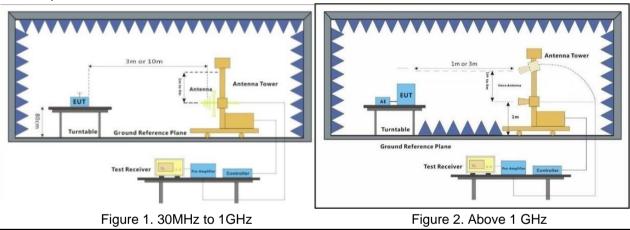
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation (Distance from antenna to EUT is 1m for measurements >18GHz).
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Test the EUT in the lowest channel, the middle channel ,the Highest

Report No.: SUCR250300025504

Rev.: 01 Page: 25 of 36

i j	 channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete. j. The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported k. The disturbance above 18GHz was very low, and the harmonics were the highest point could be found when testing, so only the harmonics had been displayed. l. At a measurement distance of 1 meter the limit line was increased by 20*LOG(3/1) = 9.54 dB.
M P A A tra	Reasurements below 30MHz RBW = 10 kHz VBW = 30 kHz Detector = Peak & Average & Quasi-peak Trace mode = max hold Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Quasi-peak Trace mode = max hold Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Nerage Measurements Above 1000MHz RBW = 1 MHz VBW ≥ 1 MHz VBW ≥ 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum ansmission duration over which the transmitter is on and is transmitting at its aximum power control level for the tested mode of operation.
Exploratory Test Mode: Tr	ransmitting with all kind of modulations, data rates. harge + Transmitting mode.
	efer to section 3.7 for details.
	or below 1GHz part, through pre-scan all channels, but only the worst case is ecorded in the report.
Instruments Used: Re	efer to section 3 for details.
Test Results: Pa	ass
The detailed test data see: A	ppendix


Report No.: SUCR250300025504

Rev.: 01 Page: 26 of 36

5.10Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	11.12							
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak						
	88MHz-216MHz	43.5	Quasi-peak						
	216MHz-960MHz	46.0	Quasi-peak						
	960MHz-1GHz	54.0	Quasi-peak						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						

Test Setup:

Report No.: SUCR250300025504

Rev.: 01 Page: 27 of 36

Toot Dress down	o For holow 10Hz, the FLIT was placed on the text of a retation table 0.0 miles
Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel, the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	Measurements Below 1000MHz
	• RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Quasi-peak
	• Trace mode = max hold
	Peak Measurements Above 1000 MHz RBW = 1 MHz
	• VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	VBW = 10 Hz, when duty cycle is no less than 98 percent.
	 VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge + Transmitting mode.
Final Test Mode:	Refer to section 3.7 for details.
Instruments Used:	Refer to section 3 for details.
Test Results:	Pass
The detailed test data see	
THE UELAHEU LEST UATA SEE	a. Appendix

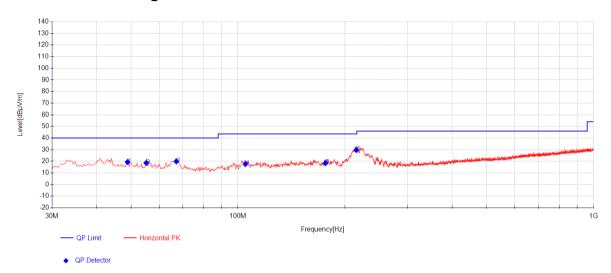
Report No.: SUCR250300025504

Rev.: 01 Page: 28 of 36

6 Photographs - Setup Photos

Refer to Appendix A.2 BT&WLAN&NFC Setup Photos.

Report No.: SUCR250300025504

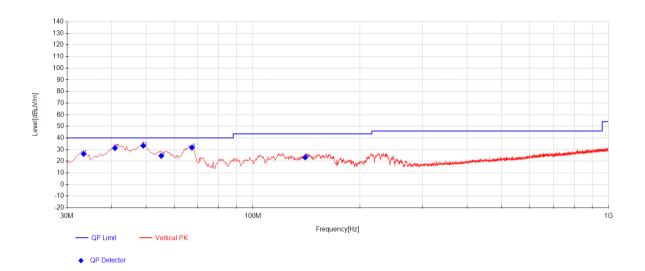

Rev.: 01 Page: 29 of 36

7 Appendix

Radiated Spurious Emissions

Radiated emission below 1GHz

Worst case Mode: 11g ANT2_Channel 01



Final	Final Data List									
NO.	Frequency [MHz]]	Reading [dBμV]	Factor [dB]	AF [dB/m]	QP Value [dBμV/m]	QP Limit [dBμV/m]	QP Margin [dB]	Polarity		
1	48.915	34.26	-33.71	18.80	19.35	40.00	20.65	Horizontal		
2	55.22	34.05	-33.62	18.20	18.63	40.00	21.37	Horizontal		
3	67.1025	36.24	-33.46	17.07	19.85	40.00	20.15	Horizontal		
4	104.9325	35.16	-33.06	15.49	17.59	43.50	25.91	Horizontal		
5	176.2275	33.26	-32.39	17.51	18.38	43.50	25.12	Horizontal		
6	215.27	46.21	-32.15	15.61	29.67	43.50	13.83	Horizontal		

Report No.: SUCR250300025504

Rev.: 01 Page: 30 of 36

Final Data List										
NO.	Frequency [MHz]]	Reading [dBµV]	Factor [dB]	AF [dB/m]	QP Value [dBμV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity		
1	33.395	42.12	-33.97	18.14	26.29	40.00	13.71	Vertical		
2	40.9125	46.35	-33.84	18.80	31.31	40.00	8.69	Vertical		
3	49.1575	48.28	-33.70	18.77	33.34	40.00	6.66	Vertical		
4	55.22	40.06	-33.62	18.20	24.64	40.00	15.36	Vertical		
5	67.345	48.16	-33.46	17.00	31.70	40.00	8.30	Vertical		
6	140.3375	37.53	-32.76	18.53	23.30	43.50	20.20	Vertical		

Remark:

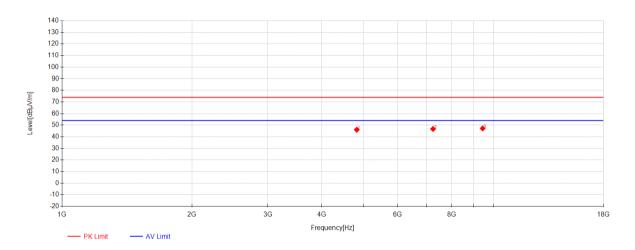
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier gain. The basic equation with a sample calculation is as follows:

Value = Reading(dB μ V) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

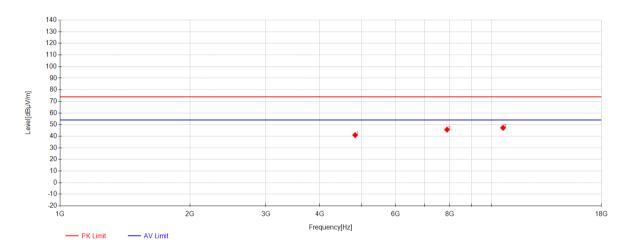
Margin = Limit($dB\mu V/m$) – Value($dB\mu V/m$)


2) All channels have been tested, but only the worst case data displayed in this report.

Report No.: SUCR250300025504

Rev.: 01 Page: 31 of 36

Transmitter emission Above 1GHz 802.11g ANT2_Channel 01


Data	Data List									
NO.	Frequency [MHz]	Reading [dВµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity		
1	4822	54.68	32.81	-41.43	46.05	74.00	27.95	Horizontal		
2	7245	48.16	36.29	-37.75	46.71	74.00	27.29	Horizontal		
3	9441.5	43.25	37.73	-33.80	47.18	74.00	26.82	Horizontal		

Report No.: SUCR250300025504

Rev.: 01 Page: 32 of 36

802.11g ANT2_Channel 01

Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	4831.5	49.54	32.83	-41.41	40.96	74.00	33.04	Vertical			
2	7891.5	45.37	36.99	-36.67	45.69	74.00	28.31	Vertical			
3	10639.5	40.07	38.22	-31.03	47.26	74.00	26.74	Vertical			

Remark:

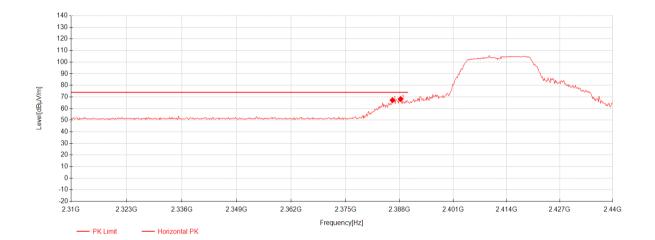
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier gain. The basic equation with a sample calculation is as follows:

Level = Reading($dB\mu V$) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

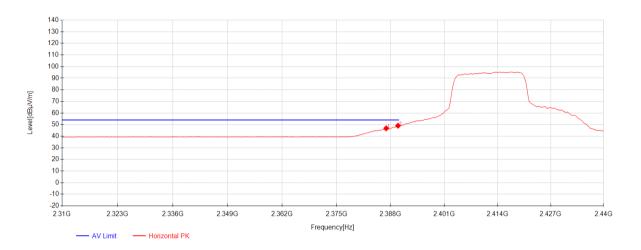
Margin = Limit($dB\mu V/m$) – Level($dB\mu V/m$)


- 2) All channels have been tested, but only the worst case data displayed in this report.
- 3) Both peak and average measured complies with the limit line, so test result is "PASS"

Report No.: SUCR250300025504

Rev.: 01 Page: 33 of 36

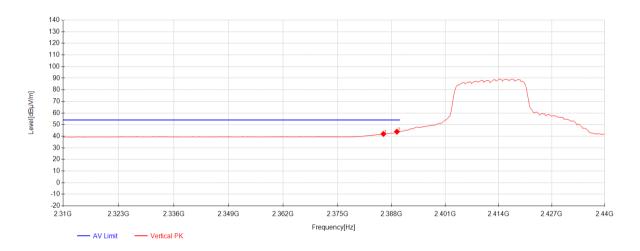
Restricted bands around fundamental frequency 802.11g ANT2_Channel 01


Data	Data List										
NO.	Frequency [MHz]	Reading [dBµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity			
1	2386.31	63.32	27.15	-23.31	67.16	74.00	6.84	Horizontal			
2	2388.26	64.33	27.15	-23.31	68.17	74.00	5.83	Horizontal			

Report No.: SUCR250300025504

Rev.: 01 Page: 34 of 36

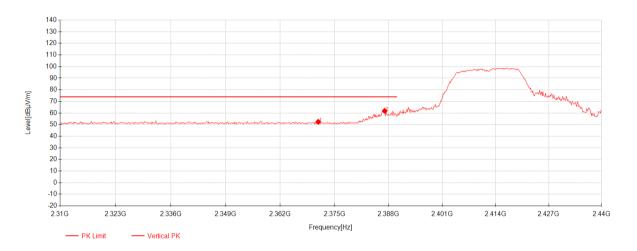
802.11g ANT2_Channel 01


Data	Data List									
NO.	Frequency [MHz]	Reading [dВµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity		
1	2386.96	42.96	27.15	-23.31	46.80	54.00	7.20	Horizontal		
2	2389.82	45.22	27.16	-23.31	49.06	54.00	4.94	Horizontal		

Report No.: SUCR250300025504

Rev.: 01 Page: 35 of 36

802.11g ANT2_Channel 01


Data	Data List									
NO.	Frequency [MHz]	Reading [dВµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity		
1	2386.05	38.15	27.15	-23.31	41.99	54.00	12.01	Vertical		
2	2389.3	40.09	27.16	-23.31	43.93	54.00	10.07	Vertical		

Report No.: SUCR250300025504

Rev.: 01 Page: 36 of 36

802.11g ANT2_Channel 01

Data	Data List									
NO.	Frequency [MHz]	Reading [dВµV]	AF [dB/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity		
1	2371.1	48.58	27.12	-23.30	52.40	74.00	21.60	Vertical		
2	2387.09	58.04	27.15	-23.31	61.88	74.00	12.12	Vertical		

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier gain. The basic equation with a sample calculation is as follows:

Level = Reading($dB\mu V$) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

Margin = Limit($dB\mu V/m$) – Level($dB\mu V/m$)

2) Both peak and average measured complies with the limit line, so test result is "PASS"

---End of Report---